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Ordering the Representations of Sn

Using the Interchange Process

Gil Alon and Gady Kozma

Abstract. Inspired by Aldous’ conjecture for the spectral gap of the interchange process and its recent

resolution by Caputo, Liggett, and Richthammer, we define an associated order ≺ on the irreducible

representations of Sn. Aldous’ conjecture is equivalent to certain representations being comparable in

this order, and hence determining the “Aldous order” completely is a generalized question. We show a

few additional entries for this order.

1 Aldous’ Order

Let G be a finite graph with vertex set {1, . . . , n}, and equip each edge {i, j} with

an alarm clock that rings with exponential rate ai, j . Put a marble in every vertex of

G, all different, and whenever the clock of {i, j} rings, exchange the two marbles.

Each marble therefore does a standard continuous-time random walk on the graph

but the different walks are dependent. This process is called the interchange process

and is one of the standard examples of an interacting particle system, related to ex-

clusion processes (where the marbles have only a few possible colors), but typically

more complicated. Furthermore, when one considers the evolution of the permuta-

tion taking the initial positions of the marbles to their positions at time t , one gets a

continuous-time random walk on a (weighted) Cayley graph of the group of permu-

tations Sn.

The first landmark in the understanding of this process was the work of Diaconis

and Shahshahani [5]. For the case of G being the complete graph they diagonalized

the relevant n!× n! matrix completely using representation theory and achieved very

fine results on the mixing properties.

If one cannot get the whole spectrum, the second eigenvalue (the so-called spectral

gap) allows one to get significant partial information on the process. In 1992 Aldous

made the bold conjecture that the spectral gap of the interchange process is in fact

equal to the spectral gap of the simple random walk on G, for every G. This was the

focus of much research [2, 4, 6, 9, 12, 15] and was finally resolved by Caputo, Liggett,

and Richthammer [3]. However, our focus in this paper is the spectrum as a whole,

and for this we need to discuss the problem from a representation theoretical point

of view. More details on representation theory will be given below in §2; for now we

continue assuming that the reader has basic familiarity with the subject.

Let n ∈ N and let A = {ai, j}1≤i< j≤n with all ai, j non-negative. Examine the
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following formal sum of permutations with real coefficients1

∆A =

∑

i< j

ai, j(id−(i j)),

where id stands for the identity permutation. Let ρ be any representation of Sn. Then

(1.1) ρ(∆A) =
∑

i< j

ai, j

(
ρ(id) − ρ((i j))

)

is some dim ρ× dim ρ matrix. It is well known that ρ(∆A) is a positive-semidefinite

matrix, indeed (i j) is an involution so all the eigenvalues of ρ((i j)) are ±1 and the

eigenvalues of ρ(id−(i j)) are in {0, 2}, so each term in (1.1) is positive and hence so

is their sum. We shall denote the eigenvalues of ρ(∆A) by

λ1(A; ρ) ≤ · · · ≤ λdim(ρ)(A; ρ).

We will occasionally drop the A from the notation.

Now the irreducible representations of Sn are indexed by partitions of n. Namely,

for each integer sequence r1 ≥ r2 ≥ · · · ≥ rk > 0 with
∑k

i=1 ri = n there exists

a unique irreducible representation, which we shall denote by [r1, . . . , rk]. Such a

partition has a nice graphical representation given by the associated Young diagram,

obtained by drawing each ri as a line of boxes from top to bottom,

[5, 1] = [3, 2, 1] = [2, 13] =

and we will occasionally use it. We may now state Aldous’ conjecture.

Theorem 1.1 (Caputo, Liggett, and Richthammer [3]) For any A and any irreducible

ρ different from the trivial representation [n],

(1.2) λ1(A; [n − 1, 1]) ≤ λ1(A; ρ).

The formulation of the result in [3] does not use representation theory. As dis-

cussed above, they showed that the interchange process has the same spectral gap as

the simple random walk. See [4] for how to get from one formulation to the other.

Faced with (1.2), one is tempted to generalize the question. Define the Aldous

order on irreducible representations by ρ � σ ⇐⇒ ∀A λ1(A; ρ) ≥ λ1(A;σ), where

again by ∀A we mean for all n×n matrices with non-negative coefficients. It is rather

unfortunate that the largest representation in the ≺ order has the smallest λ1, but we

wish to make ≺ consistent with the domination order, for which there is already an

established direction. We say that ρ ≺ σ if ρ � σ and they are different, and remark

that ρ � σ and ρ � σ imply that ρ = σ; see Remark 3.3

1Alternatively, element of the group ring R[Sn].
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As can be seen in Figure 1, ≺ is an interesting object, and it seems to be correlated

with the domination order ⊳. We say that σ ⊳ ρ if σ can be obtained from ρ by a se-

quence of steps such that in each step one box is dropped to the row below it in a way

that leaves a Young diagram. Cesi [4] remarked that it would be nice if Aldous’ order

were identical to the domination order, but also noted a counterexample in n = 4:

one has ⊲ but ⊁ . See [4, Counterexample 8.2]. Such a counterexample

exists for every n ≥ 4: we will see in Corollary 3.2 that [2, 2, 1n−4] ⊁ [2, 1n−2], al-

though clearly [2, 2, 1n−4] ⊲ [2, 1n−2]. The graph demonstrating this is a star. Shan-

non Starr discovered numerically another asymptotic family of counterexamples for

even sizes, [n + 1, n − 1] ⊁ [n, n] (private communication, checked numerically up

to size 14, n = 7). In this case the graph demonstrating it is the cycle. We remark also

that the results of Diaconis and Shahshahani [5] imply that if σ ⊳ τ , then σ ⊁ τ .

