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Abstract

Cryo-electron microscopy (cryo-EM) is an imaging technique that allows the visualization of proteins and macro-
molecular complexes at near-atomic resolution. The low electron doses used to prevent radiation damage to the
biological samples result in images where the power of noise is 100 times stronger than that of the signal. Accurate
identification of proteins from these low signal-to-noise ratio (SNR) images is a critical task, as the detected positions
serve as inputs for the downstream 3D structure determination process. Current methods either fail to identify all true
positives or result in many false positives, especially when analyzing images from smaller-sized proteins that exhibit
extremely low contrast, or require manual labeling that can take days to complete. Acknowledging the fact that
accurate protein identification is dependent upon the visual interpretability of micrographs, we propose a framework
that can perform denoising and detection in a joint manner and enable particle localization under extremely low SNR
conditions using self-supervised denoising and particle identification from sparsely annotated data. We validate our
approach on three challenging single-particle cryo-EM datasets and projection images from one cryo-electron
tomography dataset with extremely low SNR, showing that it outperforms existing state-of-the-art methods used
for cryo-EM image analysis by a significant margin. We also evaluate the performance of our algorithm under
decreasing SNR conditions and show that our method is more robust to noise than competing methods.

Impact Statement
This research paper describes a particle picking and micrograph denoising method for cryo-electron microscopy
(cryo-EM) images designed to work under challenging signal-to-noise ratio (SNR) conditions. Based on the idea
ofmultitask learning, we propose to use a deep-learning framework that enables accurate particle localization and
micrograph denoising simultaneously. We validate the proposed approach on multiple single-particle cryo-EM
datasets and cryo-electron tomography tilted images, showing substantial improvements in SNR and particle
picking accuracy. This work is addressed to people working at the interface between biological imaging and
computer vision. Advances in denosising and particle identification are important to accelerate and automate the
processing of challenging cryo-EM datasets of biomedical significance, such as low-molecular-weight com-
plexes or targets imaged in their native state.

1. Introduction

Cryo-electron microscopy (EM) combined with single-particle analysis (SPA) is a popular technique
that enables visualization of proteins and macromolecular complexes at near-atomic resolution.(1) Data
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collected using this technique have an extremely low signal-to-noise ratio (SNR), as electron dosage
has to be kept low to prevent radiation damage to the biological sample.(2) Therefore, large amounts of
data have to be acquired in order to obtain high-resolution 3D reconstructions. A typical SPA dataset
usually contains thousands of micrographs and each micrograph contains a few hundred copies of the
protein of interest. To obtain a single high-resolution structure, hundreds of thousands of 2D projections
of particles with random orientations need to be detected within micrographs in a process commonly
referred to as particle picking. Particle projections are then extracted, aligned, and back-projected to
obtain a 3D reconstruction (Figure 1). The resolution of the reconstructed 3D structure increases log-
linearly with the number of good particles used, making accurate particle picking a critical task for the
downstream processing tasks. However, particle detection can be quite challenging due to the low SNR
nature of cryo-EM images caused by the limited electron doses used during acquisition to prevent
radiation damage. Currently, on datasets of larger-sized proteins with relatively high SNR, particle
picking can be performed automatically using either size-based, template matching, or more advanced
deep-learning-based algorithms, such as semi-supervised learning-based Topaz(3) and fully supervised
learning-based crYOLO.(4) On datasets of smaller-sized proteins with extremely low SNR, however,
existing automatic picking algorithms are susceptible to under/over picking.(5) While manual picking
can be performed as a last resort, it is laborious and time consuming. As a result, the particle picking of
small-sized proteins from images with very low SNR remains a significant bottleneck.

Recent efforts to tackle particle picking under extremely low SNR mainly focus on image quality
enhancement through denoising. For example, simple denoising techniques such as low-pass filtering
have been widely adopted in the field. Despite its simplicity, frequency cutoff-based approaches have one
major drawback: the risk of over-smoothness, which can remove important high-frequency information
and make particles indistinguishable from the background. Recent advancements have seen the emer-
gence of neural network-based methodologies that leverage the Noise2Noise (N2N) principle(4,6–8) or
noise distribution modeling using generative models on synthetic data.(9) Methods utilizing synthetic
data, however, often yield suboptimal results when applied to real datasets due to their inability to fully
capture the true noise distribution. Consequently, N2N-based techniques have gained prevalence since
they do not depend on synthetic data. Nonetheless, these methods typically require complex training
protocols and the need for paired noisy images, which are usually generated by splitting data movies into
even and odd frames (and aggregating them separately), inherently compromising their SNR. This
limitation is particularly significant for small-sized proteins where the SNR is already low in the average
of all movie frames, and using half the data further diminishes their SNR and consequently the efficacy of
N2N denoising. Recent work in natural(10) and biomedical imaging(11) has demonstrated that high-quality

Figure 1. Single-particle cryo-electron microscopy (cryo-EM) structure determination pipeline. Pro-
teins are purified, plunge frozen, and subjected to transmission electron microscopy (TEM) imaging.
Movie frames of the sample under cryogenic conditions are collected using an electron microscope.
Frame alignment and averaging, and contrast transfer function (CTF) estimation are performed as

preprocessing steps. For refinement, particles first need to be identified and extracted from micrographs.
2D classification and 3D alignment are performed on extracted particle stacks. With estimated relative
orientations, these 2D particles get back-projected into 3D space and a high-resolution reconstruction is

obtained.
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denoised images can substantially enhance downstream task performance, such as object detection and
segmentation. Inspired by these findings, we hypothesize that particle picking, especially under the
challenging conditions of low SNR, can be significantly improved if the input micrographs are denoised
effectively, ensuring that critical particle features are preserved.

