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Let C be the smallest class of countable discrete groups with the following properties:
(i) C contains the trivial group, (ii) C is closed under isomorphisms, countable
increasing unions and extensions by Z. Note that C contains all countable discrete
torsion-free abelian groups and poly-Z groups. Also, C is a subclass of the class of
countable discrete torsion-free elementary amenable groups. In this article, we show
that if Γ ∈ C, then all strongly outer actions of Γ on the Razak–Jacelon algebra W
are cocycle conjugate to each other. This can be regarded as an analogous result of
Szabó’s result for strongly self-absorbing C∗-algebras.
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1. Introduction

Let W be the Razak–Jacelon algebra studied in [15] (see also [33]). By classification
results in [2] and [6] (see also [30]), W is the unique simple separable nuclear
monotracial Z-stable C∗-algebra that is KK -equivalent to {0}. Also, W is regarded
as a stably finite analog of the Cuntz algebra O2. More generally, we can consider
that W is a non-unital analog of strongly self-absorbing C∗-algebras. (Note that
every strongly self-absorbing C∗-algebra is unital by definition.) In this article, we
study group actions on W and show an analogous result of Szabó’s result in [40] for
group actions on strongly self-absorbing C∗-algebras (see also [12–14, 22–24, 26, 37,
39] for pioneering works). We refer the reader to [11] for the importance and some
difficulties of studying group actions on C∗-algebras. Gabe and Szabó classified
outer actions of countable discrete amenable groups on Kirchberg algebras up to
cocycle conjugacy in [7]. In their classification, O2 and O∞ play central roles. Hence
it is natural to expect thatW plays a central role in the classification theory of group
actions on ‘classifiable’ stably finite (at least stably projectionless) C∗-algebras.
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2 N. Nawata

Let C be the smallest class of countable discrete groups with the following proper-
ties: (i) C contains the trivial group, (ii) C is closed under isomorphisms, countable
increasing unions and extensions by Z. (We say that Γ is an extension by Z if there
exists an exact sequence 1 → H → Γ → Z → 1.) Note that C is the same class as in
[40, definition B]. It is easy to see that C contains all countable discrete torsion-free
abelian groups and poly-Z groups, and C is a subclass of the class of countable
discrete torsion-free elementary amenable groups. Szabó showed that if Γ ∈ C and
D is a strongly self-absorbing C∗-algebra, then there exists a unique strongly outer
action of Γ on D up to cocycle conjugacy [40, corollary 3.4]. In this article, we show
an analogous result of this result. Indeed, the main theorem in this article is the
following theorem.

Theorem A (theorem 4.3) Let Γ be a countable discrete group in C, and let α be
a strongly outer action of Γ on W. Then α is cocycle conjugate to µΓ ⊗ idW on
M2∞ ⊗W where µΓ is the Bernoulli shift action of Γ on

⊗
g∈ΓM2∞ ∼=M2∞ .

We say that an action α on W is W-absorbing if there exists a simple separable
nuclear monotracial C∗-algebra A and an action β on A such that α is cocycle
conjugate to β⊗ idW on A⊗W. The proof of the main theorem above is based on a
characterization in [31] of strongly outer W-absorbing actions of countable discrete
amenable groups. Actually, we use the following theorem that is a slight variant of
[31, theorem 8.1]. Note that F (W) is Kirchberg’s central sequence C∗-algebra of
W. Furthermore, F (W)α is the fixed point algebra for the action on F (W) induced
by an action α on W. Let Sp(x) denote the spectrum of x.

Theorem B (theorem 2.4) Let α be a strongly outer action of a countable discrete
amenable group Γ on W. Then α is cocycle conjugate to µΓ ⊗ idW on M2∞ ⊗W if
and only if α satisfies the following properties:

(i) there exists a unital ∗-homomorphism from M2(C) to F (W)α,
(ii) if x and y are normal elements in F (W)α such that Sp(x) = Sp(y) and

0 < τW,ω(f(x)) = τW,ω(f(y)) for any f ∈ C(Sp(x))+ \ {0}, then x and y
are unitary equivalent in F (W)α,

(iii) there exists an injective ∗-homomorphism from W oα Γ to W.

We use a first cohomology vanishing type theorem (corollary 3.4) for showing
that if Γ ∈ C and α is a strongly outer action of Γ on W, then F (W)α satisfies the
properties (i) and (ii) in the theorem above. Kishimoto’s techniques for Rohlin type
theorems in [19] and [20], Herman-Ocneanu’s argument in [9], and homotopy type
arguments in [28] enable us to show this first cohomology vanishing type theorem.
Also, note that our arguments for F (W)α are based on results that are shown by
techniques around (equivariant) property (SI) in [25–27, 34–36, 42].