We do not know if it is generally true that if two representations are ⊳-incomparable,

then they are also ≺-incomparable, so we cannot quite state that ≺ is a sub-order of

⊳, though it is a very natural conjecture.

Despite the similarity with the completely explicit ⊳, it is not easy to prove any

entry in the Aldous order. In fact, the only entries in the Aldous order known previ-

ous to this paper are [n] � ρ � [1, . . . , 1] for all ρ (this is easy once one identifies

these representations; see Corollary 4.2), a result of Bacher [2] that the hook-shaped

diagrams are ordered among themselves

[n] ≻ [n − 1, 1] ≻ [n − 2, 12] ≻ · · · ≻ [2, 1n−1] ≻ [1n],

(we provide some details about this in the Appendix), and of course the Caputo et al.

result, [n − 1, 1] ≻ ρ for all ρ 6= [n], [n − 1, 1].

We may now state our result.

Theorem 1.2 Let n ≥ 4k2 + 4k. Let τ be an irreducible representation whose Young

diagram has ≥ n − k boxes in the first row; and let σ be an irreducible representation

whose Young diagram has ≥ n − k boxes at the the leftmost column. Then τ ≻ σ.

Again we see the relationship with ⊲. What we show is that if “τ ⊲> σ” i.e., if τ is

much larger in the domination order than σ, then τ ≻ σ.

Let us end this introduction by returning to the work of Diaconis and Shahsha-

hani and to the mixing time of Markov chains. Better understanding of Aldous’ order

will allow extending their results to other graphs. Of particular interest are the hook-

shaped representations because for them all eigenvalues are explicitly known [2]. De-

termining which representations are ≺ a given hook-shaped representation will allow

quickly estimating their contribution to the mixing of the process. Let us formulate

some modest questions.

Question Describe the representations σ ≺ [n − 2, 12]. The natural generalization

of Aldous conjecture is that σ ⊳ [n − 2, 12] implies σ ≺ [n − 2, 12]. Is this true? If

not, maybe there exists some absolute constant K such that any σ ⊳ [n − K,K − 1, 1]

satisfies σ ≺ [n − 2, 12]?

There are, of course, many other natural questions about this order. How many

entries does it have? What is the longest chain? Is it really a subset of the domination
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Figure 1: The Aldous order for n = 4, 5, 6. Arrows are drawn from the larger representations

to the smaller ones. For n = 4 everything is proved, but the others are results of computer

simulations. What can be trusted in the diagrams are the non-arrows — if the arrows do not

imply a relationship between two diagrams that means a computer search found two examples

proving no relationship may exist.
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order? What is the longest chain in the domination order which is completely incom-

parable in Aldous order? The simulation results seem to indicate that σ ≻ ρ ⊲ τ
implies σ ≻ τ . We see no particular reason for this to be true, but if it is, it would

be interesting. We chose to highlight the question above because we believe it has

relevance to questions which do not need representation theory to state, e.g., mixing

time and the quantum Heisenberg ferromagnet (see [1] for the latter).

2 Some Representation Theory

This section will contain only the minimal set of facts needed for the paper. For a

thorough introduction to the topic see one of the books [7,8,10,14] and the influen-

tial paper [13]. A representation of Sn is a group homomorphism ρ : Sn → GL(V ),

where V is some linear space over C and GL(V ) is the space of all linear transfor-

mations of V . We will assume throughout that V is finite-dimensional. It can be

assumed [14, Theorem 1.5.3] that ρ(g) is a unitary matrix, and so we will assume

this a priori for all our representations. We denote dim ρ = dim V .

Given two representations ρi : Sn → GL(Vi), i = 1, 2 one may construct their

direct sum ρ1 ⊕ ρ2 : Sn → GL(V1 ⊕V2) by

(ρ1 ⊕ ρ2)(g) =

(
ρ1(g) 0

0 ρ2(g)

)

.

On the other hand, if there is a decomposition V = V1 ⊕ V2 such that for any

g ∈ Sn, ρ(Vi) ⊂ Vi for i = 1, 2 then one may construct ρi(g) = ρ(g)|Vi
and get

ρ ∼= ρ1 ⊕ ρ2. If no such decomposition exists, we say that ρ is irreducible. Every

representation can be written as a direct sum of irreducible representations, and the

isomorphism classes of the factors are unique up to order [14, Proposition 1.7.10].

Recall also Schur’s Lemma, which states that a linear map from an irreducible V to V

which commutes with the action of every g ∈ Sn is a constant multiple of the identity

[14, Corollary 1.6.8].

2.1 Young Diagrams

We will use one specific method that constructs all the irreducible representations as

explicit subspaces of the group ring R. The construction is somewhat abstract, but we

will only need a few properties which will be easy to deduce. We will do so in Lemma

2.1 and (2.2) below and forget about the actual definition of the representations.

Recall that the group ring R[Sn] is simply the collection of all formal sums
∑

g∈Sn
agg with coefficients ag ∈ R. We will denote R = R[Sn]. Then Sn acts on

R by h(
∑

agg) =
∑

aghg which makes R into a (left) representation known as the

regular representation. It is true generally for any finite group that any irreducible rep-

resentation can be embedded into the regular representation [14, Proposition 1.10.1].