Therefore, to overcome lowSNR and expensive data labeling challenges, we propose a framework that
enables joint image denoising and particle identification. The information learned from these tasks is
complementary and therefore by enabling information sharing, we are able to improve the performance of
both tasks. To enable image denoising without ground-truth clean images or paired noisy images, and
particle picking with sparsely annotated data, our framework incorporates both self-supervised Bayesian
denoising(12) and positive-unlabeled (PU) learning.(3,13,14) By leveraging the prior distribution of the
underlying clean signal, our model learns to denoise without being trained using paired noisy images. The
joint learning framework is able to improve the visibility of particles on low SNR micrographs and
identify more particles under challenging scenarios while maintaining a low false positive (FP) rate.
Training of the framework eliminates the need for splitting movie stacks into two separate sub-stacks for
paired denoising training and requires only a few partially labeled micrographs, thus greatly reducing
laborious data labeling.

The proposed framework can be applied both to cryo-EMmicrographs and cryo-electron tomography
(CET) tilt series.(15,16) To validate the performance of our approach, we performed experiments on three
cryo-EM datasets and one CET dataset. The cryo-EM datasets correspond to one high-molecular-weight
target (70S ribosome, 2.5MDa) and two low-molecular-weight proteins (trehalose-6-phosphate synthase
from fungal pathogen Cryptococcus neoformans [CnTPS, 280 kDa]) and a sample of aldolase (157 kDa)
from EMPIAR-10215.

On the ribosome dataset, we evaluated the performance of our method under different SNR levels.
Since micrographs obtained by averaging all movie frames have relatively high SNR, we are able to treat
these frame averages as ground truth and use frame averages from subsets of frames to mimic decreasing
SNR levels. Using these images, we show that our model is more robust to noise as SNR conditions
worsen, with the denoised outputs exhibiting a 10% improvement in peak SNR (PSNR) and the detection
algorithm producing 30% more particles.

For the CnTPS dataset, we labeled a total of 140 particles and were able to produce a set of particles that
were missed by other algorithms, which led to a resolution of 3.15 Å after 3D reconstruction.(17) On
EMPIAR-10215, we used a total of 180 labeled particles for training and identified 8%more particles than
other approaches, which improved the final 3D resolution from2.7 to 2.6Å.We also show that compared to
performing denoising and detection sequentially, joint learning is able to achieve better results in both tasks.

On the CET dataset, we show a significant improvement in protein visualization in both raw tilt series
and reconstructed tomograms.We validate the detection results by identifying particles from 2D tilt series
images, achieving a 50% increase in precision and recall scores. For specific tasks that require either
denoising or detection alone, the proposed framework also has a mode that can perform these two tasks
separately.

To summarize, the main contributions of this paper are as follows:

1. We propose a joint learning framework that allows simultaneousmicrograph denoising and particle
identification. By leveraging self-supervised Bayesian denoising and PU learning, training of our
model does not require ground-truth clean images or paired noisy images, and does not need large
amounts of annotated data.

2. Through extensive experimental validation, we show that by performing two tasks simultaneously,
we are able to achieve better denoising performance (i.e., increased particle visibility without over-
smoothing) and identify particles even under extremely low SNR conditions, thus outperforming
existing methods.

3. This method can be applied to single-particle cryo-EM micrographs and CET tilt series for both
denoising and detection. Particle coordinates obtained from 2D tilt series can be converted to 3D
tomogram coordinates through backprojection and used for sub-tomogram averaging.
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2. Related work

Recent developments in deep learning have led to breakthrough performance in tasks such as image
enhancement, object detection and segmentation. In this section, we introduce relevant recent work,
including denoising without clean images, semi-supervised object detection, and multitask learning
(MTL).

2.1. Denoising without clean images

Unlike denoising algorithms based on supervised learning which are trained using noisy-clean image
pairs, blind image denoising is usually achieved by leveraging internal data statistics. Traditional methods
based on internal statistics include nonlocal means, which predicts clean pixel values based on similar
local neighborhoods,(18) and block-matching 3D (BM3D), which similarly relies on data repetitive-
ness.(19) More recently, denoising methods based on convolutional neural networks have been proposed,
including deep image prior which trains a neural network to learn the prior distribution of data from pure
noise,(20) N2N that learns to denoise using pairs of independently corrupted training images that share the
same underlying signal,(6) and Noise2Void, which assumes the independence of noise corruption for each
pixel and trains the denoising network only using the single input noisy image by masking the central
pixel.(21) Built on Noise2Void, a more generalized formulation was proposed in Reference (22) and was
further improved by incorporating Bayesian statistics in Reference (12). In addition, a number of related
image denoising methods based on deep learning have been proposed.(23–27) For the case of cryo-EM
images, implementations of N2N that also provide generalized pre-trained models for image denoising
have been successfully applied.(7,28)