2. Preliminaries

2.1. Notations and basic definitions

Let α and β be actions of a countable discrete group Γ on C∗-algebras A and B,
respectively. We say that α is conjugate to β if there exists a isomorphism ϕ from A
onto B such that ϕ◦αg = βg ◦ϕ for any g ∈ Γ. Note that α induces an action on the

https://doi.org/10.1017/prm.2024.128 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.128


Certain torsion-free amenable groups on the Razak–Jacelon algebra 3

multiplier algebra M (A) of A. We denote it by the same symbol α. An α-cocycle
on A is a map from Γ to the unitary group of M (A) such that ugh = ugαg(uh) for
any g, h ∈ Γ. We say that α is cocycle conjugate to β if there exist an isomorphism
ϕ from A onto B and a β-cocycle u such that ϕ ◦ αg = Ad(ug) ◦ βg ◦ ϕ for any
g ∈ Γ. An action α of Γ on A is said to be outer if αg is not an inner automorphism
of A for any g ∈ Γ \ {ι} where ι is the identity of Γ. We denote by Aα and Aoα Γ
the fixed point algebra and the reduced crossed product C∗-algebra, respectively.

Assume that A has a unique tracial state τA. Let (πτA ,HτA
) be the

Gelfand–Naimark–Segal representation of τA. Then πτA(A)
′′ is a finite factor and

α induces an action α̃ on πτA(A)
′′. We say that α is strongly outer if α̃ is an outer

action on πτA(A)
′′. (We refer the reader to [8] and [26] for the definition of strongly

outerness for more general settings.)
We denote by R0 and M2∞ the injective II1 factor and the canonical anticom-

mutation relations (CAR) algebra, respectively.

2.2. Fixed point algebras of Kirchberg’s central sequence C∗-algebras

Let ω be a free ultrafilter on N, and put

Aω := `∞(N, A)/{{xn}n∈N ∈ `∞(N, A) | lim
n→ω

‖xn‖ = 0}.

We denote by (xn)n a representative of an element in Aω. We identify A with the
C∗-subalgebra of Aω consisting of equivalence classes of constant sequences. Set

Ann(A,Aω) := {(xn)n ∈ Aω ∩A′ | lim
n→ω

‖xna‖ = 0 for any a ∈ A}.

Then Ann(A,Aω) is an closed ideal of Aω ∩A′, and define

F (A) := Aω ∩A′/Ann(A,Aω).

See [17] for basic properties of F (A). For a finite von Neumann algebra M, put

Mω := `∞(N,M)/{{xn}n∈N ∈ `∞(N,M) | lim
n→ω

‖xn‖2 = 0}

and

Mω :=Mω ∩M ′.

Note that we identify M with the subalgebra of M ω consisting of equivalence
classes of constant sequences andMω is the von Neumann algebraic central sequence
algebra (or the asymptotic centralizer) of M.

For a tracial state τA on A, define a map τA,ω from F (A) to C by τA,ω([(xn)n]) =
limn→ω τA(xn) for any [(xn)n] ∈ F (A). Then τA,ω is a well-defined tracial state on
F (A) by [28, proposition 2.1]. Put JτA := {x ∈ F (A) | τA,ω(x

∗x) = 0}. If A is
separable and τA is faithful, then πτA induces an isomorphism from F (A)/JτA
onto πτA(A)

′′
ω by essentially the same argument as in the proof of [18, theorem 3.3].

In this article, the reindexing argument and the diagonal argument (or Kirchberg’s
ε-test [17, lemma A.1]) are frequently used. We refer the reader to [1, Section 1.3]
and [32, Chapter 5] for details of these arguments. Every action α of a countable
discrete group on A induces an action on F (A). We denote it by the same symbol
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4 N. Nawata

α for simplicity. Note that if α on A are cocycle conjugate to β on B, then α on
F (A) are conjugate to β on F (B). If A is simple, separable, and monotracial, then
α̃ also induces an action on πτA(A)

′′
ω. We also denote it by the same symbol α̃.

By [31, proposition 3.9], we see that πτA induces an isomorphism from F (A)α/Jα
τA

onto (πτA(A)
′′)α̃ω.

The following proposition is an immediate consequence of [31, theorem 3.6], [31,
proposition 3.11], and [31, proposition 3.12]. Note that these propositions are based
on results in [25–27, 34–36, 42].

