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ABSTRACT. Comprehensive published radiocarbon data from selected atmospheric records, tree rings, and recent organic
matter were analyzed and grouped into 4 different zones (three for the Northern Hemisphere and one for the whole Southern
Hemisphere). These 4C data for the summer season of each hemisphere were employed to construct zonal, hemispheric, and
global data sets for use in regional and global carbon model calculations including calibrating and comparing carbon cycle
models. In addition, extended monthly atmospheric '“C data sets for 4 different zones were compiled for age calibration pur-
poses. This is the first time these data sets were constructed to facilitate the dating of recent organic material using the bomb
14C curves. The distribution of bomb “C reflects the major zones of atmospheric circulation.

INTRODUCTION

A large amount of artificial radiocarbon was injected mostly into the stratosphere in the late 1950s
and early 1960s by atmospheric nuclear detonations (Enting 1982). As a result, the concentration of
14C in the troposphere dramatically increased in these periods, as depicted in Figure 1. Since the
Nuclear Ban Treaty came into effect in 1963, the *C concentration in the troposphere has been
decreasing due to rapid exchange between the atmosphere and other carbon reservoirs (mainly the
oceans and biosphere). The large pulse of artificial '“C injected to the atmosphere enables us to use
14C as a unique and powerful tracer for studying exchanges between carbon reservoirs and the glo-
bal carbon cycle (Nydal 1968; Oeschger et al. 1975; Broecker et al. 1980; Druffel and Suess 1983;
Levin and Hesshaimer 2000). A few laboratories conducted early measurements to document
changes in atmospheric and oceanic 4C, e.g., Vogel and Marais (1971), Manning and Melhuish
(1994) for atmospheric samples; and Broecker et al. (1960), Bien et al. (1960), Rafter (1968) for
oceanic samples. Tans (1981) compiled bomb '4C data for use in global carbon model calculations.
Part of his compilation dealt with tropospheric *C based on limited data derived from atmospheric,
tree-ring, and organic samples in terms of temporal and spatial distribution. Since then, more atmo-
spheric 4C data from many more different sites in the world have become available. Today, more
than 50 yr after the first atmospheric nuclear detonation, there is a need for a comprehensive com-
pilation of atmospheric bomb “C for calibrating and comparing carbon cycle models. In addition,
different atmospheric '“C levels between consecutive years during the bomb period offer the possi-
bility of dating recent organic materials by '“C with a variable resolution of one to a few years. The
growing demand in this field (Worbes and Junk 1989; Wild et al. 1998; Searson and Pearson 2001)
also necessitates comprehensive bomb '“C data sets for age calibration over the past 50 yr. There-
fore, this paper contains a new compilation of tropospheric bomb '“C data for modeling and calibra-
tion purposes.

The construction of bomb 14C data sets was based on comprehensive and reliable !“C data derived
from atmospheric samples, tree rings, and organic material. For atmospheric records, data sets
which were strongly influenced by local anthropogenic CO, were not used for the compilation, such
as those of Smilde (53°N, 6°E; Meijer et al. 1995) and Melbourne (38°S, 145°E; Manning et al.
1990). For '4C data from tree rings, only data sets that are demonstrably reliable, as reported in Hua
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Figure 1 Atmospheric 4C for the last 50 yr and the magnitude of atmospheric nuclear detonation. Lines represent
atmospheric '*C data. Data sources are Levin et al. (1994) for Vermunt and Schauinsland, Nydal and Lovseth
(1996) for Debre Zeit, Manning and Melhuish (1994) for Wellington, and Levin et al. (1996, 1999) for Cape Grim.
Bars represent effective yield of atmospheric nuclear detonations for 3-month periods (for 1950-1976, Enting
1982; for 1977-1980, Yang et al. 2000).

et al. (1999), were employed for the construction of the bomb data sets. One measured “C value
from a very recent morphine sample (Zoppi et al. 2004) was also used for the compilation.

ZONAL TROPOSPHERIC '“C DERIVED FROM TREE RINGS AND ATMOSPHERIC CO,
SAMPLES

The excess '“C produced by atmospheric nuclear detonation was mostly injected into the northern
stratosphere, then returned to the northern troposphere through the mid- to high-latitude tropopause
gap during the spring and summer. Injection of a large amount of artificial '4C from the stratosphere
during the late 1950s and 1960s created a great '“C disequilibrium between the troposphere and
other carbon reservoirs, and within the troposphere (north vs south, and high vs low latitudes). This
caused the transfer of bomb '“C from the atmosphere to the oceans and biosphere. For the
troposphere, excess “C was transferred southwards by atmospheric circulation and its distribution
depended on regional wind patterns, the resistance of atmospheric cell boundaries, and the
Intertropical Convergence Zone (ITCZ) (Hua and Barbetti 2003). The highest “C level was in
northern mid to high latitudes, where the input of bomb 'C from the stratosphere occurred. The 4C
level was significantly lower in the subtropics to mid-latitudes. As excess “C was transferred to the
tropics, monsoons mixed air masses from the Northern Hemisphere with those from the Southern
Hemisphere (Hua and Barbetti 2003; Hua et al. 2004a,b). As a consequence, the '“C level for the
tropics was noticeably lower in magnitude. Across the Equator in the Southern Hemisphere, the 14C
excess was lower again in magnitude but nearly uniform for the whole hemisphere (Manning et al.
1990; Hua et al. 2003). The reason for small 4C gradients in the Southern Hemisphere is that the
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sources of bomb !4C, which are mainly in the Northern Hemisphere, are far from the south
(Manning et al. 1990), and the '*C excess becomes diffused as it is transported over the broad and
seasonally-moving ITCZ (Hua et al. 1999, 2003). As bomb '*C (more or less) reached a global
equilibrium in the late 1960s (Telegadas 1971), there has not been much difference between
locations in terms of '“C for the period from 1970 onwards.