2.2. Semi-supervised object detection and its application in cryo-EM

Built upon supervised object detection frameworks,(29–32) semi-supervised methods that incorporate the
use of unlabeled data through pseudo-labeling and consistency regularization, along with supervised
learning of labeled data, have been proposed.(33–35) In Reference (36), data augmentation is applied and
the model is trained through maximizing consistency between detection and classification outputs of
labeled/unlabeled images and their augmented pairs. Sohn et al.(37) proposed a semi-supervised frame-
work that use labeled data to first train a teacher model and then update the model by maximizing the
consistency between output pseudo-labels of unlabeled data and strongly augmented pairs. To alleviate
the problem of confirmation bias and further improve the quality of pseudo annotations, Feng Zhou
et al.(38) proposed an adoption of instant teacher that uses instant pseudo labeling with extended weak-
strong data augmentations for teaching during each training iteration, instead of training in a sequential
manner. In the cryo-EM field, several deep learning-based object detection methods have been used
successfully for particle detection.(3,4,8,39,40) crYOLO(4) is a fully supervised picking method trained with
a variety of annotated data built upon the popular YOLO model. Topaz(3) is a semi-supervised particle
picking method based on PU learning that aims to minimize the difference between empirical data
distribution and its prior. While generalized pre-trained models are available both in crYOLO and Topaz,
these tend to underperform when applied to lower SNR datasets where the data distribution deviates from
the distribution present in the training set.

2.3. MTL and object detection

While neural networks have shown impressive results for various tasks such as the aforementioned
denoising and detection, these tasks are solved in isolation, that is, a different network is trained for each
task. Recently, MTL which aims to train a single network to perform different tasks simultaneously has
shown promising results.(41–47) MTL leverages complementary information shared between related tasks
to improve model generalization and the performance of the original task. Associated tasks can also act as
regularizers for one another. Earlier applications ofMTL in object detection includeMask-RCNN, which
extends the Faster R-CNN(48) by adding a branch for predicting segmentation masks for each object
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detected in an image. More recently, object detection tasks are often combined with other tasks such as
estimating distance between detected objects,(49) using segmentation masks as attention,(50) using
attention mechanisms to dynamically weigh the contributions of different tasks during training and
inference,(51) and performing denoising and detection through a cascaded network in a supervised
manner.(52) Inspired by these MTL applications, Buchholz et al. combined denoising and supervised
segmentation and applied the joint model to fluorescence microscopy images.(53) Most of these strategies
operate on images with a relatively high SNR and require full supervision on at least one task. In earlier
versions of our work,(54,55) there have also been advances in joint learning techniques applied to lower
SNR cryo-EM images that require less supervision. However, these methods have limitations, as they
either rely heavily on pixel intensity assumptions or perform poorly when applied to images of crowded
environments. Building on the success of these methods, we seek to extend their applicability to lower
SNR datasets such as those obtained from SPA and CET modalities of cryo-EM.

3. Method

As shown in Figure 2, the proposed framework is composed of three main components: (i) a U-Net-based
feature extraction backbone; (ii) a denoising head that outputs the clean image and a detection head that
outputs the probability of a pixel being at the center of a particle; and (iii) an auxiliary noise estimation
network that estimates the probability distribution of the noise. Non-max suppression is applied to the
detection head output to get the final particle coordinates. If only denoising or detection is needed, the

Figure 2.Main workflow of our proposed framework. (a) Training of the network utilizes image patches
cropped from the partially labeled input micrographs. Image patches and their augmented pairs first go
through a feature extraction backbone. Outputs of the backbone go into both the denoising head and the
detection head (black). The denoising head outputs the estimated statistics of the underlying clean signal
and the detection branch outputs the probability of a pixel being at the center of a particle. Consistency

regularization is applied to outputs from the original input and the augmented pairs. (b) For the
evaluation workflow, noisy images are fed into the network and clean images and their corresponding

detected particles are generated.
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other head can be easily turned off so that the framework performs only a single task. During the training
stage, cropped patches of noisy micrographs are fed into the network. During the inference stage, the
network takes in the whole micrograph and outputs a denoised image and a heatmap used for particle
localization.

3.1. Denoiser training using a single noisy micrograph

The denoiser is trained based upon a blindspot convolutional neural network proposed in Reference (12)
that learns the underlying clean signal by maximizing the posterior probability of the observed noisy
signal. Denote the underlying clean pixel value as x and the observed noisy pixel value as y. As pixels are
not independent, we assume that x not only depends on y, but also its surrounding context, which we
denote asΩy. Specifically, we model the dependence of x and its surrounding contextΩy as p xjΩy

� �
. In a

convolutional neural network setting,Ωy can be viewed as the receptive field surrounding the center pixel
x. If we assume noise is independent between pixels and independent of the context, we can model the
noise distribution p yjxð Þ explicitly. With this, we can connect the observed noisy data to the unobserved
clean signal using the noise model p yjxð Þ and the signal model p xjΩy

� �
through marginalization:

p yjΩy
� �¼ Z

p yjxð Þp xjΩy
� �

dx: (1)