Proposition 2.1. Let α be an outer action of a countable discrete amenable group
on W.

(1) The Razak–Jacelon algebra W has property (SI) relative to α, that is, if
a and b are positive contractions in F (W)α satisfying τW,ω(a) = 0 and
infm∈N τW,ω(b

m) > 0, then there exists an element s in F (W)α such that
bs= s and s∗s = a.

(2) The fixed point algebra F (W)α is monotracial.
(3) If a and b are positive elements in F (W)α satisfying dτW,ω

(a) < dτW,ω
(b),

then there exists an element r in F (W)α such that r∗br = a.

Definition 2.2. Let α be an action of a countable discrete group Γ on W. We say
that α has property W if α satisfies the following properties:

(i) there exists a unital ∗-homomorphism from M2(C) to F (W)α,
(ii) if x and y are normal elements in F (W)α such that Sp(x) = Sp(y) and

0 < τW,ω(f(x)) = τW,ω(f(y)) for any f ∈ C(Sp(x))+ \ {0}, then x and y
are unitary equivalent in F (W)α.

Note that if there exists a unital ∗-homomorphism fromM2(C) to F (W)α, then α
onW is cocycle conjugate to α⊗idM2∞ onW⊗M2∞ . Indeed, there exists a unital ∗-
homomorphism from M2∞ to F (W)α by a similar argument as [17, corollary 1.13].
Hence [38, corollary 3.8] (see also [41]) implies this cocycle conjugacy. Using this
observation, proposition 2.1 and definition 2.2 instead of M2∞-stability of W, [28,
proposition 4.1], [28, theorem 5.3], and [28, theorem 5.8], we obtain the following
theorem by essentially the same arguments as in the proofs of [28, proposition 4.2],
[28, theorem 5.7], and [28, corollary 5.11] (or [29, corollary 5.5]).

Theorem 2.3 Let α be an outer action of a countable discrete amenable group on
W. Assume that α has property W.

(1) For any θ ∈ [0, 1], there exists a projection p in F (W)α such that τW,ω(p) =
θ.

(2) For any unitary element u in F (W)α, there exists a continuous path of
unitaries U : [0, 1] → F (W)α such that

U(0) = 1, U(1) = u and Lip(U) ≤ 2π

where Lip(U) is the Lipschitz constant of U, that is, the smallest positive
number satisfying ‖U(t)− U(s)‖ ≤ Lip(U)|t− s| for any t, s ∈ [0, 1].
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(3) If p and q are projections in F (W)α such that 0 < τW,ω(p) = τW,ω(q), then
p and q are Murray–von Neumann equivalent.

For any countable discrete group Γ, let µΓ be the Bernoulli shift action of Γ on⊗
g∈ΓM2∞ ∼=M2∞ . The following theorem is a slight variant of [31, theorem 8.1].

Note that one of the main techniques in the proof of [31, theorem 8.1] is Szabó’s
approximate cocycle intertwining argument [43] (see also [5]).

Theorem 2.4 Let α be a strongly outer action of a countable discrete amenable
group Γ on W. Then α is cocycle conjugate to µΓ ⊗ idW on M2∞ ⊗W if and only
if α has property W and there exists an injective ∗-homomorphism from W oα Γ
to W.

Proof. [31, proposition 4.2], [31, theorem 4.5], and [31, theorem 8.1] imply the
only if part. The if part is an immediate consequence of [31, theorem 8.1] and
theorem 2.3. �

3. First cohomology vanishing type theorem

In this section, we shall show a first cohomology vanishing type theorem (corollary
3.4). This is a corollary of a Rohlin type theorem (theorem 3.3).

The following lemma is well-known among experts. See, for example, [16, theorem
4.8] for a similar (but not the same) result. For the reader’s convenience, we shall
give a proof based on Ocneanu’s classification theorem [32, corollary 1.4].

Lemma 3.1. Let Γ be a countable discrete amenable group, and let N be a normal
subgroup of Γ. If γ is an outer action of Γ on the injective II1 factor R0 and g0 /∈ N ,

then γg0 induces a properly outer automorphism of (R0)
γ|N
ω .