The above spatial and temporal distribution of bomb #C is well illustrated by A!*C values measured
in tree rings from different locations, which are depicted in Figure 2. The diagram shows a large gra-
dient in terms of '“C from 1955 to the late 1960s, illustrating 4 different levels of '*C, namely,
Northern Hemisphere (NH) zones 1, 2, and 3, and one Southern Hemisphere (SH) zone. The issue
arising here is “do atmospheric 4C records have a pattern similar to that recorded in tree rings?”.
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Figure 2 '4C in tree rings at different locations. Data sources are Kolesnikov et al. (1970) for Russia,
Hertelendi and Csongor (1982) for Hungary, Levin et al. (1985) for Obrigheim (Germany), Muraki et
al. (1998) for Agematsu (Japan), Kikata et al. (1992, 1993) for Saigon (Vietnam), Hua et al. (2000) for
Doi Inthanon (Thailand) and Tasmania (Australia), and Hua et al. (2003) for Armidale (Australia).

Because one atmospheric record is not much different from the others for the Southern Hemisphere,
the maximum difference in '“C within the hemisphere would indicate the magnitude of variations
that one can expect for a group of atmospheric “C data. Using the strategy employed by Manning
et al. (1990), the monthly differences between stations in the Southern Hemisphere were calculated
and summarized in Table 1. The calculation consisted of 2 stages: calculation of monthly values for
each record and calculation of the mean difference. For each month, the monthly value for each
record was the weighted mean of a number of individual samples if more than 1 sample was avail-
able for that month. The weights for the calculation of monthly values were the '4C uncertainties and
the sampling duration (if available) of individual samples. The uncertainty associated with a
monthly mean was the larger value of the error of the mean and the standard error. For details of the
calculation of weighted mean and its error, see Bevington and Robinson (1992). Similarly, the mean
difference of 2 atmospheric records was the weighted mean of the difference based on uncertainties
associated with individual differences. The maximum mean difference between stations in the
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Southern Hemisphere is ~15%o (Funafuti 9°S, 179°E—Scott Base 78°S, 167°E; see Table 1). Note
that in this paper, atmospheric “C levels are expressed as A'4C values after corrections for isotopic
fractionation using 8'3C and radioactive decay [Hua et al. 1999; and the A and A*C¢grg terms of
Stuiver and Polach (1977) and Nydal and Gislefoss (1996), respectively].

Table 1 Monthly differences in '*C between sites in the Southern Hemisphere.

Nr of

common Weighted mean
Sites months  Period difference (%o)
Funafuti (9°S, 179°E)-Wellington (41°S, 145°E) 34 Aug 66-Mar 72  9.1+2.9
Suva (18°S, 178°E)—~Wellington 85 July 59—Jun 75 99+2.1
Fianarantsoa (21°S, 47°E)—Wellington 111 Nov 64-May 78 63 +1.3
Pretoria (26°S, 28°E)—Wellington 237 Apr 57-Jun 93 0.5+1.1
Campbell Island (53°S, 169°E)-Wellington 50 Jan 70-Feb 77 34120
Scott Base (78°S, 167°E)-Wellington 27 Nov 61-Mar 76 —4.7£3.2

For the Northern Hemisphere, the “C gradient is large for the period from 1955 to the late 1960s,
but small for the period from 1970 onwards. The monthly differences between stations in the North-
ern Hemisphere were therefore calculated for the 2 different periods and are summarized in Table 2.

The atmospheric '“C records for the Northern Hemisphere were grouped into 3 different zones,
similar to the classifications used for tree rings. For the period 1955-1969, the maximum intra-
zonal mean differences are ~18%o (Fruholmen 71°N, 24°E—Vermunt 47°N, 10°E) for stations within
zone 1, and ~23%o0 (N’Djamena 12°N, 16°E-Izana 28°N, 17°W) for stations within zone 2.
Regarding zone 2, however, for an unknown reason, values for N’Djamena (12°N, 16°E) are higher
than those from Mas Palomas (28°N, 16°W) and significantly higher than those from Izafa (28°N,
17°W). The mean differences for N’Djamena versus Izafia and N’Djamena versus Mas Palomas are
23%o and 13%o, respectively. The surprisingly high '#C level for low-latitude N’Djamena is
unexpected in the bomb “C context. If this record is disregarded, the maximum mean difference
between stations within zone 2 is ~16%o0 (Mas Palomas—Santiago de Compostela). The maximum
differences for stations within zone 1 (of 18%o) and within zone 2 (of 16%o) are very similar to the
Southern Hemisphere value of 15%o. For zone 3, the only record available is from Debre Zeit at
9°N, 39°E. Meanwhile, the interzonal mean differences are much larger. They are 30—-53%o between
zones | and 2, and 40-55%o between zones 2 and 3 (except for the mean difference between
N’Djamena and Debre Zeit of 18%o). Therefore, it is clear that atmospheric '#C for the Northern
Hemisphere for the period from 1950 to 1969 is well separated into 3 different zones. Note that
these NH zones are not simply latitude-dependent, as China Lake (36°N, 118°W) belongs to zone 1,
while Santiago de Compostela (43°N, 8°W) belongs to zone 2. For the period from 1970 onwards,
the mean differences within a zone and between zones are similar and smaller compared to those for
the former period, respectively (see Table 2). The maximum difference is ~16%0 between
Fruholmen and China Lake over a 6-yr period (AD 1977-1983). Therefore, all atmospheric records
from 1970 onwards can be treated as one group.