Specifically, we assume the noise model p yjxð Þ to be Gaussian or Poisson (as commonly assumed in cryo-
EM applications). We model the prior p xjΩy

� �
as Gaussian N μx,σxð Þ as well, so that the marginal

likelihood p yjΩy

� �
can be computed in closed form. Note that since all micrographs are grayscale images,

the prior is a univariate Gaussian. Finally, we are able to infer μx and σx bymaximizing the data likelihood
under Equation 1. Once we approximate the prior statistics, the final denoised image incorporates the
observed noisy signal information through Bayesian reasoning. The posterior p xjy,Ωy

� �
is proportional to

the product of the noise model p yjxð Þ and the prior p xjΩy

� �
:

p xjy,Ωy
� �

∝ p yjxð Þp xjΩy
� �

: (2)

With this, the denoised image can be obtained by calculating the maximum a posteriori estimate.
As mentioned above, our proposed model supports both Gaussian noise and Poisson noise assump-

tions. Next, we discuss how our model adapts to these noise models.

3.1.1. Gaussian noise model
Since we model the signal corruption as zero-mean Gaussian noise,(56) the noise model p yjxð Þ can be

expressed as a normal distribution N μy,σy
� �

where:

μy ¼ μx and σy ¼ σx + σ, (3)

with σ being the standard deviation of the noise which is learned through an auxiliary noise estimator.
For simplicity, we decided to use the same backbone architecture (UNet) for this purpose. However, a
simpler architecture with fewer parameters such as a multilayer feed-forward convolutional neural
network can also be used. Next, we minimize the negative log-likelihood of the observed training data:

ℒdenoise ¼ 1
2

y�μy
� �2

σ�2
h �

�+ logσy +C, (4)

where C is a constant that can be ignored. Once the prior statistics are learned, we obtain the denoised
image using the posterior mean:

Ex p xjy,Ωy
� �� �¼ σ�2

x + σ�2
� ��1

σ�2
x μx + σ

�2y
� �

: (5)

3.1.2. Poisson noise model
While in most cryo-EM applications, the noise is assumed to be Gaussian, a more accurate assumption is
to use a Poisson distribution parameterized by the electron count λ . Therefore, we model the noise
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distribution as y¼ Poisson λxð Þ=λ and approximate Poisson noise as signal-dependent Gaussian noise.(57)

In this case, the resulting noise standard deviation is σ¼ ffiffiffiffiffiffiffiffiffiffiffi
x=λð Þp

and the noise model becomes:

μy ¼ μx and σy ¼ σx + λ
�1μx: (6)

We substituted the above model into the loss function in Equation 4 and the posterior mean in Equation 5,
where σ becomes λ�1μx and λ is learned using the auxiliary noise estimator.

This approach allows us to train the network without the need of paired noisy images, which reduces
the time needed to divide the aligned cryo-EM movie stacks into two parts. It also reduces potential
cumulative errors originating from frame alignment as one of the principles of N2N is that the underlying
clean signal has to be the same for both noisy inputs. This condition is hard to satisfy in practice due to the
low SNR of cryo-EM frames, which results in inaccurate image alignments.

3.2. Detector training using a partially annotated micrograph

The particle detector produces a center point heatmap Ŷ ∈ 0,1½ �W ×H , where W and H are the width and
height for the input micrograph.We extend themethod used by Zhou et al.(58) to generate the ground-truth

heatmap Y ∈ �1,1½ �W ×H using the partially annotated micrograph. For each annotated center coordinate

position p¼ x,yð Þ, we apply a Gaussian kernel Kxy ¼ exp � x�pxð Þ2 + y�pyð Þ2
2σ2k

	 

, where σk is determined by

the particle size based on Reference (59). The remaining unlabeled coordinates on Y have a value of�1.
With such formulation, the detector learns to classify each pixel vi,j at position i, jð Þ to the corresponding
ŷi,j ∈ 0,1½ �. Denote p vð Þ as the underlying data distribution from which vi,j is sampled from. Denote g :

ℝd !ℝ as an arbitrary classifier that can be parameterized by a neural network, and l g vð Þ¼ ŷ,yð Þ as the
loss incurred when the model outputs ŷ when the ground truth is y. If all the pixels are labeled, this is
essentially a binary classification problem that can be optimized using a standard positive–negative
learning approach with the following risk minimization function:

~Rpn ¼ πp ~R
+
p gð Þ+ 1�πp

� �
~R
�
n gð Þ, (7)

where ~R
+
p gð Þ is Ev�pp vð Þ l g vpð Þ, y¼ 1ð Þ½ � and can be estimated as 1=np

Pnp
i¼1l ŷip,1

� �
, and ~R

�
n gð Þ is

Ev�pn vð Þ l g vnð Þ,y¼ 0ð Þ½ � which can be estimated as 1=nn
Pnn

i¼1l ŷin,0
� �

, with np and nn being the number of
positive and negative pixels, respectively. In the partially annotated case, only a few positive pixels are labeled
(the remainder of the data is unlabeled), which allows us to reformulate the problem into the PU setting. The
positive labeled pixels are sampled from pp vjy¼ 1ð Þ and the remaining unlabeled pixels are sampled from
p vð Þ . The classifier g should learn to classify labeled positives, and the empirical distribution of output

probabilities of unlabeled pixels should follow the prior distribution p vð Þ, that is, argming KL qg vð Þ∥p vð Þ
h i

.

