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Abstract. We study a partial differential equation on a bounded domain � ⊂ �N

with a p(x)-growth condition in the divergence operator and we establish the existence
of at least two nontrivial weak solutions in the generalized Sobolev space W 1,p(x)

0 (�).
Such equations have been derived as models of several physical phenomena. Our
proofs rely essentially on critical point theory combined with corresponding variational
techniques.
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1. Introduction. The study of partial differential equations with p(x)-growth
conditions has received more and more interest in recent decades. The specific attention
accorded to such problems is due to their applications in mathematical physics. More
precisely, such equations are used to model phenomena which arise in elastic mechanics
or electrorheological fluids. For a general account of the underlying physics and for
some technical applications we refer to [1, 4, 14, 16, 20, 21, 24, 25] and the references
therein.

A typical model of an elliptic equation with p(x)-growth conditions is

−div
(|∇u|p(x)−2∇u

) = g(x, u).

The operator div(|∇u|p(x)−2∇u) is called the p(x)-Laplace operator and it is a natural
generalization of the p-Laplace operator, in which p(x) = p > 1 is a constant. For
this reason the equations studied in the case in which the p(x)-Laplace operator is
involved are, in general, extensions of p-Laplacian problems. (See for example [3, 9, 11].)
However, we point out that such generalizations are not trivial since the p(x)-Laplace
operator possesses more complicated nonlinearity; for example it is inhomogeneous.
We just remember the fact that defining

λ1 := inf
u∈W 1,p(x)

0 (�)\{0}

∫
�

|∇u|p(x) dx∫
�

|u|p(x) dx

we often have λ1 = 0 for general p(x), and only under some special conditions λ1 > 0.
(See [12].)

https://doi.org/10.1017/S0017089506003144 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089506003144


412 MIHAI MIHĂILESCU

In this paper we study the existence of solutions for a boundary value problem of
the type

{
−div(|∇u|p(x)−2∇u) = f (x, u) (for x ∈ �),

u = 0, (for x ∈ ∂�),
(1)

where � ⊂ �N (N ≥ 3) is a bounded domain with smooth boundary, 1 < p(x) and
p(x) ∈ C(�).

Equation (1) will be studied in the framework of the variable Lebesgue and Sobolev
spaces Lp(x) and W 1,p(x) which will be briefly described in the following section.

2. Preliminary results. Variable exponent Lebesgue spaces Lp(x), where p(x) is
a real-valued function, appeared in the literature for the first time already in a 1931
article by W. Orlicz [19]. In the years 1950 this study was carried on by Nakano [18]
who made the first systematic study of spaces with variable exponent. Later, the Polish
mathematicians investigated the modular function spaces. (See, for example, Musielak
[17].) Variable exponent Lebesgue spaces on the real line have been independently
developed by Russian researchers. In this context we refer to the work of Tsenov [23],
Sharapudinov [22] and Zhikov [25, 26].

Throughout this paper we assume that p(x) > 1, p(x) ∈ C(�).

Set

C+(�) = {h; h ∈ C(�), h(x) > 1 for all x ∈ �}.

For any h ∈ C+(�) we define

h+ = sup
x∈�

h(x) and h− = inf
x∈�

h(x).

For any p(x) ∈ C+(�), we define the variable exponent Lebesgue space

Lp(x)(�) = {u; u is a measurable real-valued function such that
∫

�

|u(x)|p(x) dx < ∞}.

We define a norm, the so-called Luxemburg norm, on this space by the formula

|u|p(x) = inf
{
µ > 0;