The pattern of bomb 'C obtained from atmospheric 4C records is similar to that derived from tree
rings. This allows us to compile bomb '“C data using a combination of atmospheric '“C records and
14C data from tree rings.
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COMPILED TROPOSPHERIC '4C DATA SETS FOR MODELING PURPOSES

In this section, we describe data sets we have compiled and which are representative of zonal, hemi-
spheric, and global 4C levels in the troposphere for the past 50 yr. In order to have fully comparable
values for atmospheric 4C records and tree-ring '“C (or '“C in some terrestrial organic materials),
only atmospheric data for the summer of each hemisphere (the growing seasons for tree rings—May
to August for the Northern Hemisphere and November to February for the Southern Hemisphere)
were used for the compilation. The advantage of this strategy is twofold: (1) There is a minimal con-
tamination of fossil-fuel CO, devoid of 4C in the summer time (Meijer et al. 1995; Levin and
Kromer 1997), so this strategy therefore largely avoids possible discrepancies in 4C between sta-
tions in the Northern Hemisphere due to local or regional fossil-fuel CO, emissions, which mostly
occur in winter months; and (2) this strategy allows an extension of the atmospheric 4C records,
using the 14C data from tree rings or terrestrial organic matter, when atmospheric “C data are sparse,
such as at the beginning of atmospheric nuclear detonations during the 1950s and the most recent
period.

Zonal or Hemispheric Data Set for the Southern Hemisphere

For the Southern Hemisphere, the '“C data sets employed for the construction of atmospheric “C
included records for Suva (18°S, 178°E), Campbell Island (53°S, 169°E), and Scott Base (78°S,
167°E) from Manning et al. (1990); Fianarantsoa (21°S, 47°E; Nydal and Lovseth 1996); Pretoria
(26°S, 28°E; Vogel and Marais 1971); Wellington (41°S 175°E; Manning and Melhuish 1994); and
Cape Grim (41°S, 145°E; Levin et al. 1996, 1999). We also included tree-ring data sets for Armidale
(30°S, 152°E; Hua et al. 2003) and Tasmania (42°S, 145°E; Hua et al. 2000), and a '“C datum
derived from very recent Tasmanian morphine (Zoppi et al. 2004).

For the atmospheric record, the mean value for summer months (November—February) for a partic-
ular year was calculated only if there were data available for at least 3 out of 4 months for the season.
The Funafuti record (9°S, 179°E; Manning et al. 1990) does not meet this criterion. This record was
therefore not used in the compilation of Southern Hemisphere !“C. The summer mean values for the
atmospheric record are weighted averages based on the #C uncertainty and on the sampling dura-
tion of an individual sample (if the latter was available). The uncertainty associated with the summer
mean value is the larger of the error of the mean and the standard error. The compiled atmospheric
AC data for the Southern Hemisphere are presented in Table 3. The average value for the Southern
Hemisphere for a particular year is the weighted average value based on the uncertainty associated
with the summer mean of the individual record (or the measurement uncertainty associated with the
tree-ring or organic '*C value of an individual sample). The uncertainty for the average yearly value
is the larger of the error of the mean and the standard error. These criteria and methods were also
employed for calculation of Northern Hemispheric and global data sets. The average yearly values
for the Southern Hemisphere and their associated uncertainties are shown in the far right column of
Table 3.
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Zonal and Hemispheric Data Sets for the Northern Hemisphere

For the period 1955-1969, 3 separate data sets of atmospheric '“C were compiled for the 3 different
NH zones, namely, zones 1, 2, and 3. Note that the distribution of bomb '“C strongly depended on
atmospheric circulation and seasonal positions of Hadley cell boundaries and the ITCZ (Hua and
Barbetti 2003). The NH zones are not just latitudinally dependent. Zone 1 covers the area from
~40°N to the North Pole. Because most atmospheric '“C data for NH zones 1 and 2 are from Europe
and northwestern Africa, the boundary between the 2 zones are not accurately determined by the
analyses presented in Table 2. This boundary is estimated around 40°N, but may vary from one
place to another. For example, this boundary has to be south of China Lake (36°N, 118°W) but north
of Santiago de Compostela (42°N, 8°W) (see analyses in Table 2). NH zone 2 extends from the sum-
mer maximum position of the summer ITCZ to ~40°N, and zone 3 from the Equator to the position
of the summer ITCZ. Figure 3 shows the areas covered by NH zones 1, 2, and 3, and the SH zone.