Proof. Since N is a normal subgroup, it is clear that γg0 induces an automorphism

of (R0)
γ|N
ω . First, we shall show that γg0 is not trivial as an automorphism of

(R0)
γ|N
ω . Let π be the quotient map from Γ to Γ/N , and let β be the Bernoulli

shift action of Γ/N on R0
∼=

⊗
π(g)∈Γ/N R0. Define an action δ of Γ on R0

∼=
R0⊗̄R0 by δg := γg ⊗ βπ(g) for any g ∈ Γ. By Ocneanu’s classification theorem
[32, corollary 1.4], γ on R0 and δ on R0⊗̄R0 are cocycle conjugate. Hence there
exists an isomorphism Φ from (R0)ω onto (R0⊗̄R0)ω such that Φ ◦ γg = δg ◦Φ for
any g ∈ Γ. Since βπ(g0) is an outer automorphism of R0, there exists an element
(xn)n in (R0)ω such that (βπ(g0)(xn))n 6= (xn)n by [4, theorem 3.2]. Put (yn)n :=

Φ−1((1 ⊗ xn)n) ∈ (R0)ω. Then it is easy to see that we have (yn)n ∈ (R0)
γ|N
ω

and (γg0(yn))n 6= (yn)n. Finally, we shall show that γg0 is properly outer as an

automorphism of (R0)
γ|N
ω . Since (R0)

γ|N
ω is a factor (see, for example, [26, lemma

4.1]), it is enough to show that γg0 is outer as an automorphism of (R0)
γ|N
ω . In

particular, we shall show that for any element (un)n in (R0)
γ|N
ω , there exists an

element (zn)n in (R0)
γ|N
ω such that (unzn)n = (znun)n and (γg0(zn))n 6= (zn)n.

Taking a suitable subsequence of (yn)n (or the reindexing argument), we obtain
the desired element (zn)n. Consequently, the proof is complete. �
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6 N. Nawata

Consider a semidirect product group N o Z. For g ∈ N and m ∈ Z, let (g,m)
denote an element in N o Z. Note that we have N o Z = {(g,m) | g ∈ N,m ∈
Z}. The following lemma is an analogous lemma of [28, lemma 6.2]. See also [24,
theorem 3.4].

Lemma 3.2. Let Γ be a semidirect product N o Z where N is a countable discrete
amenable group, and let α be a strongly outer action of Γ on W. Then for any
k ∈ N, there exists a positive contraction f in F (W)α|N such that

τW,ω(f) =
1

k
and fα(ι,j)(f) = 0

for any 1 ≤ j ≤ k − 1.

Proof. Since πτW (W)′′ is isomorphic to the injective II1 factor, lemma 3.1 implies

that α̃(ι,1) is an aperiodic automorphism of (πτW (W)′′)
α̃|N
ω . Hence it follows from [3,

theorem 1.2.5] that there exists a partition of unity {Pj}kj=1 consisting of projections

in (πτW (W)′′)
α̃|N
ω such that α̃(ι,1)(Pj) = Pj+1 for any 1 ≤ j ≤ k − 1. Since πτW

induces an isomorphism from F (W)α|N /J
α|N
τW onto (πτW (W)′′)

α̃|N
ω (see §2.2), there

exists a positive contraction [(en)n] in F (W)α|N such that (πτW (en))n = P1 in

(πτW (W)′′)
α̃|N
ω . Then we have

lim
n→ω

‖πτW (enα(ι,j)(en))‖2 = 0 and τW,ω([(en)n]) = τ̃W,ω(P1) =
1

k

for any 1 ≤ j ≤ k − 1, where τ̃W,ω is the induced tracial state on (πτW (W)′′)
α̃|N
ω

by τW . The rest of the proof is the same as [28, lemma 6.2]. (See also [24,
proposition 3.3].) �

Using proposition 2.1, theorem 2.3 (we need to assume that α|N has property W),
and lemma 3.2 instead of [28, proposition 4.1], [28, proposition 4.2], [28, theorem
5.8], and [28, lemma 6.2], we obtain the following Rohlin type theorem by essentially
the same arguments in the proofs of [28, lemma 6.3] and [28, theorem 6.4]. Note
that these arguments are based on [19] and [20].

Theorem 3.3 Let Γ be a semidirect product N oZ where N is a countable discrete
amenable group, and let α be a strongly outer action of Γ on W. Assume that α|N
has property W. Then for any k ∈ N, there exists a partition on unity {p1,i}k−1

i=0 ∪
{p2,j}kj=0 consisting of projections in F (W)α|N such that

α(ι,1)(p1,i) = p1,i+1 and α(ι,1)(p2,j) = p2,j+1

for any 0 ≤ i ≤ k − 2 and 0 ≤ j ≤ k − 1.