∫
�

∣∣∣∣u(x)
µ

∣∣∣∣
p(x)

dx ≤ 1
}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many
respects: they are Banach spaces [15, Theorem 2.5], the Hölder inequality holds [15,
Theorem 2.1], they are reflexive if and only if 1 < p− ≤ p+ < ∞ [15, Corollary 2.7] and
continuous functions are dense if p+ < ∞ [15, Theorem 2.11]. The inclusion between
Lebesgue spaces also generalizes naturally [15, Theorem 2.8]: if 0 < |�| <∞ and p1,
p2 are variable exponent, so that p1(x) ≤ p2(x) almost everywhere in �, then there
exists the continuous embedding Lp2(x)(�) ↪→ Lp1(x)(�), whose norm does not exceed
|�| + 1.
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We denote by Lq(x)(�) the conjugate space of Lp(x)(�), where 1/p(x) + 1/q(x) = 1.
For any u ∈ Lp(x)(�) and v ∈ Lq(x)(�) the Hölder type inequality∣∣∣∣

∫
�

uv dx
∣∣∣∣ ≤

(
1

p− + 1
q−

)
|u|p(x)|v|q(x) (2)

holds true.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is

played by the modular of the Lp(x)(�) space. This is the mapping ρp(x) : Lp(x)(�) → �

defined by

ρp(x)(u) =
∫

�

|u|p(x) dx.

If u ∈ Lp(x)(�) and p+ < ∞, then the following relations holds true

|u|p(x) > 1 ⇒ |u|p−
p(x) ≤ ρp(x)(u) ≤ |u|p+

p(x), (3)

|u|p(x) < 1 ⇒ |u|p+
p(x) ≤ ρp(x)(u) ≤ |u|p−

p(x), (4)

|u|p(x) = 1 ⇒ ρp(x)(u) = 1. (5)

Spaces with p+ = ∞ have been studied by Edmunds, Lang and Nekvinda [5].
Next, we define W 1,p(x)

0 (�) as the closure of C∞
0 (�) under the norm

‖u‖ = |∇u|p(x).

The space (W 1,p(x)
0 (�), ‖ · ‖) is a separable and reflexive Banach space. We note that if

q ∈ C+(�) and q(x) < p�(x), for all x ∈ �, then the embedding W 1,p(x)
0 (�) ↪→ Lq(x)(�) is

compact and continuous. Here p�(x) = Np(x)
N−p(x) if p(x) < N or p�(x) = +∞ if p(x) ≥ N.

We refer to [6, 7, 10, 13, 15] for further properties of variable exponent Lebesgue-
Sobolev spaces.

3. The main result. In this paper we study problem (1) in the particular case

f (x, t) = A|t|a−2t + B|t|b−2t

with 1 < a < p− < p+ < b < min{N,
Np−

N−p− } and A, B > 0. More precisely, we consider
the degenerate boundary value problem{

−div(|∇u|p(x)−2∇u) = A|u|a−2u + B|u|b−2u (for x ∈ �),

u = 0 (for x ∈ ∂�).
(6)

We seek solutions for problem (6) belonging to the space W 1,p(x)
0 (�) in the sense below.

DEFINITION 1. We say that u ∈ W 1,p(x)
0 (�) is a weak solution for problem (1) if∫

�

|∇u|p(x)−2∇u∇v dx − A
∫

�

|u|a−2uv dx − B
∫

�

|u|b−2uv dx = 0,

for all v ∈ W 1,p(x)
0 (�).
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We prove the following result.

THEOREM 1. There exists λ > 0 such that, for any A ∈ (0, λ) and any B ∈ (0, λ),
problem (6) has at least two distinct nontrivial weak solutions.

REMARK. In the case where in equation (6) we assume that A = B = µ we deal
with an eigenvalue problem, namely{

−div(|∇u|p(x)−2∇u) = µ(|u|a−2u + |u|b−2u) (for x ∈ �),

u = 0 (for x ∈ ∂�).
(7)

Theorem 1 ensures that problem (7) has a continuous family of positive eigenvalues
that lie in a neighborhood of the origin and which are not simple (their multiplicity
being at least two). Furthermore, we obtain

inf
u∈W 1,p(x)

0 (�)\{0}

∫
�

|∇u|p(x) dx∫
�

(|u|a + |u|b) dx
= 0.

4. Proof of Theorem 1. Let E denote the generalized Sobolev space W 1,p(x)
0 (�).

The energy functional corresponding to problem (6) is defined as J : E → �,

J(u) =
∫

�

1
p(x)

|∇u|p(x) dx − A
a

∫
�

|u|a dx − B
b

∫
�

|u|b dx.