We can therefore rewrite the risk minimization expression in the PU setting as follows:

Rpu ¼ ~R
+
p gð Þ+ λKL qg vð Þ∥p vð Þ� �

: (8)

As suggested in Reference (3), we model p vð Þ as a binomial distribution parameterized by πp, which
represents the probability of observing a particle. For a mini-batch that contains K samples (pixels):

p vð Þ¼ K

n

	 

πnp 1�πp
� �K�n

, (9)

where n is the number of positive samples. The empirical distribution of the number of positives in the
unlabeled samples from the mini-batch obtained from the classifier g is:

qg vð Þ¼
X

y∈ Y nð Þ

YK
i¼1

g vi,j
� �yi 1�g vi,j

� �� �1�yi , (10)
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with y being the indicator vector with K elements, where yi ¼ 1 for positive data and yi ¼ 0 for negatives,
and Y nð Þ denotes the collection of all such vectors with n positive data points in total. By substituting
qg vð Þ and p vð Þ using Equations 9 and 10, we can therefore rewrite Equation 8 as follows:

Rpu ¼ ~R
+
p gð Þ+ λ

XN
k¼1

qg vð Þ logp vð Þ: (11)

In practice, since the ground-truth heatmap is splatted with Gaussian kernels, the labels are not strictly
binary. Therefore, we adopt a pixel-wise logistic regression with focal loss for l g vð Þ,y> 0ð Þ. Specifically,
we have:

~R
+
p gð Þ¼

1� ŷij
� �α

log ŷij
� �

if yij ¼ 1

1� yij
� �β

ŷij
� �α

log 1� ŷij
� �

if 0< yij < 1,

(
(12)

where α and β are the focal loss parameters. We use α¼ 2, β¼ 4 in our experiments.

3.3. Overall training objective

In addition to self-supervised denoising and pixel-level PU learning, we imposed consistency regular-
ization to further improve detection performance. For each noisy input I , we randomly apply horizontal
and vertical flipping, and 90,180,and270 degree rotations to generate augmented pairs A Ið Þ, where A �ð Þ
denotes the applied transformation. The augmented images are fed into the same network and the network
outputs the denoised statistics and detection heatmap. We assume equivariance in the heatmap, that is,

Ŷ A Ið Þ ¼A Ŷ I

� �
. Therefore, to impose consistency regularization, we define the consistency loss as follows:

ℒcons ¼ ŶA Ið Þ, A ŶI
� ��� ��2

2, (13)

where �k k22 denotes the L2 norm error. The final training objective for the joint framework is thus:

ℒ¼ θℒdenoise + 1�θð Þ~Rpu + γℒcons, (14)

where θ is the weight for each task and γ is the weight used for consistency regularization.

3.4. Implementation details

3.4.1. Model architecture
We adopt a U-Net-based architecture for the feature extraction backbone that uses a shifted convolutional
layer, as proposed in Reference (12) (instead of a normal convolutional layer). The shifted convolutional
layer creates a restrictive receptive field that does not include the center pixel. The model contains three
encoding layers (downsampling) and three decoding layers (upsampling) with skip connections. For
smaller-sized proteins, it is beneficial to use a shallow architecture so that finer details can be learned. The
noise estimation network is implemented using the same U-Net architecture, but using standard convo-
lutional layers.

3.4.2. Training of the network
During training, patches of size 64 × 64 that contain particles are used as input to the network. Random
horizontal and vertical flipping are applied as data augmentation. We use a batch size of 16. In order to
prevent training instability and over-fitting, we adopted two strategies: (i) learning rate warm up and
(ii) early stopping. We start learning with a zero learning rate and gradually increase the learning rate to
0:001 for the first 20% of training iterations. After reaching the initial rate, we adopted cosine decay
scheduler that progressively lowers the rate down until the end of training. Early stopping is used when
there is less than 0:5% of change in the overall loss. We experimentally found out that θ¼ 0:75, γ¼ 0:1,
and λ¼ 2work well and we adopt the ADAM optimizer. Training with 200,000 iterations takes less than
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an hour, and usually the model converges within 150,000 iterations. The model is trained on a single
NVIDIATesla V100 GPU with 32GB of RAM.

3.4.3. Inference of the network
Given a trained joint model, we perform image denoising and particle detection on full-size micrographs.
Given the trained model, inference takes less than a second on each micrograph. To obtain the final
particle coordinates, non-maximum suppression is applied. The radius of non-maximum suppression is
determined based on the half major-axis length of the particles.

4. Results

4.1. Description of datasets

We evaluate our methods on one cryo-EM dataset of K63 ribosomes (high-molecular weight), two
challenging low-molecular-weight cryo-EM datasets: trehalose-6-phosphate synthase from fungal patho-
gen C. neoformans (CnTPS) and aldolase from EMPIAR-10215, and one CET dataset of 70S ribosomes
from EMPIAR-10304.