'

a8 1200W  alvWw 0 alE  120°E 1&0e

Figure 3 World map showing the areas covered by NH zones 1, 2, and 3, and the SH zone. The position of the summer ITCZ
is adapted from Linacre and Geerts (1997).

The 4C data sets employed for the construction of atmospheric 4C for NH zone 1 included atmo-
spheric records for Fruholmen (71°N, 24°E), Trondheim (63°N, 10°E), and Lindesness (58°N, 7°E)
from Nydal and Lovseth (1996); Vermunt (47°N, 10°E; Levin et al. 1994); and China Lake (36°N,
118°W; Berger et al. 1965; Berger and Libby 1966, 1967, 1968, 1969). We also included tree-ring
data for Russia (60°N, 31°E; Kolesnikov et al. 1970); Kiel (54°N, 10°E; Willkomn and Erlenkeuser
1968); Obrigheim (49°N, 9°E; Levin et al. 1985); Hungary (48°N, 22°E; Hertelendi and Csongor
1978); and Bear Mountain, New York (41°N, 74°W; Cain and Suess 1976).
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For NH zone 2, *C data sets used for compilation were atmospheric records for Santiago de
Compostelal! (43°N, 8°W), Israel (32°N, 35°E), Izafia (28°N, 17°W), Mas Palomas (28°N, 16°W),
and Dakar (15°N, 17°W) from Nydal and Lovseth (1996). Due to the surprisingly high 4C level for
N’Djamena (12°N, 16°E; Nydal and Lovseth 1996) as mentioned above, this record was not
employed in the compilation. There is a long atmospheric “C record for New Jersey (40°N) for
AD 1959-1966 reported in Feely et al. (1963; 1966a,b); however, 'C measurement uncertainties
for this record are large (~5%; Feely et al. 1966a). This record was therefore not used for the com-
pilation. We also included tree-ring data for Gifu (36°N, 138°E; Nakamura et al. 1987a,b), Age-
matsu (36°N, 138°E; Muraki et al. 1998), and Mts Chiak and Kyeryong (36—37°N, 127-128°E; Park
et al. 2002).

Regarding NH zone 3, “C data sets employed for the compilation included atmospheric records for
Debre Zeit (9°N, 39°E; Nydal and Lovseth 1996), and tree-ring '4C from India (23°N, 81°E;
Murphy et al. 1997), Saigon (11°N, 107°E; Kikata et al. 1992, 1993), and Doi Inthanon (19°N,
99°E; Hua et al. 2000).

The compiled atmospheric A'*C data for NH zones 1, 2, and 3 for 1955-1969 are presented in Tables
4a, 4b, and 4c, respectively. The compiled data set for the Northern Hemisphere for 1955-1969 is
shown in Table 5a. Weighted yearly mean values for the Northern Hemisphere were calculated from
the 3 yearly zonal means, with weights consisting of uncertainties associated with yearly zonal value
and zonal surface area. The percentages of zonal surface areas within the Northern Hemisphere for
NH zones 1, 2, and 3 were taken as 17%, 46%, and 37%, respectively.

For the period from 1970 onwards, '“C data sets used for the compilation consisted of atmospheric
records for Fruholmen, the Canary Islands (including Izafia and Mas Palomas), Debre Zeit (Nydal
and Lovseth 1996), Vermunt and Schauinsland (Levin et al. 1994), and China Lake (36°N, 118°W;
Berger et al. 1987); and tree-ring '“C from Obrigheim (Levin et al. 1985), Schauinsland (48°N, 8°E;
Levin and Kromer 1997), Hungary (Hertelendi and Csongor 1978), Agematsu (Muraki et al. 1998),
Mts Chiak and Kyeryong (Park et al. 2002), India (Murphy et al. 1997), and Doi Inthanon (Hua et
al. 2000). The compiled atmospheric A!*C data for the Northern Hemisphere for 1970-1999 is pre-
sented in Table 5b.

Compiled zonal atmospheric '“C data sets for the summer season for 1955-1999 together with indi-
vidual data sets available in each zone are shown in Figures 4-8.

INydal and Lovseth (1983) reported unusual '“C minima in September—December for the Santiago de Compostela record for
the period AD 1963-1966. The authors argued that local fossil-fuel consumption was the cause for these minima, as accu-
mulation of CO, free of 1“C near the ground became significant on calm days and contaminated atmospheric samples. How-
ever, these September—December troughs in 4C were also observed in Izafia, Dakar, and New Jersey records during 1963—
1966, indicating that the effect must therefore be regional. We infer that temporary changes in the regional wind systems,
rather than just the local weather of the Spanish station, are responsible for the presence of these 4C troughs in the Santiago
de Compostela and other records (Hua and Barbetti, unpublished data). The Spanish “C record was therefore considered to
be regionally significant and used in the compilation.
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Table 4c A'#C (%o) for NH zone 3 for the period of 1955 to 1969.

