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Abstract

Li et al. [‘On finite self-complementary metacirculants’, J. Algebraic Combin. 40 (2014), 1135–1144]
proved that the automorphism group of a self-complementary metacirculant is either soluble or has
A5 as the only insoluble composition factor, and gave a construction of such graphs with insoluble
automorphism groups (which are the first examples of self-complementary graphs with this property). In
this paper, we will prove that each simple group is a subgroup (so is a section) of the automorphism groups
of infinitely many self-complementary vertex-transitive graphs. The proof involves a construction of such
graphs. We will also determine all simple sections of the automorphism groups of self-complementary
vertex-transitive graphs of 4-power-free order.
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1. Introduction

Throughout the paper, all graphs are assumed to be undirected and simple. For a
graph Γ, denote its vertex set by VΓ. The complement graph Γ of Γ is the graph which
has the same vertex set VΓ and in which two vertices u and v are adjacent if and only if
u and v are not adjacent in Γ. Then Γ is called vertex transitive if Aut Γ is transitive on
VΓ, Γ is called a self-complementary graph if Γ is isomorphic to Γ and an isomorphism
from Γ to Γ is called a complementing isomorphism of Γ.

The study of self-complementary vertex-transitive graphs has a rich history.
In 1962, Sachs constructed the first families of self-complementary circulants
(that is, where the automorphism group contains a regular cyclic subgroup), and
self-complementary circulants were extensively studied (refer to [1, 7, 16, 20,
21]). In 1999, Muzychuk [17] completely determined the orders of general self-
complementary vertex-transitive graphs (see Lemma 2.5 below). Self-complementary
vertex-transitive graphs have been used as models for finding lower bounds of Ramsey
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numbers (see [4, 5, 10, 19]). More recently, the study of self-complementary vertex-
transitive graphs has been significantly developed by Li and Praeger [12] and their joint
work with Guralnick and Saxl [11] for the vertex-primitive case. For more results, see
the excellent survey of Beezer [2].

For a group G and subgroups K C H ≤G, the quotient group H/K is called a section
of G, and is called a simple section of G while H/K is simple. In particular, H/K
is called a composition factor of G if H is subnormal in G and H/K is simple. A
subgroup H of G can be viewed as a section of G by identifying H with H/{1}, but
the converse is not true. A simple example is that A5 is a section of SL(2, 5) but
is not a subgroup of SL(2, 5). In a quite recent work, Li et al. [15] proved that the
only insoluble composition factor of the automorphism groups of self-complementary
metacirculants is A5. (Recall that a graph Γ is called a metacirculant if Aut Γ contains
a metacyclic subgroup which is transitive on VΓ; and a group R is called metacyclic
if R has a normal cyclic subgroup N such that R/N is cyclic.) This result naturally
motivates the following problem.

Problem 1.1. Which simple groups are sections of the automorphism groups of self-
complementary vertex-transitive graphs?

The first main result of this paper solves this problem.

Theorem 1.2. Let n be an arbitrary positive integer and let T1,T2, . . . ,Tn be any simple
groups. Then there exist infinitely many self-complementary vertex-transitive graphs
Γ such that T1 × T2 × · · · × Tn ≤ Aut Γ.

Theorem 1.2 particularly states that each simple group is a section (actually a
subgroup) of the automorphism groups of infinitely many self-complementary vertex-
transitive graphs. The proof of Theorem 1.2 also establishes the following results.

Corollary 1.3. There are infinitely many self-complementary vertex-transitive graphs
Γ and Σ, both of prime-cube order, such that A5 ≤ Aut Γ and PSL(2, 7) ≤ Aut Σ.

Corollary 1.4.

(1) There are infinitely many self-complementary vertex-transitive graphs Γ of
prime-square order such that A5 is a section of Aut Γ.

(2) There are infinitely many self-complementary vertex-transitive graphs Σ of
prime-cube order such that A6 is a section of Aut Σ.

For positive integers n and d, n is called d-power-free if there is no prime p such
that pd | n. Corollaries 1.3 and 1.4 tell us that A5, A6 and PSL(2, 7) are simple sections
of the automorphism groups of infinitely many self-complementary vertex-transitive
graphs of 4-power-free order. The second main result of this paper shows that these
three simple groups are the only nonabelian simple sections of the automorphism
groups of self-complementary vertex-transitive graphs of 4-power-free order.
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Theorem 1.5.