4.1.1. K63 ribosomes
This dataset contains 1,000 movies with defocus values ranging from 0.8 to 3.0 μm. The pixel size is
1.08 Å. Each movie contains 60 frames. Full frame averages have relatively high SNR as ribosomes have
highmolecular weight. In order to simulate increasingly lower SNRconditions, such as those observed for
lowermolecular weight proteins and lower defocus datasets, we use partial averages calculated from 10%,
20%, and 60% of the total number of frames (6, 12, and 36 frames, respectively). We treat full frame
averages as “pseudo clean images” for the denoising task and particles identified using these averages as
pseudo ground truth. Movies are motion corrected using MotionCor2.(61) We used 16 micrographs for
training and the remaining ones for testing. Each micrograph is labeled with 20–40 particles. The total
training set is composed of 500 particles, which accounts to around 0:04%of the total number of particles
in the dataset. Micrographs are downsampled by a factor of 8 from 4096 × 4096 to 512 × 512 and no
exposure weighting was used.

4.1.2. Trehalose-6-phosphate synthase from fungal pathogen C. neoformans (CnTPS)
This dataset contains 3,177 movies with defocus values ranging from 0.5 to 2.5 μm, each of size
5760 × 4092 pixels. Movies were collected at a nominal magnification of 81,000 × using a pixel size
of 1.08 Å. Each movie contains 60 frames. As the dataset is of low-molecular weight and already has low
SNR, we used the full frame averages in this case. We followed the same motion correction and
downsampling procedure (4× binning) as in the K63 ribosome dataset. The entire training set is composed
of 140 labeled particles selected from 2 micrographs.

4.1.3. Rabbit muscle aldolase (EMPIAR-10215)
This dataset of rabbit muscle aldolase contains 1,052 movies with defocus values ranging from 1 to 2 μm,
each of size 7420 × 7676 pixels. Movies were collected in super-resolution mode using a pixel size of
0.416 Å. Similar to CnTPS, we used full frame averages for both denoising and detection tasks. We
followed the same motion correction and downsampling procedure (4× binning). The training set was
composed of 180 labeled particles selected from 2 micrographs.

4.1.4. 70S ribosomes (EMPIAR-10304)
This CET dataset consists of 12 tilt series from a sample of purified 70S ribosomes. Each tilt series is
composed of 41 projection images ranging from �60° to +60°. A single tilt image has a size of
4092 × 5760 pixels, with a pixel size of 2.1 Å. We downsampled all tilt images by a factor of 8 and
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performed both tasks on the binned images. The training set for detection is composed of 211 particles
selected from 3 images at zero degree tilt.

4.2. Joint training improves micrograph SNR and particle visibility

First, we assessed the ability of joint training to denoise images from all datasets and compare our method
against BM3D and Topaz denoise. For Topaz denoise (both for 2D micrographs and 3D tomograms), in
order to achieve optimal performance, we followed the guidelines in the tutorial (https://github.com/
tbepler/topaz) and trained dataset-specific models for each dataset. As model training requires pairs of
noisy images, we used the aligned stacks from MotionCor2(60) and divided the stack into even and odd
stacks based on the frame number. The frame averages are obtained from each stack and then fed into the
network for training. We used the same training sets for both denoising and detection. For the K63
ribosome dataset, we treat the full dose frame averages as ground-truth clean images and use PSNR values
to evaluate denoising performance. As full dosage micrographs can still be noisy, we apply a low-pass
filter to remove potential high-frequency noise. As shown in Table 1, the left half shows the mean and
standard deviation of PSNR values computed against full dosage frame averages and the right half shows
values calculated against low-pass filtered images. Since low-pass filtering can remove high-frequency
noise as well as information, we expect the actual PSNR value to lie in between the two reported values.
As SNR decreases, our joint learning model is able to significantly outperform other methods. Addition-
ally, joint learning with consistency regularization performs better than learning without consistency
across all SNR levels. Overall, neural network-based methods perform better than the traditional
denoising method BM3D, especially at lower SNR levels. In particular, we can confirm that at the lowest
SNR, our denoisingmethod based onReference (12) performsmuch better than Topaz denoise. It is worth
pointing out that inputs to Topaz denoise have even lower SNR because training of the network requires
splitting the noisy images into odd and even subsets of frame averages.

Our results also confirm that the performance of the N2N-based methods is limited by the input noise
levels.When input images have extremely lowSNR, the network is not able to fully distinguish real signal
from noise, thus decreasing the probability of learning the correct noise distribution from pairs of noise-
corrupted images. At lower SNR, our joint training method with consistency regularization also performs
better than the pure denoising method, further demonstrating that the information obtained from the
detection task can be used to improve the denoising task. It should be noted that pure denoising has better
performance than joint learning without consistency. This shows the importance of consistency regular-
ization: information shared between multiple tasks is beneficial if properly regularized. Otherwise, naive

Table 1. Denoising performance (PSNR) for averages obtained from increasing frame fractions
compared to the full exposure (with and without application of low-pass filtering). Highest PSNR

values for each column are indicated in boldface.