Theorem 2.3, theorem 3.3, and Herman–Ocneanu’s argument [9, theorem 1] (see
also remarks after [9, lemma 1] and [10, 21]) imply the following corollary.

Corollary 3.4. Let Γ be a semidirect product N o Z where N is a countable
discrete amenable group, and let α be a strongly outer action of Γ on W. Assume

https://doi.org/10.1017/prm.2024.128 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.128


Certain torsion-free amenable groups on the Razak–Jacelon algebra 7

that α|N has property W and S is a countable subset in F (W)α|N . For any unitary
element u in F (W)α|N ∩S′, there exists a unitary element v in F (W)α|N ∩S′ such
that u = vα(ι,1)(v)

∗.

4. Main theorem

In this section, we shall show the main theorem. Recall that C is the smallest
class of countable discrete groups with the following properties: (i) C contains the
trivial group, (ii) C is closed under isomorphisms, countable increasing unions and
extensions by Z. Note that if Γ is an extension of N by Z, then Γ is isomorphic to
a semidirect product N o Z.

The following lemma is an easy consequence of the definition of property W and
the diagonal argument.

Lemma 4.1. Let Γ be an increasing union
⋃

m∈N Γm of discrete countable groups
Γm, and let α be an action of Γ on W. If α|Γm has property W for any m ∈ N,
then α has property W.

The following lemma is an application of corollary 3.4.

Lemma 4.2. Let Γ be a semidirect product N o Z where N is a countable discrete
amenable group, and let α be a strongly outer action of Γ on W. If α|N has property
W, then α has property W.

Proof. (i) There exists a unital ∗-homomorphism ϕ from M2(C) to F (W)α|N

by the assumption. Let {eij}2i,j=1 be the standard matrix units of M2(C). Since
we have 0 < τW,ω(ϕ(e11)) = τW,ω(α(ι,1)(ϕ(e11))), there exists an element w in

F (W)α|N such that w∗w = α(ι,1)(ϕ(e11)) and ww∗ = ϕ(e11) by theorem 2.3.

Put u :=
∑2

i=1 ϕ(ei1)wα(ι,1)(ϕ(e1i)). Then u is a unitary element in F (W)α|N

such that α(ι,1)(ϕ(x)) = u∗ϕ(x)u for any x ∈ M2(C). By corollary 3.4, there

exists a unitary element v in F (W)α|N such that u = vα(ι,1)(v)
∗. We have

α(ι,1)(v
∗ϕ(x)v) = v∗ϕ(x)v for any x ∈ M2(C). Hence the map ψ defined by

ψ(x) := v∗ϕ(x)v for any x ∈ M2(C) is a unital ∗-homomorphism from M2(C)
to F (W)α. (ii) Let x and y be normal elements in F (W)α such that Sp(x) = Sp(y)
and 0 < τW,ω(f(x)) = τW,ω(f(y)) for any f ∈ C(Sp(x))+ \ {0}. Since x and y
are also elements in F (W)α|N , there exists a unitary element u in F (W)α|N such
that uxu∗ = y by the assumption. Note that uα(ι,1)(u)

∗ is a unitary element in

F (W)α|N ∩ {y}′. Hence corollary 3.4 implies that there exists a unitary element v
in F (W)α|N ∩ {y}′ such that uα(ι,1)(u)

∗ = vα(ι,1)(v)
∗. We have α(ι,1)(v

∗u) = v∗u
and v∗uxu∗v = v∗yv = y. Therefore, x and y are unitary equivalent in F (W)α. By
(i) and (ii), α has property W. �

The following theorem is the main theorem in this article.

Theorem 4.3 Let Γ be a countable discrete group in C, and let α be a strongly
outer action of Γ on W. Then α is cocycle conjugate to µΓ ⊗ idW on M2∞ ⊗W.

Proof. Every action of the trivial group on W has property W by results in [28]
(or [30, theorem 3.8]). By lemmas 4.1 and 4.2, we see that α has property W. Note
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8 N. Nawata

that this implies that W oα Γ is M2∞-stable because α is cocycle conjugate to
α ⊗ idM2∞ on W ⊗ M2∞ . Since the class of separable nuclear C∗-algebras that
are KK -equivalent to {0} is closed under countable inductive limits and crossed
products by Z, [30, theorem 6.1] implies that WoαΓ is isomorphic to W. Therefore,
we obtain the conclusion by theorem 2.4. �

The following corollary is an immediate consequence of the theorem above.

Corollary 4.4. Let Γ be a countable discrete group in C. Then there exists a
unique strongly outer action of Γ on W up to cocycle conjugacy.
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