(1) The automorphism groups of self-complementary vertex-transitive graphs of
squarefree order are soluble.

(2) A5 is the unique nonabelian simple section of the automorphism groups of self-
complementary vertex-transitive graphs of cubefree order.

(3) A5, A6 and PSL(2, 7) are the only nonabelian simple sections of the
automorphism groups of self-complementary vertex-transitive graphs of
4-power-free order.

We note that it was proved in [6] and [14] independently that the automorphism
groups of self-complementary vertex-transitive graphs of order a product of two
distinct primes are soluble; and it was proved in [15] that the automorphism groups of
self-complementary vertex-transitive metacirculants of squarefree order are soluble.

This paper is organised as follows. After this introductory section, we will give
some preliminary results in Section 2. Then Theorem 1.2 and Corollaries 1.3 and 1.4
are proved in Section 3 and Theorem 1.5 is proved in Section 4.

2. Preliminaries

In this section, we quote certain preliminary results which will be used later. The
first one is a well-known theorem of Dirichlet in number theory.

Theorem 2.1. Suppose that a, b are coprime positive integers. Then there are infinitely
many primes of the form an + b, where n is a positive integer.

For a group G, if it has a normal subgroup N such that the quotient group G/N � M,
then G is called an extension of N by M, denoted by G = N · M, and, if such an
extension is split, then we write N : M instead of N · M.

Inspecting subgroups of GL(3, p) with p a prime given in [8, Theorem 2.2], we have
the following result; see also [13, Theorem 1.3].

Lemma 2.2. Let p be a prime. Then the unique nonabelian simple section of GL(2, p)
is A5, and the only nonabelian simple sections of GL(3, p) are A5, A6 and PSL(2, 7).
Further, the following statements hold:

(1) A5 ≤ GL(3, p) if p ≡ ±1 (mod 10);
(2) PSL(2, 7) ≤ GL(3, p) if p3 ≡ 1 (mod 7);
(3) SL(2, 5) ≤ GL(2, p) (so A5 is a section of GL(2, p)) if p ≡ ±1 (mod 10);
(4) Z3 · A6 ≤ GL(3, p) (so A6 is a section of GL(3, p)) if p ≡ 1 or 19 (mod 30).

Let G be a transitive permutation group on a set Ω. A nonempty subset B of Ω

is called a block of G if, for each g ∈ G, either B = Bg := {bg | b ∈ B} or B ∩ Bg is
an empty set; in this case, B := {Bg | g ∈ G} is called a block system of G (or a G-
invariant partition) on Ω. Let GB = {g ∈ G | Bg = B}, the stabiliser of G on B setwise,
and let GB

B be the induced permutation group of GB acting on B. Let GB be the induced
permutation group of G on B. Clearly, a single-element set and Ω are blocks, called
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trivial blocks, and other blocks are called nontrivial. If G has no nontrivial block, then
G is called primitive.

Let Γ be a self-complementary vertex-transitive graph. Set G = Aut Γ and X =

〈G, σ〉, where σ is a complementing isomorphism of Γ. Suppose further that X is
imprimitive on VΓ. Then there is a nontrivial block system B of X on VΓ. Let B ∈ B
and let BΓ denote the induced subgraph of Γ on B.

The following nice result provides an induction method for studying vertex-
transitive self-complementary graphs.

Lemma 2.3 [12]. With the notation above, the following statements hold.

(i) For each B ∈ B, the induced subgraph BΓ is a self-complementary vertex-
transitive graph, GB

B ≤ Aut(BΓ) and σ naturally induces a complementing
isomorphism of BΓ.

(ii) There exists a self-complementary vertex-transitive graph Σ with vertex set
B such that GB ≤ Aut Σ and each element in XB \ GB is a complementary
isomorphism of Σ.

A graph Γ is called a Cayley graph of a group G if there is a subset S ⊆ G \ {1},
with S = S −1 := {g−1 | g ∈ S}, such that VΓ = G, and two vertices g and h are adjacent
if and only if hg−1 ∈ S . This Cayley graph is denoted by Cay(G, S ). It is well
known that a graph Σ is isomorphic to a Cayley graph of a group G if and only if
Aut Σ contains a subgroup which is isomorphic to G and acts regularly on VΣ (see [3,
Proposition 16.3]).