Compared against Full dose image Low-pass filtered

Method 60% dose 20% dose 10% dose 60% dose 20% dose 10% dose

BM3D 22:98 ± 2:5 19:98 ± 1:8 18:13 ± 2:3 25:10 ± 2:2 21:98 ± 1:8 18:85 ± 2:6
Topaz denoise 23:67 ± 2:4 20:78 ± 1:8 17:22 ± 1:6 25:89 ± 2:1 22:78 ± 1:7 19:57 ± 2:3
Topaz denoise

(pre-trained)
14:63 ± 1:7 16:01 ± 1:1 17:35 ± 2:1 22:96 ± 2:2 21:03 ± 1:9 18:93 ± 3:46

Ours denoising only 23:91 ± 1:8 20:04 ± 3:4 19:18 ± 3:7 24:83 ± 3:0 21:13 ± 4:2 19:33 ± 4:3
Joint learning without

consistency
24:14 ± 1:9 20:35 ± 3:4 19:01 ± 3:5 24:69 ± 2:9 20:85 ± 3:2 19:12 ± 4:2

Joint learning with
consistency

25:19 ± 1:7 21:97 ± 3:6 19:81 ± 3:7 25:43 ± 2:7 23:00 ± 4:1 21:65 ± 4:1
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information sharing can affect the performance negatively. In addition, we observed that using smaller
batch sizes can sometimes benefit the denoising task, whereas bigger sizes can improve the performance
of the detection task butworsen the denoising performance.With consistency regularization, the influence
of the batch size on both tasks is mitigated.

At higher SNR, our joint learning method represents less of an advantage and only performs slightly
better than or similar to other methods. This shows that the benefits of the joint learning approach aremost
noticeable at lower SNRs where the information from the different tasks is successfully aggregated.
Conversely, when a sufficient amount of information is present, complementary information from
additional tasks is less useful. In addition, since our method incorporates information from the noisy
input during the inference process, compared to both low-pass filtering and Topaz denoising, our
approach is able to avoid over-smoothness while preserving more structural information.

For the remaining datasets, as clean images do not exist and the main purpose of image denoising is to
facilitate downstream particle identification process by enhancing contrast between background and
particle, instead of calculating quantitative measurements such as PSNR, we provide qualitative evalu-
ations, that is, whether particles become more visible after denoising. As shown in Figures 3 and 4, for
cryo-EM single-particle micrographs from K63, CnTPS and EMPIAR-10215, our proposed solution is
able to better preserve high-frequency particle information without over-smoothing.

For the CET dataset (EMPIAR-10304), we provide qualitative evaluations for both the denoised
tilt series and 3D tomograms reconstructed using denoised tilt series (Figure 5). After obtaining affine
transforms from tilt series alignment using fiducial-based alignment in IMOD,(61) 3D tomogram
reconstruction is performed using IMOD’s backprojection algorithm. The model is able to smooth the
background noise while preserving the structural features in all cases. Figure 4 shows that for low-
molecular weight-particles that are barely visible on raw micrographs, after denoising, the particles
become more visible. Similarly, for CET datasets, there is substantial contrast improvement
for tomograms reconstructed using denoised tilt series, where reconstructions show a smooth
background.

4.3. Joint training improves particle identification in challenging datasets

Next, we assess the ability of the proposed joint framework to detect particles under low SNR conditions
and in densely populated environments. In addition, we compare the particles picked using our method
with Topaz and crYOLO (K63 ribosome and EMPIAR-10304 datasets only). Since both our proposed
framework and Topaz require a few annotated positive particles for training, we used the same training set
in all the experiments except for the CnTPS dataset. In this case, we have to use more labeled particles

Figure 3. Qualitative evaluation using a K63 ribosome dataset.We show one full dose micrograph with
particles identified using Topaz, and particle picking results when using micrographs obtained from 10%
of the dose using: Topaz, generalized crYOLO model with built-in low-pass filtering, fine-tuned crYOLO
model with built-in low-pass filtering, Topaz denoise followed by Topaz picking, and our proposed joint
framework. Subregions from themicrographs are highlighted in cyan and particles are highlighted in red.
Our method achieves better particle visibility after denoising and identifies more particles and less false

positives despite the challenging SNR conditions.
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(280 particles) to train Topaz, because the model trained using the original labels was unable to produce a
sufficient amount of particles.

For Topaz, instead of fine-tuning the generalized model using new annotated data from all datasets, we
trained data-specific models from scratch and adjusted the hyperparameters based on the instructions
provided in Reference (3). It is worth noting that because our datasets are very densely populated with
irregular-shaped particles, we encountered difficulties with convergence during training when we
attempted to fine-tune the pre-trained model.

For crYOLO, we evaluated picking performance using the following: (i) the pre-trained generalized
model (https://cryolo.readthedocs.io/en/stable/tutorials/) with crYOLO’s built-in low-pass filtering
(crYOLO column in Table 2), (ii) a fine-tuned model trained using our annotations with crYOLO’s
built-in low-pass filtering (crYOLO Fine-Tune column in Table 2), and (iii) a fine-tuned model using our
denoised micrographs as input (crYOLO with our denoise column in Table 2). As crYOLO is a fully
supervised algorithm and training data require specifying a bounding box size in addition to particle
locations, we manually annotated different sets of micrographs and particles. Specifically, for K63
ribosomes, we manually annotated three micrographs, which included 500 particles in total. The newly
annotated data were used as training data for model refinement.