For a general finite group this requires working over C, but as we will see shortly, the

specific structure of the representation of Sn allows working over R, which is more

natural in our setting.
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Now let τ1 ≥ τ2 ≥ · · · ≥ τm with
∑

τi = n. We define H to be the group of

permutations h that preserve the rows of the diagram [τ1 . . . , τm] in the sense that

(2.1) i ∈ [1, τ1] ⇒ h(i) ∈ [1, τ1], i ∈ [τ1 + 1, τ1 + τ2] ⇒ h(i) ∈ [τ1 + 1, τ1 + τ2],

etc. Let V be the group of permutations that preserve the columns of the diagram

[τ1, . . . , τm], e.g., any v ∈ V must preserve the set {1, τ1+1, τ1+τ2+1, . . . , n−τm+1}.

We define the following elements of the group ring R,

aτ =
∑

h∈H

h bτ =
∑

v∈V

sign(v)v cτ = aτbτ .

Then the representation [τ1, . . . , τm] is defined to be Rcτ = {rcτ : r ∈ R}, with the

group acting by multiplication from the left. This is a subspace of R which is easily

seen to be closed under the action of Sn. By [7, Theorem 4.3] these representations

are irreducible and exhaust all the irreducible representations of Sn.

To shed a little light on the definition, let us take two examples. The first is [n].

In this case H = Sn and V = {id}. Hence cτ =
∑

g∈Sn
g, so hcτ = cτ for any

h ∈ Sn. This means that [n] is one-dimensional with a trivial action of Sn. This

representation is also known as the trivial representation. A second example is [1n].

In this case H = {id} and V = Sn, so this time cτ =
∑

g∈Sn
sign(g)g. We get that

hcτ = sign(h)cτ , so this representation is also one-dimensional, but this time the

action of Sn is by multiplication with the sign of the permutation, the so-called sign

representation, which we will denote by sgn. In general, if τ is any Young diagram

and if τ ′ is the diagram one gets by reflecting τ along the main diagonal (so that the

lengths of the rows of τ become the lengths of the columns of τ ′), then

(2.2) [τ ′] = [τ ] ⊗ sgn.

See [10, 2.1.8].

Now Raτ is also a representation. Generally it is reducible, but it is much more

convenient to work with. Indeed, gaτ is simply
∑

h∈gH h, so Raτ is isomorphic to the

natural action of Sn on the set of cosets {gH : g ∈ Sn/H}. Furthermore, each coset

can be thought of as a coloring of n by m colors with exactly τ1 numbers colored in

the first color, exactly τ2 numbers colored in the second color, etc. Formally we define

Q = Q(τ ) = {q : {1, . . . , n} → {1, . . . ,m} : #q−1(i) = τi}

and let L2(Q) be a representation of Sn with the natural action (gq)(i) = q(g−1i). We

will mainly work with these representations, and we relate them to the irreducible

ones by the following lemma.

Lemma 2.1 Let σ1 ≥ . . . ≥ σm with
∑

σi = n. Then

(i) [σ1, . . . , σm] can be embedded in L2(Q(σ)).

(ii) For any q ∈ Q there is a non-zero element of this embedding which is invariant

under any permutation φ that preserves the coloring q, i.e., to any φ for which

q(φ(i)) = q(i) for all i.
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For example, for [n − 1, 1] we have that m = 2 and an element q ∈ Q is uniquely

identified by q−1(2), which is an element of {1, . . . , n}. Hence |Q| = n and L2(Q)

can be thought of as R
n with Sn acting by permutation matrices (this representation is

known as the standard representation of Sn). Clearly the constant vectors form a one-

dimensional invariant subspace, and so is their orthogonal complement, the vectors

whose entries sum to 0. It is not difficult to see (directly from the definition) that

both are irreducible representations. The first is the trivial one, hence the second is

[n − 1, 1].

Now the second clause of the lemma in this example is as follows. Take some q ∈
Q, i.e., q(i) = 1 for all i ∈ {1, . . . , n} except one k for which q(k) = 2. A permutation

φ preserves q if and only if φ(k) = k. An element of L2(Q) invariant under any such φ
must be constant on {1, . . . , n}\{k}, and the only such element (up to multiplication

by constants) in the subspace isomorphic to [n − 1, 1] is (1, . . . , 1, 1 − n, 1, . . . , 1),

where the position of the negative entry is k (we are not interested in the uniqueness,

only in the existence).

We will prove Lemma 2.1 immediately after this simple claim.

Lemma 2.2 Let ρ : Sn → GL(V ) be a representation and let V1, . . . ,Vm be subspaces

of V invariant under the action of Sn. Let W be an irreducible component of
∑

Vi . Then

W is isomorphic to a component of one of the Vi .

Proof Clearly, it is enough to prove this for just two subspaces V1 and V2. Denote

U = V1 ∩ V2. Then U is invariant under the action of Sn. Since every invariant

subspace is complemented [14, Proposition 1.5.2], we can write Vi = U ⊕ Ui and

V1 +V2 = U ⊕U1⊕U2. The lemma now follows by the uniqueness of decomposition

into irreducible representations.

Proof of Lemma 2.1 Examine RaσR =
∑

g∈Sn
Raσg. It is easy to check that each

Raσg is a representation which is isomorphic to Raσ (g is an invertible element of

the group ring R). Since [σ] ∼= Rcσ ⊂ RaσR, we get by Lemma 2.2 that [σ] can be

embedded into Raσ . By the discussion before the statement of the lemma, Raσ ∼=
L2(Q), so the first claim of Lemma 2.1 is proved.