Let Γ = Cay(G, S ) and let

Ĝ = {ĝ | ĝ : x 7→ xg for all g, x ∈ G},
Aut(G, S ) = {σ ∈ Aut(G) | S σ = S}.

Then both Ĝ and Aut(G,S ) are subgroups of Aut Γ. Further, the following nice property
holds.

Lemma 2.4 [9, Lemma 2.1]. Let Γ = Cay(G,S ) be a Cayley graph. Then the normaliser
NAut Γ(Ĝ) = Ĝ : Aut(G, S ).

The next lemma, proved by Muzychuk [17], completely determines the order of
general self-complementary vertex-transitive graphs.

Lemma 2.5. There exists a self-complementary vertex-transitive graph of order n if and
only n = pr1

1 pr2
2 · · · p

rs
s , where p1, p2, . . . , ps are distinct primes such that pri

i ≡ 1 (mod 4)
for each i ∈ {1, 2, . . . , s}.

Let Γ1 and Γ2 be graphs. The lexicographic product of Γ1 and Γ2, denoted by
Γ1[Γ2], is defined as the graph with the vertex set VΓ1 × VΓ2 (Cartesian product) and
two vertices (u1, u2) and (v1, v2) are adjacent if and only if either u1 is adjacent to v1,
or u1 = v1 and u2 is adjacent to v2.

The following nice property, given in [2], provides a method to construct ‘bigger’
self-complementary vertex-transitive graphs from small ones.
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Lemma 2.6. If both Γ1 and Γ2 are vertex-transitive or self-complementary graphs, then
so is Γ1[Γ2].

3. Proof of Theorem 1.2

In this section, we will prove Theorem 1.2 and Corollaries 1.3 and 1.4.

3.1. Simple sections. Let T be a nonabelian simple section of GL(d, p), where d ≥ 2
and p is a prime. Then there exist groups K C H ≤ GL(d, p) such that H/K � T .
Suppose further that p and H satisfy the following condition.

Condition (∗): p ≡ 1 (mod 2m+1), where 2m is the largest order of 2-elements of H.

Let N = Zd
p. Then H ≤ Aut(N) and the centre Z := Z(GL(d, p)) � Zp−1 is of order

divisible by 2m+1. Let σ ∈ Z be such that 2m+1 | o(σ), and let U = 〈H, σ〉 and V =

〈H, σ2〉. Then U,V are subgroups of GL(d, p) and can act naturally on N# := N \ {1}.

Lemma 3.1. Let ∆ be an orbit of U on N#. Then V has exactly two orbits of equal size
on ∆.

Proof. Set o(σ) = 2m+1l, for some positive integer l, and let w ∈ ∆.
Suppose that, on the contrary, V is transitive on ∆. Then wσ = wx for some x ∈ V , so

wxσ−1
= w. Since σ centralises H, we may write x = hσ2s for some h ∈ H and positive

integer s. Then, as 2m+1 divides o(σ) and H has no element with order divisible by
2m+1, we conclude that (xσ−1)o(h) = (hσ2s−1)o(h) = σ(2s−1)o(h) , 1. However, as xσ−1

fixes w , 1, so does σ(2s−1)o(h) = (xσ−1)o(h), which is a contradiction as σ(2s−1)o(h) is a
nonidentity scalar matrix of GL(d, p).

Thus, V is intransitive on ∆. Noting that V is normal in U with index 2, V has
exactly two orbits of equal size on ∆. �

With Lemma 3.1, we can make the following construction.

Construction 3.2. Let ∆1,∆2, . . . ,∆k be all the orbits of U on N#, and let ∆+
i and ∆−i

be the orbits of V on ∆i for each i ∈ {1, 2, . . . , k}.
Set

S =

k⋃
i=1

∆
εi
i where εi = + or −,

Γ = Cay(N, S ).

A group X is called a central product of two subgroups L and S , denoted by
X = L ◦ S , if X = LS , the commutator subgroup [L, S ] = 1 and L ∩ S coincides with
the centre of X (refer to [18, page 141]).