Year Debre Zeit Mandla Doi Inthanon Saigon NH zone 3
AD 9°N, 39°E? 23°N, 81°EP 19°N, 99°Eb 11°N, 107°E¢  average
1955.5 15.7+5.5 -17.8+5.8 0+17
1956.5 16.8+4.4 17+4
1957.5 347+5.6 35+6
1958.5 127.7+53 128 £5
1959.5 2246+7.2 225+ 7
1960.5 205.5+6.9 204.1+7.3 205+5
1961.5 226.5+6.3 227+6
1962.5 292.6 £ 6.6 305.0 £43 203 +7
1963.5 578.5+31 565.4+8.0 5384+175 415.7+ 174 552+ 10
19645 711.4+11 675.7+7.6 673.1 £22 681+9
1965.5 716.5+6 704.7 +£ 8.6 694.1+7.0 691.8+16 705+ 6
1966.5 652.5+9.0 640.7 £ 17 650+ 8
1967.5 607.9 +10.0 589.6 £23 605+9
1968.5 5602+ 17 5549 +7.1 555+7
1969.5 5233 +6.6 523+ 7

2Mean atmospheric 4C for May—August derived from the data of Nydal and Lovseth (1996) for Debre Zeit.

b14C in tree rings for Mandla (Murphy et al. 1997) and for Doi Inthanon (Hua et al. 2000).

¢l4C in tree rings for Saigon from Kikata et al. (1992, 1993). No §'3C data were reported in the papers; therefore, no
813C correction was applied for these A!4C data.

dThis value is too low compared to corresponding values from Debre Zeit, Mandla, and Doi Inthanon, and might not
be reliable. This datum was therefore not used for this compilation.

Table 5a A'*C (%o) for the Northern Hemisphere for 1955-1969.2

Year AD NH zone 1 NH zone 2 NH zone 3 NH average
1955.5 21+6 13+13 0+£17 15+6
1956.5 38+ 15 50+ 18 17+4 20+ 6
1957.5 101+ 16 81+ 14 35+6 45+ 15
1958.5 167+£5 187+ 13 128+5 148 £ 16
1959.5 278 £ 8 235+ 18 225+7 239+ 16
1960.5 23245 231+5 205+5 222+9
1961.5 232+4 223+ 6 227+ 6 226+ 3
1962.5 398+ 6 352+9 293+7 337+30
1963.5 812+ 18 707 £5 552+10 686 + 41
1964.5 933+9 804 + 8 681+9 785 + 62
1965.5 781+ 10 738 £9 705+ 6 723 £ 17
1966.5 697+9 671+6 650+ 8 668 + 10
1967.5 628+9 620+3 605+9 618+3
1968.5 572+ 10 564+ 14 555+7 559+6
1969.5 547+38 556+3 523+7 551+8

aWeights for calculation of the Northern Hemisphere average for a particular year are uncertainties associated
with zonal '“C values and zonal surface areas. The percentages of zonal surface areas within the Northern
Hemisphere for NH zones 1, 2, and 3 are taken as 17%, 46%, and 37%, respectively.
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Figure 4 Compiled summer atmospheric '“C curve for NH zone 1 versus atmospheric '“C records (lines) and tree-ring
14C data (symbols) available for the zone. Data sources are given in Tables 4a and 5b.
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Figure 5 Compiled summer atmospheric '4C curve for NH zone 2 versus atmospheric 4C records (lines) and tree-ring
14C data (symbols) available for the zone. Data sources are given in Tables 4b and 5b.
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Figure 6 Compiled summer atmospheric '“C curve for NH zone 3 versus atmospheric '“C record (line) and tree-ring
14C data (symbols) available for the zone. Data sources are given in Tables 4c and 5b.
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Figure 7 Compiled summer atmospheric '“C curve for the SH zone versus atmospheric '“C records (lines; but small
dots for Scott Base) and tree-ring 4C data (open symbols), and the 4C datum from a morphine sample (solid symbol)

available for the zone. Data sources are given in Table 3.
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Figure 8 Compiled summer atmospheric '“C curves for 4 different zones (NH zones 1-3, and the SH zone). These com-
piled data are presented in Tables 3, 4a—c, and Sa—b.

Global Atmospheric 14C Data Set

The temporal spans of the compiled 4C data sets for the Northern and Southern Hemisphere are not
the same: they are effectively the middle of a calendar year for the Northern Hemisphere and the
beginning of the following year for the Southern Hemisphere. In order to construct a global data set,
the same temporal spans have to be employed. Because bomb '“C in the Southern Hemisphere has
lower seasonal variations during the bomb peak, *C values for the Southern Hemisphere for the
middle of a calendar year were estimated by linear interpolation of the compiled data set for the
Southern Hemisphere presented in Table 3. From now on, this Southern Hemispheric data set is
called the estimated Southern Hemispheric winter data set.

For the period 1955-1969, there are 2 different methods which can be used to construct the picture
of global atmospheric '“C. The first method employs the 2 hemispheric data sets for the compilation:
the Northern Hemispheric mean values reported in Table 5a, and the estimated Southern Hemi-
spheric winter data set. The second method estimates the global values from 4 zonal data sets: 3
zonal data sets for the Northern Hemisphere presented in Tables 4a—c, and the estimated Southern
Hemispheric winter data set. As a result of the large '“C gradient in the northern troposphere for the
period 1955-1969, the uncertainties associated with the compiled Northern Hemispheric values (see
Table 5a) are larger than those for the estimated Southern Hemispheric values. If the first method
were employed, the global weighted means would be close to the Southern Hemispheric values
when the weights are the '“C uncertainties mentioned above. The mean values therefore might not
reflect the true global values. Meanwhile, the uncertainties associated with the 3 zonal values for the
Northern Hemisphere (see Tables 4a—c) are almost comparable to those for the estimated Southern
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Hemispheric values. Thus, the global means derived from the second method would not be biased
by the method of calculation and would reflect the true values. The compiled data of atmospheric
14C for 1955-1969 were estimated using the second method and are presented in Table 6a.