For the second claim, note that the permutations φ as above form a group, which

we will denote by Hq. Now it is not important which q one takes, since if v is in-

variant under the action of Hq, then gv is invariant under the action of gHqg−1; and

gHqg−1
= Hgq which can give any q ′ ∈ Q. So we will verify the claim for the H de-

fined in (2.1). But in this case it is clear that cσ itself is invariant under the action of

H. Since the property of existence of a vector invariant under H is an abstract prop-

erty of a representation, then it is not important that the vector cσ is not necessarily

in Raσ but just in some isomorphic copy.

It is interesting to note that the irreducible components of L2(Q) are known and

are all [τ ] with τ D σ [10, Lemma 2.1.10]. But we will not use this fact.

3 Star Graphs and the Gelfand–Tsetlin Basis

For n ≥ k ≥ 1, let Kn,k be the graph with vertices {1, . . . , n} where all the vertices

{1, . . . , k} are connected with each other and the remaining n−k vertices are isolated.
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By abuse of notation, we will also denote by Kn,k the adjacency matrix of this graph.

For any matrix A we denote by Wt(A) =
∑

i< j ai, j . We put Starn,k = Kn,k − Kn,k−1, a

star graph having the vertex k connected with each of 1, . . . , k − 1. We remark that

as elements of the group ring, Starn,k are known as the Jucys–Murphy elements.

In this section, we shall find all the eigenvalues of σ(∆Starn,k
) =

∑
σ(id)− σ((i j))

for any irreducible representation σ of Sn. These will serve as useful examples, but

more importantly will be used in the proof of the main theorem in Section 4. We will

use the Gelfand–Tsetlin basis, an idea also used in [6].

Now the theory of Gelfand–Tsetlin pairs and bases is very deep with many analogs

in different categories (see [11] for a survey) but we will not need any of it here.

For our purposes it is enough to define the basis inductively as follows: if n = 1,

then the representation must be one-dimensional, and we take a nonzero vector as

the basis vector. For n > 1, we consider the natural embedding Sn−1 →֒ Sn whose

image is {π ∈ Sn : π(n) = n}. We decompose the restriction σ|Sn−1
into irreducible

representations of Sn−1 as
⊕

i Vi , take the Gelfand–Tsetlin basis of each Vi and define

our basis as the union of the resulting bases.

If σ = [α], where α is a Young diagram of size n, then σ|Sn−1
=

⊕

β[β], where β
goes over all the Young diagrams of size n − 1, obtained by removing, in all possible

ways, one box from α. See [14, §2.8]. Hence, the elements of the Gelfand–Tsetlin

basis of [α] are in one-to-one correspondence with the sequences

α = αn, αn−1, . . . , α1 =

of Young diagrams, in which each αi for i < n is obtained from αi+1 by removing

one box.

Lemma 3.1 Let G = Starn,k for some 2 ≤ k ≤ n, and let σ be an irreducible repre-

sentation of Sn.

(i) The Gelfand–Tsetlin basis of σ is a basis of eigenvectors for eG acting on σ.

(ii) Let α = αn, αn−1, . . . , α1 = be a sequence of Young diagrams, where αi−1 is

obtained from αi by removing the xi-th box at the yi-th row, and σ = [αn]. Let

v be the Gelfand–Tsetlin basis element corresponding to the above sequence. Then

the eigenvalue of ∆G with respect to v is (k − 1) + yk − xk.

Proof (i) Let us first prove that each vector in the Gelfand–Tsetlin basis of σ is an

eigenvector for each of Kn,1,Kn,2, . . . ,Kn,n. We will do this by induction on n. For

n = 1, the claim is vacuous. For n > 1, we decompose σ|Sn−1
into irreducible rep-

resentations and, using the induction hypothesis, conclude that the Gelfand–Tsetlin

basis vectors are eigenvectors of Kn,1, . . . ,Kn,n−1. As for Kn,n, the element ∆Kn,n
lies in

the center of R[Sn] (being a linear combination of the sum of all transpositions and

the identity). Hence, by Schur’s Lemma it acts as a scalar on each irreducible repre-

sentation of Sn. This finishes the inductive step. Hence, each vector of the Gelfand–

Tsetlin basis is an eigenvector of G = Kn,k − Kn,k−1.

(ii) Let us now find the scalar by which Kn,i acts on the irreducible Si-representa-

tion [αi], assuming that αi has row lengths l1, . . . , lm. For that matter, we invoke the

trace formula from [5, Lemma 7], by which, the trace of a transposition acting on
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[αi] is

dim[αi]
(

i
2

)

m∑

j=1

((
l j − j + 1

2

)

−

(
j

2

))

,

where we define
(

x
2

)
=

1
2
x(x−1) also for x < 2. Hence, ∆Kn,i

=
∑

1≤ j<k≤i(id−( jk))

acts on [αi] via the scalar

ci := Wt(Kn,i) −

m∑

j=1

((
l j − j + 1

2

)

−

(
j

2

))

.

Let us find the eigenvalue of ∆G = ∆Kn,k
−∆Kn,k−1

with respect to our basis vector v.

This eigenvalue is equal to ck − ck−1, and we will now simplify it. Recall that passing

from αk to αk−1 is done by removing the rightmost box from the yk-th row. We

distinguish two cases.