Lemma 3.3. Using the notation above, the graph Γ in Construction 3.2 is a
self-complementary vertex-transitive graph of order pd, σ is a complementary
isomorphism of Γ and Aut Γ ≥ Zd

p : (H ◦ 〈σ2〉). In particular, T is a section of Aut Γ.
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Proof. Since σ ∈ Z is of order 2m+1l, σo(σ)/2 = σ2ml is a scalar involution. Set τ =

σo(σ)/2. Then there exists n ∈ Zp such that xτ = xn for each x ∈ N. Choose x , 1. Then
o(x) = p and, as x = xτ

2
= xn2

, we have n2 ≡ 1 (mod p). It follows that n ≡ −1 (mod p)
as τ , 1, that is, τ maps each element x ∈ N to its inverse x−1. Hence, (∆εi

i )−1 = (∆εi
i )τ

for each i ∈ {1, 2, . . . , k}. Noting that τ = σ2ml ∈ 〈σ2〉 ⊆ V , and each ∆
εi
i is an orbit of

V , we have ∆
εi
i = (∆εi

i )τ = (∆εi
i )−1. Consequently, S = S −1; thus, Γ is undirected. Since

each ∆
εi
i is an orbit of V , V fixes S setwise. By Lemma 2.4, V ≤ Aut(N, S ) ≤ Aut Γ and

Aut Γ ≥ N̂ : V � Zd
p : (H ◦ 〈σ2〉).

Further, since σ ∈ U \ V , σ interchanges ∆+
i and ∆−i for each i ∈ {1, 2, . . . , k}. Thus,

S σ =

k⋃
i=1

(∆εi
i )σ =

k⋃
i=1

(∆−εi
i ) = N# \ S

and Γ = Cay(N, S ) � Cay(N, S σ) = Γ. Hence, Γ is a self-complementary vertex-
transitive graph and σ is a complementary isomorphism of Γ.

As T � H/K, the last statement of Lemma 3.3 is now obviously true. �

3.2. Proof of Theorem 1.2. We first give a simple observation.

Lemma 3.4.

(1) For each self-complementary vertex-transitive graph Γ, Z2 ≤ Aut Γ.
(2) For each odd prime p, there exist infinitely many self-complementary vertex-

transitive graphs Σ such that Zp ≤ Aut Σ.

Proof. For each self-complementary vertex-transitive graph Γ, let σ be a
complementary isomorphism of Γ. Set o(σ) = 2kn with n odd. Clearly, σn is also a
complementary isomorphism of Γ, so it does not interchange any two distinct vertices
of Γ; hence, k ≥ 2. It follows that Z2 � 〈σ

2k−1n〉 ≤ Aut Γ.
For each odd prime p, p2m ≡ 1 (mod 4) for any positive integer m. By Lemma 2.5,

there exists a self-complementary vertex-transitive graph Σ of order p2m. Thus, Aut Σ

has an element of order p and Zp ≤ Aut Σ. �

Now suppose that T is a nonabelian simple group and that the largest order of 2-
elements of T is 2m. By Lemma 2.1, there exist infinitely many primes p of the form

p = 2m+1k + 1,

where k is a positive integer. Since each group is isomorphic to a permutation group,
we may view T as a permutation group of degree d. Let Fd

p denote the d-dimensional
vector space over the p-element field Fp, with a basis v1, v2, . . . , vd. Then T has the
following group representation (usually called the permutation representation) on Fd

p:

vt
i = vit for t ∈ T and i = 1, 2, . . . , d.

Clearly, this representation is faithful and so we have T ≤ GL(d, p).
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Lemma 3.5. For each nonabelian simple group T , there exist an integer d ≥ 2 and
infinitely many primes p of the form p = 2m+1k + 1 such that T ≤ GL(d, p), where 2m

is the largest order of 2-elements of T and k is a positive integer.

We are ready to prove Theorem 1.2 now.

Proof of Theorem 1.2. We complete our proof by induction on the number n of the
simple groups.