Table 6a Global average A'“C (%o) for the period of 1955 to 1969.2

SH zone

Year AD NHzonel NHzone2 NHzone3 (winterdata)® Global average
1955.5 21+6 13+13 0+17 -17+5 -11+£7
1956.5 38+ 15 50+ 18 17+ 4 0+4 5+£5
1957.5 101 £ 16 8114 35+6 32+5 367
1958.5 167+5 187 £ 13 128+5 73+5 103 £ 23
1959.5 278 £8 235+ 18 225+7 1413 151+18
1960.5 232+5 231+5 205+5 189 +£2 195+38
1961.5 23244 223+6 227+6 197 +£3 202+7
1962.5 398+ 6 352+9 293 +7 226+5 258 £32
1963.5 812+ 18 707 £5 552+10 339+8 549 +£ 101
1964.5 933+9 804 £ 8 681+9 521+12 699 + 83
1965.5 781 £ 10 738+9 705+ 6 626+ 10 687 +29
1966.5 697 +9 6716 650 £ 8 6254 635+ 12
1967.5 628 £9 620+ 3 605+9 597+3 603+ 6
1968.5 572+ 10 564 + 14 555+7 562+3 562+3
1969.5 547 £8 556+3 5237 534+4 543 £7

aWeights for calculation of the global average for a particular year are uncertainties associated with zonal '4C values
and zonal surface areas. The percentages of zonal surface areas estimated for NH zones 1, 2, and 3, and the SH zone
are 17, 46, 37, and 100%, respectively.

bData were estimated by linear interpolation of the Southern Hemisphere average summer values shown in Table 3.

For the period 1970 onwards, the global mean values were constructed from 2 hemispheric data sets:
the Northern Hemispheric means presented in Table 5b, and the estimated Southern Hemispheric
winter values. The compiled data of global atmospheric 4C for 1970 onwards are shown in
Table 6b. A summary of global and hemispheric mean values of atmospheric A4C for the summer
for AD 1955-2001 is presented in Table 7 and illustrated in Figure 9. Atmospheric 4C records for
Vermunt and Schauinsland (central Europe; Levin et al. 1994) and Wellington (New Zealand,
Manning and Melhuish 1994) are also plotted in Figure 9 for comparison. These records are usually
used to represent atmospheric '“C for the Northern and Southern Hemispheres, respectively.
Because the gradient of bomb 14C was not large for the Southern Hemisphere, there is a good agree-
ment between the Wellington record and the compiled summer '“C curve for the Southern Hemi-
sphere. Meanwhile, there is a large difference between the Vermunt record and the compiled sum-
mer “C values for the Northern Hemisphere for the bomb peak, the period which saw a large 4C
gradient within the Northern Hemisphere. This indicates that Vermunt, belonging to NH zone 1, and
its 14C values may represent this zone (see Figure 4), but may not be an appropriate representation
of the whole Northern Hemisphere, at least for the bomb peak period AD 1963-1966.
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Table 6b Global average A“C (%o) for the period from 1970 onwards.

SH SH
Year winter  Global Year winter Global
AD NH data? average | AD NH data? average

1970.5 534+8 512+4  517+10 | 1986.5 189<+3 197+2 194+4
1971.5 518+10 494+3 496+7 1987.5 187=+3 188+3 187 +2
19725 4647 475+4 472+4 1988.5 172+2 178+ 3 175+3
19735 430+9  438+5 436+4 1989.5 162+2 168+3 164 +3
19745 419+6  405+3 408=+5 1990.5 149+3 160+ 4 154+5
19755 387+4 383+2 383+1 19915 138+2 154+3 145+ 8
1976.5 349=+3 353+2 352+2 19925 136=+1 144+ 4 137+2
19775 333+2 336+2 335+2 1993.5 125+2 130+ 5 126 +2
1978.5 326=+5 323+7 325+4 19945 119+1 121 +£2 119+ 1
1979.5 295+4  302+7 297+3 19955 113+2 118+ 1 117+£2
1980.5 270+2  281+5 272+4 1996.5 104+2 11+1 109+3
1981.5 259+4 266+6 261+3 1997.5 100 + 8P 103 +£2 103 +£2
19825 240+2 247+4 24243 1998.5 96+ 14> 97+2 97+£2
1983.5 228=+5 230+4 229+3 1999.5 91 +£20 90+3 90+3
19845 210<+3 220+£5 213+5 2000.5 — 84+4 84 +4
1985.5 204+2 209+3 206+2

aData were estimated by linear interpolation of the Southern Hemisphere average summer values reported in Table 3.
bEstimated value from adjacent data by linear interpolation.

Table 7 Summary of global and hemispheric average A'*C (%o) for 1955-2001.