Case 1: αk and αk−1 have the same number of rows. In that case, all the summands

except the yk-th one cancel out, and we are left with

Wt(Starn,k) −

((
lyk

− yk + 1

2

)

−

(
lyk

− yk

2

))

= Wt(Starn,k) − (lyk
− yk)

= k − 1 − (xk − yk).

Case 2: αk is obtained from αk−1 by removing the unique box in the yk-th row. In

that case, we have lyk
= 1, and the scalar is

Wt(Starn,k) −

((
lyk

− yk + 1

2

)

−

(
yk

2

))

= Wt(Starn,k) −

((
2 − yk

2

)

−

(
yk

2

))

= Wt(Starn,k) − (1 − yk) = k − 1 − (xk − yk).

Hence, ∆Starn,k
v = (k − 1 − (xk − yk))v, and the result follows.

Corollary 3.2 For any n, [2, 2, 1n−4] ⊁ [2, 1n−2].

Proof Examine the star graph G = Starn,n. We get that λ1(G; ρ) = min{(n − 1) +

y−x}, where the minimum is taken over all boxes (x, y) which can be removed to get

a legal Young diagram. For [2, 2, 1n−4] these boxes are (2, 2) and (if n > 4) (1, n−2).

The minimum is achieved at (2, 2) so λ1(G; [2, 2, 1n−4]) = n − 1. For [2, 1n−2] the

minimum is achieved at (2, 1) giving that λ1(G; [2, 1n−2]) = n − 2.

Since [2, 2, 1n−4] ⊲ [2, 1n−2], this shows that ≻ and ⊲ differ for every n. Similarly

one can show that [2i , 1n−2i] ⊁ [2 j , 1n−2 j] for any j < i ≤ n/2 giving a chain of

length ⌊n/2⌋ in the domination order, no two elements of which are comparable in

the Aldous order.
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4

1

2

3

a2

a3

a4

Figure 2: A quasi-complete graph.

3.1 Quasi-Complete Graphs

Let a2, a3, . . . , an be non-negative numbers and examine
∑n

k=2 ak Starn,k. This is not

just any combination of stars, but stars formed in a special order, each added vertex

connected to all existing ones. We call such graphs quasi-complete graphs. See Fig-

ure 2. Since the Gelfand–Tsetlin basis of [α] is a basis for of eigenvalues for Starn,k for

all k, it is also a basis of eigenvalues for their linear combination. Further, the basis

element corresponding to a sequence αn, . . . , α1 as in Lemma 3.1 gives the eigenvalue

(3.1) Wt(G) −
n∑

k=2

ak(xk − yk).

Let us make three remarks about quasi-complete graphs.

Remark 3.3 (1) Taking ak to be very fast decreasing (taking ak = n−2k is good

enough), it is easy to see that the minimal eigenvalue is achieved when the boxes are

removed as follows: first remove the lowest row completely, then the second lowest

row completely, etc. This shows that if α < β in the lexicographical order, then

α ⊁ β. As a corollary we get that α � β and β � α imply α = β.

(2) This family of graphs is not rich enough to determine the Aldous order. For

example, take the fact that [n + 1, n − 1] ⊁ [n, n], which can be verified for small

n ≥ 3 by direct calculation for the circle graph (we have no proof that it holds for all

n, but this is not relevant at this point). Quasi-complete graphs cannot demonstrate

this fact, because any sequence of Young diagrams as in Lemma 3.1 for [n, n] must

start by removing the box at (n, 2), while a sequence for [n + 1, n − 1] may start by

removing the box at (n + 1, 1), and continue by mimicking the first sequence, since

in both cases α2n−1 = [n, n− 1]. So we see that λ1(G; [n + 1, n− 1]) ≤ λ1(G; [n, n])

for any quasi-complete graph G.

(3) As an approximation to the Aldous order, one may ask whether two Young

diagrams σ, τ of size n satisfy λ1(G;σ) ≤ λ1(G; τ ) for all quasi-complete graphs G.

Using formula (3.1), the answer can be put in terms of the following combinatorial

game: let players A and B get the Young diagrams σ and τ , respectively. Both players

fill out their diagrams as follows: on each square at position (i, j) they write the

number j − i. The game has n steps. At each step of the game, player B breaks off a

square from his diagram in a way that leaves a legal Young diagram, and announces

the number on that square. Then player A does the same. We say that player A wins
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the game if at each step, her number is no less than player B’s number. It is not hard

to see that player A has a winning strategy if and only if λ1(G;σ) ≤ λ1(G; τ ) for all

quasi-complete graphs G.

4 Proof of the Main Theorem

The proof requires that we examine closely the maximal eigenvalue of σ(∆A) (which

is of course also its norm as an L2 operator, as this is a positive matrix). We denote it

by λmax(A;σ). From the previous section we keep the notation Wt(A) =
∑

i< j ai, j .

For k < n, we denote by Sk the set of representations corresponding to Young di-

agrams of size n such that the first row has ≥ n − k boxes (so all the other rows

combined have ≤ k boxes). Denote Sk ⊗ sgn = {σ ⊗ sgn : σ ∈ Sk}, which by (2.2)

is also the set of representations corresponding to Young diagrams of size n such that

the leftmost column has ≥ n − k boxes.

As in the previous section, we will use “matrix” and “weighted graph” inter-

changeably, understanding that all our matrices have non-negative entries, and that

the corresponding graph has an edge at any (i, j) for which ai, j 6= 0. In particular,

when we subtract graphs and weighted graphs, we are in fact subtracting the cor-

responding matrices. Let us start with two standard facts which we prove for the

convenience of the reader.