Assume first that n = 1. If T1 is soluble, Theorem 1.2 is true by Lemma 3.4. If T1
is nonabelian, suppose that the largest order of 2-elements of T1 is 2m. By Lemma 3.5,
there exist infinitely many primes p such that T1 ≤ GL(d, p) and p ≡ 1 (mod 2m+1),
that is, p and T1 (as H there) satisfy Condition (∗). By Lemma 3.3, for each prime
p ≡ 1 (mod 2m+1), there is a self-complementary vertex-transitive graph Γ such that
Aut Γ ≥ Zd

p : (T1 ◦ 〈σ
2〉) = Zd

p : (T1 × 〈σ
2〉) and so T1 ≤ Aut Γ. Theorem 1.2 is true in

this case.
Assume now that Theorem 1.2 is true for fewer than n simple groups. Then there

are infinitely many self-complementary vertex-transitive graphs Σ and Ω such that
T1 × T2 × · · · × Tn−1 ≤ Aut Σ and Tn ≤ Aut Ω. Let Γ = Ω[Σ], the lexicographic product
of Ω and Σ. Then Aut Σ o Aut Ω ≤ Aut Γ. Note that Aut Σ o Aut Ω � (Aut Σ)m : Aut Ω,
where m = |VΩ|, and Aut Ω acts on (Aut Σ)m in the wreath product. Let

L = {(a, a, . . . , a) | a ∈ T1 × T2 × · · · × Tn−1} ≤ (Aut Σ)m.

Then L � T1 × T2 × · · · × Tn−1 and Tn ≤ Aut Ω centralises L. So, T1 × T2 × · · · × Tn =

〈L,Tn〉 ≤ Aut Γ. This completes the proof of Theorem 1.2. �

Proof of Corollary 1.3. There are infinitely many primes p ≡ 1 or 9 (mod 20), by
Theorem 2.1. Since p ≡ ±1 (mod 10), by Lemma 2.2(1), A5 ≤ GL(3, p); since
p ≡ 1 (mod 4) and 2-elements of A5 are involutions, p and A5 (as H there) satisfy
Condition (∗). By Lemma 3.3, for each prime p ≡ 1 or 9 (mod 20), there is a self-
complementary vertex-transitive graph Γ of order p3 such that A5 ≤ Aut Γ.

Again, by Theorem 2.1, there are infinitely many primes p ≡ 1 (mod 56). Since
p ≡ 1 (mod 7), Lemma 2.2(2) implies that PSL(2, 7) ≤ GL(3, p). As the largest
order of 2-elements of PSL(2, 7) equals 4, and p ≡ 1 (mod 8), p and PSL(2, 7)
(as H there) satisfy Condition (∗). It then follows from Lemma 3.3 that there are
infinitely many self-complementary vertex-transitive graphs Σ of order p3 such that
PSL(2, 7) ≤ Aut Σ. �

Proof of Corollary 1.4. (The proof is similar to the proof of Corollary 1.3.)
By Theorem 2.1, there are infinitely many primes p ≡ 1 or 9 (mod 40). As p ≡

±1 (mod 10), SL(2, 5) ≤ GL(2, p), by Lemma 2.2(3). Let H = SL(2, 5) and K � Z2
be the centre of H. Then A5 � H/K. Since the largest order of 2-elements of H
equals 4, and p ≡ 1 (mod 8), p and H satisfy Condition (∗). Thus, for each prime
p ≡ 1 or 9 (mod 40), by Lemma 3.3, there is a self-complementary vertex-transitive
graph Γ of order p2 such that Aut Γ ≥ Z2

p : (SL(2, 5) ◦ 〈σ2〉). Thus, A5 is a section of
Aut Γ.
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Similarly, there are infinitely many primes p ≡ 1 or 49 (mod 120). As p ≡
1 or 19 (mod 30), Lemma 2.2(4) implies that Z3 · A6 ≤ GL(3, p). Let H1 = Z3 · A6
and K1 � Z3 be the normal subgroup of H1. Then A6 � H1/K1. Since the largest
order of 2-elements of H1 equals 4, and p ≡ 1 (mod 8), p and H1 (as H there) satisfy
Condition (∗). By Lemma 3.3, there are infinitely many self-complementary vertex-
transitive graphs Σ of order p3 such that Aut Σ ≥ Z3

p : (Z3 · A6 ◦ 〈σ
2〉). Hence, A6 is a

section of Aut Σ. �

4. Proof of Theorem 1.5

To prove Theorem 1.5, we first give a result regarding simple sections of groups.