Arguments similar to those used in [11] ensure that J ∈ C1(E, �) with

〈J ′(u), v〉 =
∫

�

|∇u|p(x)−2∇u∇v dx − A
∫

�

|u|a−2uv dx − B
∫

�

|u|b−2uv dx,

for all u, v ∈ E. Thus the weak solutions of (6) are exactly the critical points of J. We
shall prove that the functional J possesses two distinct critical points using as main
tools the Mountain Pass Theorem (see, e.g. [2]) and Ekeland’s Variational Principle
(see, e.g. [8]).

LEMMA 1. The following assertions hold.
(i) There exist ρ > 0 and α > 0 such that

J(u) ≥ α > 0, ∀u ∈ E with ‖u‖ = ρ.

(ii) There exists ψ ∈ E such that

lim
t→∞ J(tψ) = −∞.

(iii) There exists ϕ ∈ E such that ϕ ≥ 0, ϕ �= 0 and

J(tϕ) < 0

for t > 0 small enough.
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Proof. (i) It is clear that E is continuously embedded in La(�) and in Lb(�). Thus
there exist two positive constants c1 and c2 such that∫

�

|u|a dx ≤ c1‖u‖a, ∀ u ∈ E, (8)

and ∫
�

|u|b dx ≤ c2‖u‖b, ∀ u ∈ E. (9)

Using relations (8), (9) and (5) we deduce that for any u ∈ E with ‖u‖ = 1 we have

J(u) ≥ 1
p+ − A

1
a

c1 − B
1
b

c2.

Taking

λ = min
{

a
4p+c1

,
b

4p+c2

}
(10)

and providing that A, B ∈ (0, λ) we obtain

J(u) ≥ 1
2p+ , ∀ u ∈ E with ‖u‖ = 1.

The first part of Lemma 1 is proved.
(ii) Let ψ ∈ C∞

0 (�), ψ ≥ 0, ψ �= 0 and t > 1. We have

J(tψ) =
∫

�

tp(x)

p(x)
|∇ψ |p(x) dx − A

a
ta

∫
�

|ψ |a dx − B
b

tb
∫

�

|ψ |b dx

≤ tp+

p−

∫
�

|∇ψ |p(x) dx − B
b

tb
∫

�

|ψ |b dx.

Since b > p+ we deduce that limt → ∞ J(tψ) = −∞ and (ii) is proved.
(iii) Let ϕ ∈ C∞

0 (�), ϕ ≥ 0, ϕ �= 0 and t ∈ (0, 1). We have

J(tϕ) =
∫

�

tp(x)

p(x)
|∇ϕ|p(x) dx − A

a
ta

∫
�

|ϕ|a dx − B
b

tb
∫

�

|ϕ|b dx

≤ tp−

p−

∫
�

|∇ϕ|p(x) dx − A
a

ta
∫

�

|ϕ|a dx < 0

for t < δ1/(p−−a) with

0 < δ < min
{

1,

A
a p+ ∫

�
|ϕ|a dx∫

�
|∇ϕ|p(x) dx

}
.

It follows that (iii) is proved.
The proof of Lemma 1 is complete.

�
Proof of Theorem 1. Let λ > 0 be defined as in (10) and A ∈ (0, λ), B ∈ (0, λ).

Using Lemma 1 (i) and (ii) and the Mountain Pass Theorem (see, e.g. [2]) we deduce
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the existence of a sequence {un} in E such that

J(un) → c > 0 and J ′(un) → 0 in E�. (11)

We prove that {un} is bounded in E. Assume the contrary. Then, passing eventually to
a subsequence, still denoted by {un}, we may assume that ‖un‖ → ∞ as n → ∞. Thus
we may consider that ‖un‖> 1, for any integer n. Relations (11) and (4) imply that for
n large enough we have

c + 1 + ‖un‖ ≥ J(un) − 1
b
〈J ′(un), un〉

=
∫

�

1
p(x)

|∇un|p(x) dx − A
a

∫
�

|un|a dx − B
b

∫
�

|un|b dx

− 1
b

∫
�

|∇un|p(x) dx + A
b

∫
�

|un|a dx + B
b

∫
�

|un|b dx

≥
(

1
p+ − 1

b

)
‖un‖p− + A

(
1
b

− 1
a

) ∫
�

|un|a dx.