Year AD SH average Year AD NH average Global average
1955.0 -16+7 1955.5 15+6 117
1956.0 -18+4 1956.5 206 5+£5
1957.0 19+£3 1957.5 45+ 15 367
1958.0 45+ 7 1958.5 148 £ 16 103 +£23
1959.0 101 +4 1959.5 239+ 16 151 £18
1960.0 182+3 1960.5 222+9 195+8
1961.0 196 £2 1961.5 226+3 202+7
1962.0 198 £3 1962.5 33730 258 £32
1963.0 254+ 6 1963.5 686 =41 549 £ 101
1964.0 424 £ 10 1964.5 785 + 62 699 + 83
1965.0 617+ 15 1965.5 723 + 17 687 +£29
1966.0 635+4 1966.5 668 + 10 63512
1967.0 614+4 1967.5 618+3 603+ 6
1968.0 581+2 1968.5 559+6 562+3
1969.0 544 £ 3 1969.5 551+8 543 £7
1970.0 524+5 1970.5 534+38 517+ 10
1971.0 500+ 4 1971.5 518+ 10 496 +7
1972.0 487 +3 1972.5 464 +7 472 +4
1973.0 462+ 5 1973.5 430+ 9 436+ 4
1974.0 413+5 1974.5 419+ 6 408 £ 5
1975.0 398 £2 1975.5 387+4 3831
1976.0 368 +2 1976.5 349 +3 352+2
1977.0 338 +2 1977.5 333+2 335+2
1978.0 335+3 1978.5 3265 325+4
1979.0 312+10 1979.5 295+4 297 +3
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Table 7 Summary of global and hemispheric average A'*C (%o) for 1955-2001. (Continued)

Year AD SH average Year AD NH average Global average
1980.0 292+4 1980.5 270 £2 272+4
1981.0 271+7 1981.5 259+4 26143
1982.0 260+ 5 1982.5 240 +£2 242 +3
1983.0 23442 1983.5 228+5 22943
1984.0 226+5 1984.5 210+ 3 213+5
1985.0 214+4 1985.5 204 £2 206 +2
1986.0 204 £2 1986.5 189 +3 194+ 4
1987.0 19142 1987.5 187 +3 187 +2
1988.0 184+3 1988.5 172 +2 175+£3
1989.0 172+£3 1989.5 162 +2 164 +3
1990.0 163 £4 1990.5 149+3 154+5
1991.0 157+4 1991.5 138 £2 145+38
1992.0 152£2 1992.5 136 £ 1 137£2
1993.0 137+7 1993.5 125+2 126 +£2
1994.0 123 +3 1994.5 119+1 119+1
1995.0 120+ 1 1995.5 113+2 117+2
1996.0 116+ 1 1996.5 104 +£2 109 +3
1997.0 107 +1 1997.5 100 + 82 103 £2
1998.0 100 + 22 1998.5 96 + 142 97+2
1999.0 94 £ 32 1999.5 91+20 90+3
2000.0 87 + 32 2000.5 — 84+4
2001.0 81+4

aEstimated value from adjacent data by linear interpolation.
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Figure 9 Compiled summer hemispheric and global *C curves versus atmospheric '“C records for Vermunt and
Schauinsland (central Europe; Levin et al. 1994) and Wellington (New Zealand; Manning and Melhuish 1994). The
compiled data sets are presented in Tables Sa—b, 6a-b, and 7.
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COMPILED TROPOSPHERIC 4C DATA SETS FOR AGE CALIBRATION PURPOSES

The zonal summer “C data sets, described in the last section, represent 4C levels in tree rings and
other short-lived plant materials (leaves, grains, seeds, etc.), which in some cases grow in a single
summer season. However, in general these data sets do not well reflect '“C levels in woody materials
and plant products such as grass, paper, textiles, etc. For example, most trees in the tropics grow all
year round. In addition, some datable animal products (bones, teeth, skins, and hairs) do not receive
new !“C on a seasonal basis. Therefore, the zonal summer !4C data sets may not be suitable for age
calibration purposes.

Four different data sets for the troposphere (NH zones 1, 2, and 3, and SH) were compiled for age
calibration. The data sets were compiled mainly from monthly mean values derived from atmo-
spheric “C records. These data sets were extended to the beginning of the nuclear age using !“C data
from tree rings and to very recent years using a '“C datum derived from morphine. The '“C data
from tree rings and morphine were yearly data showing the value in the middle of the growing
period (middle of the year for the Northern Hemisphere and beginning of the year for the Southern
Hemisphere). The method of calculation of the monthly mean values and their associated uncertain-
ties was the same as that described in the last section.

For the Southern Hemisphere, the “C data sets employed for the construction of monthly atmo-
spheric 1#C for the hemisphere were atmospheric records for Funafuti, Suva, Campbell Island, and
Scott Base (Manning et al. 1990); Fianarantsoa (Nydal and Lovseth 1996); Pretoria (Vogel and
Marais 1971); Wellington (Manning and Melhuish 1994); and Cape Grim (Levin et al. 1996, 1999).
These monthly data, from February 1955 to December 1996, were extended to the beginning of
2001 by the *C datum derived from very recent Tasmanian morphine (Zoppi et al. 2004).