Lemma 4.1 For any A with entries ai j and any representation σ

λmax(A;σ) = 2 Wt(A) − λ1(A;σ ⊗ sgn),(4.1)

λmax(A;σ) ≤ 2 Wt(A).(4.2)

Proof The action of ∆A =
∑

i< j ai j(id−(i j)) on σ is linearly isomorphic to the

action of
∑

i< j ai j(id +(i j)) = 2 Wt(A) − ∆A on σ ⊗ sgn. This gives (4.1). The

second part follows immediately since λ1(A;σ ⊗ sgn) ≥ 0.

Corollary 4.2 For any σ, [n] � σ � [1n].

Proof Recall that [n] is the trivial representation, so λ1(A; [n]) = 0 which shows

[n] � σ. In the other direction, [1n] = sgn, so

λ1(A; [1n]) = λmax(A; [1n]) = 2 Wt(A) ≥ λmax(A;σ) ≥ λ1(A;σ).

Lemma 4.3 Assume n ≥ 4k and let σ ∈ Sk. Let G be a graph with 2k disjoint edges,

i.e., 4k vertices have degree 1, and the remaining n − 4k vertices are isolated. Then

λmax(G;σ) ≤ 2k.

Proof Recall the representation L2(Q) of Lemma 2.1, namely, if σ1 ≥ · · · ≥ σm > 0

are the lengths of the rows of (the Young diagram corresponding to) σ, then

Q = Q(σ) = {q : {1, . . . , n} → {1, . . . ,m} : #q−1(i) = σi}.

By Lemma 2.1 we know that the representation σ can be embedded in L2(Q). Hence

it is enough to show that λmax(G; L2(Q)) ≤ 2k. Let f ∈ L2(Q) be an eigenvector for
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λmax, and let q ∈ Q be the point where the maximum of | f | is attained. Fix one edge

(i, j) ∈ G and examine

(4.3) ((id−(i j)) f )(q) = f (q) − f ((i j)q).

If q(i) = q( j) = 1 (recall that the elements q of Q are themselves functions), then

(i j)q = q and (4.3) is zero. However, by definition of Q the number of i such that

q(i) 6= 1 is ≤ k. Because the degree of G is ≤ 1, we get that for any i there can be at

most one j such that (i, j) ∈ G; hence there are a totality of no more than k edges

(i, j) ∈ G for which (4.3) is non-zero. Hence we get

∑

(i, j)∈G

((id−(i j)) f )(q) ≤ 2k| f (q)|.

Since f is an eigenfunction of λmax, we also have

∑

(i, j)∈G

((id−(i j)) f )(q) = λmax f (q).

Lemma 4.4 Let σ ∈ Sk and let G = Starn,l+1, i.e., a star graph with l edges and the

rest of the vertices isolated. Then λmax(G;σ) ≤ l + k.

Proof This is a corollary of Lemma 3.1. The eigenvector for the maximal eigenvalue

corresponds to an element of the Gelfand–Tsetlin basis, which corresponds to a se-

quence of boxes (xi , yi) of σ as in Lemma 3.1. Since σ has no more than k + 1 rows,

we have yi ≤ k + 1 for all i, and we always have xi ≥ 1. According to Lemma 3.1,

λmax(G;σ) = ((l + 1) − 1) + (yl+1 − xl+1) ≤ l + k + 1 − 1 = l + k.

Lemma 4.5 Let A be a weighted star, i.e., assume there are some a2 ≥ · · · ≥ an ≥ 0

such that (1, i) has weight ai but (i, j) has weight 0 when both i > 1 and j > 1. Let

σ ∈ Sk. Then λmax(A;σ) ≤ 2a2 + · · · + 2ak+1 + ak+2 + · · · + an.

Proof Write A = A2 + · · · + An, where Ai is a weighted star with weights

i−1 times
︷ ︸︸ ︷

ai − ai+1, . . . , ai − ai+1,

n−i times
︷ ︸︸ ︷

0, . . . , 0 i = 2, . . . , n − 1

n−1 times
︷ ︸︸ ︷
an, . . . , an i = n.

Since λmax is a norm (recall that σ(∆A) is a positive matrix, so λmax is its norm as an

L2 operator), we have that

λmax(A;σ) ≤

n∑

i=2

λmax(Ai ;σ).
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Each summand may be estimated by Lemma 4.4 and we get

λmax(Ai ;σ) ≤ (i − 1 + k)(ai − ai+1). (define an+1 := 0).

However, for i ≤ k we actually get a better estimate from the trivial bound (4.2),

λmax(Ai ;σ) ≤ 2(i − 1)(ai − ai+1).

Summing we get

λmax(A;σ) ≤
k∑

i=2

2(i − 1)(ai − ai+1) +

n∑

i=k+1

(i − 1 + k)(ai − ai+1)

=

k+1∑

i=2

2ai +

n∑

i=k+2

ai

as was to be proved.

Lemma 4.6 Let A,H be two weighted graphs with n vertices, and let σ, τ be two

irreducible representations of Sn. If

(4.4) λ1(H; τ ) ≥ λmax(H;σ)

and λ1(A; τ ) ≥ λ1(A;σ), then λ1(A + H; τ ) ≥ λ1(A + H;σ).