Lemma 4.1. Suppose that G = N · M and T is a simple section of G. Then T is a section
of either N or M.

Proof. By definition, there exist subgroups K C H ≤ G such that H/K � T . Since
(H ∩ N)K/K C H/K, either (H ∩ N)K/K � T or 1. For the former case, (H ∩ N)K =

H; it follows that T � (H ∩ N)K/K � (H ∩ N)/(K ∩ N) and, noting that H ∩ N ≤ N,
T is a section of N. For the latter case, H ∩ N ⊆ K, so H ∩ N = K ∩ N and hence

T � (H/(H ∩ N))/(K/(K ∩ N)) � (HN/N)/(KN/N),

as HN/N ≤ G/N � M. We conclude that T is a section of M. �

For a group G, its socle, denoted by soc(G), is the product of all minimal normal
subgroups of G.

Proof of Theorem 1.5. Let Γ be a self-complementary vertex-transitive graph of d-
power-free order and let G = Aut Γ, where 2 ≤ d ≤ 4. Let T be a simple section of
G. By Corollaries 1.3 and 1.4, we only need to prove that T satisfies the following
assertion.

Assertion (∗)

(1) T is soluble if |VΓ| is squarefree.
(2) T is soluble or T = A5 if |VΓ| is cubefree.
(3) T is soluble or T ∈ {A5,A6,PSL(2, 7)} if |VΓ| is 4-power-free.

Assume first that G is primitive on VΓ. Since Γ is undirected, by [11, Theorem 1.3],
either G is affine or G is of product action with socle PSL(2, q2) and order |VΓ| =

( 1
2 q2(q2 + 1))l, where q is an odd prime power and l ≥ 2. The latter case is impossible,

as ( 1
2 q2(q2 + 1))l is not 4-power-free. Thus, G is affine, so N := soc(G) = Ze

p is regular
on VΓ and Γ is a Cayley graph of N, where p is a prime and e ≤ d − 1. As N CG,
Lemma 2.4 implies that G ≤ N : Aut(N) � Ze

p : GL(e, p).
If d = 2, then e = 1 and G ≤ Zp : Zp−1 is soluble. Hence so is T . If d = 3, then

G ≤ Z2
p : GL(2, p). By Lemma 4.1, either T is soluble or T is a nonabelian simple

section of GL(2, p) and T = A5, by Lemma 2.2. If d = 4, then G ≤ Z3
p : GL(3, p). If

T is insoluble, then T is a section of GL(3, p), by Lemma 4.1; it then follows from
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Lemma 2.2 that T ∈ {A5,A6, PSL(2, 7)}. Therefore, T satisfies Assertion (∗) in the
case where G is primitive on VΓ.

Assume now that G is imprimitive on VΓ. Assume by induction that Assertion (∗)
holds for each simple section of the automorphism groups of self-complementary
vertex-transitive graphs with d-power-free order less than |VΓ|.

Let B be a nontrivial block of G on VΓ and let B = {Bg | g ∈ G} = {B1, B2, . . . , Bm}

be the corresponding block system of G on VΓ. As |VΓ| = |Bi| |B|, both |B| and |Bi| are
d-power-free and less than |VΓ|. Let K be the kernel of G acting on B. Then G = K.GB

and, by Lemma 4.1, T is a section of either K or GB.
Suppose first that T is a section of K. Since K fixes each Bi in B,

K ≤ KB1 × KB2 × · · · × KBm ,

so T is a section of KB1 × KB2 × · · · × KBm and, in turn, T is a section of KBi for
some i, by Lemma 4.1. Further, by Lemma 2.3(i), the induced graph (Bi)Γ is a self-
complementary vertex-transitive graph of order |Bi| and KBi CGBi

Bi
≤ Aut((Bi)Γ) Since

|Bi| < |VΓ| is d-power-free, by assumption, T satisfies Assertion (∗).
Suppose now that T is a section of GB. By Lemma 2.3(ii), there is a self-

complementary vertex-transitive graph Σ with order |B| such that GB ≤ Aut Σ. Since
|B| < |VΓ| is d-power-free, by assumption, T also satisfies Assertion (∗). This
completes the proof of Theorem 1.5. �
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