For 1955-1969, monthly atmospheric 4C data for NH zone 1 were constructed from atmospheric
records from Fruholmen (Nydal and Lovseth 1996), Vermunt (Levin et al. 1994), and China Lake
(36°N, 118°W; Berger et al. 1965; Berger and Libby 1966, 1967, 1968, 1969). The monthly data,
from February 1959 to December 1969, were extended to mid-1955 using tree-ring data from Russia
(Kolesnikov et al. 1970), Kiel (Willkomn and Erlenkeuser 1968), Hungary (Hertelendi and Csongor
1978), and Bear Mountain, New York (Cain and Suess 1976).

For NH zone 2, 14C data sets used for construction of monthly data (March 1963—-December 1969)
were atmospheric records from Santiago de Compostela, Israel, Izafia, Mas Palomas, and Dakar
(Nydal and Lovseth 1996). Tree-ring #C data for Gifu (Nakamura et al. 1987a,b), Agematsu
(Muraki et al. 1998), and Mts Chiak and Kyeryong (Park et al. 2002) were used to extended the
monthly data back to mid-1955.

For NH zone 3, the 4C data set used for construction of monthly data (May 1963—July 1969) was
the atmospheric record from Debre Zeit (Nydal and Lovseth 1996). Tree-ring 4C data for India
(Murphy et al. 1997), Saigon (Kikata et al. 1992, 1993), and Doi Inthanon (Hua et al. 2000) were
used to extend the monthly data back to mid-1955.

For 1970 onwards, monthly atmospheric !#C data for the Northern Hemisphere (January 1970-Jan-
uary 1997) were constructed from atmospheric records from Fruholmen, Canary Islands (Nydal and
Lovseth 1996), Vermunt and Schauinsland (Levin et al. 1994), and China Lake (Berger et al. 1987).
The monthly data were extended to mid-1999 using tree-ring data from Mts Chiak and Kyeryong
(Park et al. 2002).
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Compared to individual '*C atmospheric records, these compiled data sets have at least 2 advantages
in terms of age calibration: (1) an even distribution of data in the compiled data sets, which are
mostly based on monthly data, and (2) longer data sets, which almost span the complete bomb
period. For example, the compiled data set for the Southern Hemisphere is from 1955-2001,
whereas individual records for the Southern Hemisphere cover shorter periods of time [Funafuti
(9°S) for 1966—-1972, Suva (18°S) for 1958-1975, Fianarantsoa (21°S) for 1964—1978, Pretoria
(26°S) for 1955-1994, Wellington (41°S) for 1955-1993, Campbell Island (53°S) for 1970-1977, or
Scott Base (78°S) for 1961-1976] with an uneven distribution of data points (Fianarantsoa, 2
samples per month for 1964—1966, and less than 1 sample per month for 1967-1978; Pretoria, 8-10
samples per year for 1960—March 1965, and no sample between April 1965—June 1966; Scott Base,
only data for the summer season are available).

The 4 compiled data sets almost cover the past 50 yr of atmospheric “C (1955.5-1999.5 for the
Northern Hemisphere and 1955-2001 for the Southern Hemisphere). They are presented in Tables
8a—d (www.radiocarbon.org/IntCal04), as both A*C and 8'3C-corrected F!4C (fraction modern;
Reimer et al. 2004a) values. These compiled data sets can be used to extend the IntCal04 calibration
curve (Reimer et al. 2004b) to cover the bomb period. Using one of the calibration data sets together
with the calibration program CaliBomb of Reimer et al. (2004a), one can easily determine the cali-
brated age for a particular sample having an F'“C value in the bomb period. The appropriate
extended monthly data set, which should be chosen for age calibration, will depend on the geo-
graphic location of the “C sample (see Figure 3). These (compiled) extended monthly '“C data sets
in F14C are shown in Figure 10.

P00 Y D L B L L L L L L L
— MNHzone1
------- NHzone 2
| MHzone 3 ||
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1.9 b
:Q 18T ]
S
13T b
:- e
11F :‘ 1‘Hﬂ“‘a'V"‘-—._,--.. -
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19480 1955 1960 1965 1970 19745 1980 1985 1990 1995 2000

Year AD

Figure 10 Compiled atmospheric '“C curves for 4 different zones (NH zones 1-3, and the SH zone) for age calibration. The
compiled data sets are presented in Tables 8a—d (www.radiocarbon.org/IntCal04).
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CONCLUSION

A comprehensive compilation of bomb '“C data for the troposphere from selected atmospheric
records, tree rings, and recent organic material is presented. The compilation consists of zonal,
hemispheric, and global '“C data sets for the summer, and zonal atmospheric '“C curves at (mostly)
monthly resolution. The former can be employed for calibrating and comparing carbon cycle mod-
els, while the latter can be used for age calibration of recent organic matter dated by the '4C method.
These compiled '“C data sets are available on the Radiocarbon Web site at http://www.radiocar-
bon.org/IntCal04 and the ANSTO Web site at http://www.ansto.gov.au/ansto/environment1/ams/.

We find that the distribution of bomb '“C reflects the major zones of atmospheric circulation and
their boundaries in a logical and understandable way. This should provide a valuable key to the
interpretation of changing regional and interhemispheric '“C offsets in the past.
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