Proof Recall the variational characterization of λ1 which states that for any positive

matrix M, its lowest eigenvalue is the minimum over all vectors v of 〈Mv, v〉. Hence

we may bound λ1(A+H;σ) above with any v, and we choose v to be a unit eigenvector

corresponding to λ1(A;σ). Then

λ1(A + H;σ) ≤ 〈(∆A + ∆H)v, v〉

= λ1(A;σ) + 〈∆Hv, v〉 ≤ λ1(A;σ) + λmax(H;σ)

≤ λ1(A; τ ) + λ1(H; τ ) ≤ λ1(A + H; τ ).

We remark that even though Lemma 4.6 works for any matrix H, we will apply

it only to matrices whose entries take two values (one of which is 0), i.e., to graphs

whose weights are all the same.

Definition 4.7 Let G,H be two weighted graphs, and σ, τ representations of Sn.

(i) We call H a reducing graph for σ, τ if H satisfies (4.4).

(ii) We say that G is H-irreducible if there does not exist a graph H ′ isomorphic to

H and a number ǫ > 0 such that ǫH ′ ≤ G.

The identities (2.2) and (4.1) show that equation (4.4) is equivalent to

λmax(H;σ) + λmax(H; τ ⊗ sgn) ≤ 2 Wt(H).
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We will use this reformulation to show that a given graph H is reducing.

Lemma 4.6 is the basis to our strategy of reduction: in proving that σ ≻ τ if H is a

reducing graph, it is enough to prove that λ1(A;σ) ≤ λ1(A; τ ) only for H-irreducible

matrices A. Indeed, if A is not H-irreducible, then we can find H ′ ∼= H and ǫ > 0

such that A − ǫH ′ has nonnegative weights on the edges, and fewer nonzero weights

than A. According to Lemma 4.6, it is enough to prove the inequality for A − ǫH ′.

Repeating this procedure, we reduce the problem to H-irreducible graphs.

Proof of the Theorem Let n ≥ 4k2 + 4k and let σ ∈ Sk and τ ∈ Sk ⊗ sgn. The claim

of the theorem is that under these conditions σ ≻ τ . Let H be the graph with 2k

disjoint edges, i.e., as a matrix its coefficients hi j are given by

hi j =

{

1 i = 2k and j = 2k + 1 for some k,

0 otherwise.

By Lemma 4.3, λmax(H; τ ⊗ sgn) + λmax(H;σ) ≤ 4k = 2 Wt(H). Hence, H is a

reducing graph for σ and τ . It is hence enough to prove that λ1(A, σ) ≤ λ1(A, τ ) for

any H-irreducible matrix A.

It is well known that an H-irreducible graph can be written as a union of 4k − 2

weighted stars. Indeed, choose an edge e of A arbitrarily and remove from A the two

stars centered at the two vertices of e. If the resulting graph is non-empty, choose

again some edge arbitrarily and remove two stars. This process must stop after 2k−1

steps, since otherwise we would have found 2k disjoint edges in A. Hence we wrote A

as a union of 4k − 2 stars. Denote

A =

4k−2∑

i=1

Si .

We now use Lemma 4.5 for each of the Si and sum over i. Recall that the k edges with

the largest weights of a weighted star play a special role in Lemma 4.5 — their weights

were multiplied by 2 rather than by 1. Collecting these special edges for the 4k − 2

stars gives a total of k(4k − 2) special edges. Denote them by ei . Thus the conclusion

of Lemma 4.5 is

λmax(A, τ ⊗ sgn) ≤
∑

i< j

ai j +

k(4k−2)∑

i=1

aei
,

(where if e = (i, j), then we denote ae = ai j). The edges ei combined have no more

than (k + 1) · (4k − 2) = 4k2 + 2k − 2 vertices.

Let us now move to the estimate of λ1(A;σ). For that matter, pick 2k vertices

which do not belong to any of the ei ’s (here we use the condition n ≥ 4k2 + 4k).

Denote these vertices by v1, . . . , v2k. For every i, let W (i) be the weight of vi , i.e.,

W (i) =

n∑

j=1

avi j .
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Assume without loss of geneality that the vi are arranged so that W (i) are increas-

ing. Examine again the representation L2(Q) from Lemma 2.1. By clause (ii) of

that lemma, since σ ∈ Sk, for any set of n − k vertices there exists a nonzero ele-

ment f ∈ V ⊂ L2(Q), where V is an invariant subspace of L2(Q) isomorphic to

σ such that f is invariant under permutations of elements from this set. Normal-

ize f to have ‖ f ‖ = 1. We choose the set to be all vertices except v1, . . . , vk. Ex-

amine now
∑

i< j ai j(id−(i j)) f . If both i and j are different from v1, . . . , vk, then

(i j) f = f and the contribution to the sum is 0. Otherwise, we simply estimate

‖ai j(id−(i j)) f ‖ ≤ 2ai j (here ‖ · ‖ is the norm in L2(Q)) and we get

∥
∥
∥

∑

i< j

ai j(id−(i j)) f
∥
∥
∥ ≤ 2

k∑

i=1

W (i) ≤

2k∑

i=1

W (i),

where the second inequality comes from the fact that we chose the W (i) increasing.

This bounds λ1(A;σ) and we get

λ1(A;σ) + λmax(A; τ ⊗ sgn) ≤

2k∑

i=1

W (i) +
∑

i< j

ai j +

k(4k−2)∑

i=1

aei
.

Since the vertices v1, . . . , v2k are different from the vertices on the edges ei , the above

sum contains each edge no more than twice. Hence,

λ1(A;σ) ≤ 2 Wt(A) − λmax(A; τ ⊗ sgn) = λ1(A; τ ).