Since a, p+ < b and relation (8) holds true, we deduce the existence of a positive constant
c3 such that

c + 1 + ‖un‖ ≥
(

1
p+ − 1

b

)
‖un‖p− − c3‖un‖a,

for n large enough. Dividing the above inequality by ‖un‖p−
and passing to the limit

as n → ∞ we obtain a contradiction. It follows that {un} is bounded in E. Thus, there
exists u1 ∈ E such that passing to a subsequence, still denoted by {un}, it converges
weakly to u1 in E. Since a, b <

Np−
N−p− we deduce that E is compactly embedded in La(�)

and Lb(�) and it follows that {un} converges strongly to u1 in La(�) and Lb(�). On the
other hand, relation (11) yields

lim
n→∞〈J ′(un), un − u1〉 = 0.

Using the above information we find that

lim
n→∞

∫
�

|∇un|p(x)−2∇un∇(un − u1) dx = 0. (12)

Relation (12) and the fact that {un} converges weakly to u1 in E enable us to apply
Theorem 3.1 in [11] in order to obtain that {un} converges strongly to u1 in E. Then,
since J ∈ C1(E, �) and relation (11) holds true we conclude that

J(u1) = c and J ′(u1) = 0. (13)

It follows that u1 is a nontrivial weak solution for problem (6).
We prove now that there exists a second weak solution u2 ∈ E such that u2 �= u1.

By Lemma 1 (i) it follows that on the boundary of the unit ball, centered at the origin
in E and denoted by B1(0), we have

inf
∂B1(0)

J > 0. (14)
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On the other hand, by Lemma 1 (iii) there exists ϕ ∈ E such that J(tϕ) < 0, for all t > 0
small enough. Moreover, relations (8), (9) and (4) imply that, for any u ∈ B1(0), the
inequality

J(u) ≥ 1
p+ ‖u‖p+ − A

a
c1‖u‖a − B

b
c2‖u‖b

holds and we deduce that

−∞ < c := inf
B1(0)

J < 0.

We now let 0 < ε < inf∂B1(0) J − infB1(0) J. Apply Ekeland’s Variational Principle for
the functional J : B1(0) → �, (see [8]). There exists uε ∈ B1(0) such that

J(uε) < inf
B1(0)

J + ε,

J(uε) < J(u) + ε · ‖u − uε‖, u �= uε .

Since

J(uε) ≤ inf
B1(0)

J + ε ≤ inf
B1(0)

J + ε < inf
∂B1(0)

J,

it follows that uε ∈ B1(0). Now, we define I : B1(0) → � by I(u) = J(u) + ε · ‖u − uε‖.
It is clear that uε is a minimum point of I and thus

I(uε + t · v) − I(uε)
t

≥ 0,

for a small t > 0 and v ∈ B1(0). The relation above yields

J(uε + t · v) − J(uε)
t

+ ε · ‖v‖ ≥ 0.

Letting t → 0 it follows that 〈J ′(uε), v〉 + ε · ‖v‖> 0 and we infer that ‖J ′(uε)‖ ≤ ε.
We deduce that there exists a sequence {wn} ⊂ B1(0) such that

J(wn) → c and J ′(wn) → 0. (15)

Using the same arguments as in the case of solution u1 we can prove that {wn} converges
strongly to u2 in E. Moreover, since J ∈ C1(E, �), by relation (15) it follows that

J(u2) = c and J ′(u2) = 0. (16)

Thus, u2 is also a nontrivial weak solution for problem (6).
Finally, we point out the fact that u1 �= u2 since

J(u1) = c > 0 > c = J(u2).

The proof of Theorem 1 is complete. �
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