A The Hook-Shaped Diagrams

In this appendix we prove the claim appearing in the introduction that

(A.1) [n] ≻ [n − 1, 1] ≻ · · · ≻ [1n].

This is basically a result of Bacher [2], who showed that the eigenvalues

λi(A; [n − k, 1k])

are simply all the sums of all k-tuples of the eigenvalues λi(A; [n−1, 1]). This imme-

diately implies (A.1) (recall that the eigenvalues are all non-negative). However, he

used a different description of these representations, as wedge products of [n − 1, 1].

We will now prove that the two descriptions coincide. This was known before (for

example, it is mentioned without proof in [3] in the penultimate paragraph of the

introduction), but we found no proof in the literature.

Lemma A.1 ∧k[n − 1, 1] ∼= [n − k, 1k].

The proof will use the Murnaghan–Nakayama formula for the characters of the

irreducible representations of Sn. See [14, Theorem 4.10.2]. We will not give a full

description of this formula here.
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Proof Recall that for a representation ρ the character is a function χ : G → C de-

fined by χ(g) = tr ρ(g) and that two representations are isomorphic if and only if

their characters coincide [14, Corollary 1.9.4(5)]. Thus it is enough to prove that the

two representations have the same character. Let us denote the character of the rep-

resentation on the left-hand side by χ∧
k and the right-hand side by χΓ

k (the letter Γ

reminds us of a hook). We will prove that χ∧
k + χ∧

k−1 = χΓ

k + χΓ

k−1. Since the lemma

is true for k = 1, that will be enough.

Let V be the n-dimensional Euclidean space, with the standard basis e1, . . . , en,

viewed as the standard representation of Sn. Since V ∼= [n − 1, 1] ⊕ [n] and [n] is

one-dimensional, it can easily be seen that

∧kV ∼= ∧k−1[n − 1, 1] ⊕ ∧k[n − 1, 1].

Therefore χ∧kV = χ∧
k + χ∧

k−1. Recall now the standard basis for ∧kV : for any subset

K = {i1 < i2 < · · · < ik} of {1, 2, . . . , n} let eK = ei1
∧ · · · ∧ eik

. We will calculate

the trace of a permutation g (acting on ∧kV ) using this basis. Let g ∈ Sn have cycles

of lengths c1 ≥ c2 ≥ · · · ≥ cr. We have geK = ±eg(K). The only contribution to the

trace comes from eK ’s for which g(K) = K, and in this case the ± above is simply

sgn(g|K ). Hence we get

χ∧kV (g) =
∑

ǫ1,...,ǫr∈{0,1}∑
ǫi ci=k

(−1)
∑

ǫi (ci−1).

Let us now calculate χΓ

k +χΓ

k−1. We use the Murnaghan–Nakayama rule, which takes

a nice form for hook-shaped diagrams. For a hook-shaped diagram γ, let S(γ) be the

set of all sequences of Young diagrams γ = γ1, . . . , γr+1 = ∅ such that for 1 ≤ i ≤ r,

γi+1 is obtained from γi by removing ci consecutive boxes. Note that, except for the

last stage, all the removed parts do not contain the corner (1, 1) and hence are either

horizontal or vertical bars. We will call the removed parts of the r − 1 first stages

the bars of the sequence. For any set of consecutive boxes we define its height to be

the number of rows it occupies. And for an element (γ1, . . . , γr+1) of S(γ), we define

its height to be
∑r

i=1(1 + height(γi \ γi+1)). Then, according to the Murnaghan–

Nakayama rule,

χΓ

k (g) =
∑

s∈S([n−k,1k])

(−1)height(s).

Let f be the bijective function from the Young diagram [n − k, 1k] to the Young

diagram [n − k + 1, 1k−1] taking the box at position (1, i) to the box (1, i − 1) for all

i > 1, and taking the box at (i, 1) to (i +1, 1) for all i. See Figure 3. Let A be the subset

of S([n− k, 1k]) of all sequences for which no bar has (1, 2) as an endpoint, and let B

be the subset of S([n − k + 1, 1k−1]) of all sequences for which no bar has (2, 1) as an

endpoint. Let F : A → B be the function defined by applying f to each stage of the

sequence. Then F is well defined because the condition that (1, 2) is not an end point

ensures that the image is indeed a set of legal Young diagrams, and F is a bijection

since an inverse function can be defined using f −1. Moreover, the corresponding
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(1, 1)

(1, 2)

(1, 3)

(2, 1) (3, 1) (4, 1)

Figure 3: The mapping f : [n − k, 1k] → [n − k + 1, 1k−1].

terms for s and F(s) cancel out in the sum for χΓ

k + χΓ

k−1. Hence,

χΓ

k + χΓ

k−1 =

∑

s∈S([n−k,1k])\A

(−1)height(s) +
∑

s∈S([n−k+1,1k−1])\B

(−1)height(s).

But this is equal to χ
V

(g); a sequence ǫ1, . . . , ǫr ∈ {0, 1} such that
∑

ǫici = k de-

termines a unique term in one of the above two summands in the following way.

At each stage, we remove a vertical bar of size ci if ǫi = 1 and a horizontal one if

ǫi = 0. We get a sequence of Young diagrams in the first summand when ǫr = 0,

and in the second summand when ǫr = 1. Furthermore, it is easy to check that all

terms in both summands are obtained in this way, and that the corresponding term

is (−1)
∑

ǫi (ci−1).
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