We evaluated detection performance at both 2D and 3D levels. For K63 ribosomes and EMPIAR-
10304 that have ground-truth annotations, 2D results are evaluated using precision, recall, and precision–
recall area under curve, as shown in Table 2. For the K63 ribosome dataset, we compared the particles
identified using 10% of frames against ground-truth particles identified using full dose frame averages in
terms of precision and recall scores and the total number of good particles after 2D classification. For

Figure 4. Qualitative evaluation on CnTPS and EMPIAR-10215 datasets. Since micrographs have
lower SNR in this case, we only show the full dose micrograph, picking results using Topaz denoise

followed by Topaz picking, and our joint framework. Subregions from the micrographs are highlighted in
cyan and particles are highlighted in red. Similar to the K63 ribosome dataset, our method is able to

improve particle visibility which in turn improves particle identification.
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EMPIAR-10304, scores are obtained by comparing against manual labels.We treat particles picked using
the full dose as ground truth. True positives (TP) correspond to particles that are detected on both full dose
and partial dose micrographs. FPs correspond to particles that were identified on partial dose but not on
full dose micrographs. False negatives (FNs) are particles located on full dose but not on the averages
obtained from the partial dose micrographs. To account for small variations in the detected particle
centers, instead of looking at a single pixel, we also look at pixels around the center pixel within a certain
radius. For example, suppose a particle is detected on a full dosemicrograph; if the particle is also detected
on the partial dose imagewithin a radius of r, then the two particles are considered as a true positivematch.
We use a radius of 5 pixels. This way, precision and recall are calculated as follows:

Precision¼ # of TP=matches

# of  predicted particles

Recall¼ # of TP=matches

# of  target particles

: (15)

For CnTPS and EMPIAR-10215, as ground-truth labels for the whole dataset do not exist, in 2D, the
performance is evaluated only in terms of the total number of good particles after 2D classification and the

Figure 5. Qualitative evaluation of denoising and detection on cryo-electron tomography (CET)
dataset (EMPIAR-10304). (a) Images from the original noisy tilt series and the denoised image using
block-matching 3D (BM3D) and our method. Compared to BM3D, our method better preserves features
while smoothing the background. (b) With better feature preservation, our method is able to identify more
particles on tilted images, compared to directly picking on the noisy raw tilted image. (c) Slices from the
raw tomogram, low-pass filtered, BM4D filtered, Topaz denoised using the pre-trained model and ours
denoised. Low-pass filtering, BM4D, and Topaz are applied directly on the 3D tomogram, while our 3D
tomogram is reconstructed using denoised 2D tilt series shown in a. Similarly, low-pass filtering, BM4D,
and Topaz denoising show strong smoothing effects, while ours is able to achieve a better balance

between background smoothing and feature preservation.
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percentage of good particles. In 3D, the performance is evaluated using the final resolution of the 3D
reconstruction. Final resolution is determined using the Fourier shell correlation (FSC), which measures
the normalized cross-correlation coefficient between two independently determined reconstructions, each
based on half of the particles in the dataset:

FSC rð Þ¼
P

ri ∈ rF1 rið ÞF2 rið Þ∗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ri ∈ r F1 rið Þj j2Pri ∈ r F2 rið Þj j2

q , (16)

where r represents a frequency shell in Fourier space, and F rið Þ is the Fourier component at the ith shell.
All processing steps (2D classification, 3D reconstruction, andmap sharpening) were performed using the
cryoSPARC software.(17)

4.3.1. K63 ribosome
Similar to the denoising task, we found that as the SNR increases, all methods tend to produce similar
results both in terms of precision–recall values and total number of clean particles picked. At the lowest
SNR (10% frame averages), however, our joint learning method with consistency regularization is able to
perform much better than others. At a cutoff probability threshold of p¼ 0:5 (if the probability of being a
particle is greater than 0:5, we treat is as a particle), our method is able to obtain precision, recall, and
number of good particles of 0:83, 0:43, and 61,955, respectively, compared to 0:87, 0:27, and 40,712 from
Topaz, and 0:573, 0:4, and 38,472 from crYOLO’s fine-tuned model. crYOLO tends to identify more FPs
compared to Topaz and our algorithm. Both crYOLO’s generalized model with low-pass filtering and
crYOLO’s fine-tuned model using our denoised micrographs were not able to perform well. As both
denoised micrographs and 10% frame averages are very different from micrographs used for training
crYOLO’s generalized model, the pre-trained model is not able to generalize well to unseen data from a
different data distribution.

4.3.2. EMPIAR-10215
After 2D classification and filtering, 529,212 clean particles from an initial set of 797,229 particles picked
by Topaz were selected. For our approach, 574,073 good particles were identified from an initial set of
851,882 positions. Similar to CnTPS, clean particles obtained from 2D classification were used for further
processing with fixed seeding. Ab initio reconstruction was performed in cryoSPARC followed by eight
iterations of nonuniform refinement using D2 symmetry. Particles selected using our method resulted in a
reconstruction at 2.6 Å resolution (using the 0.143-cutoff FSC criteria), compared to 2.7 Å obtained using
particles picked by Topaz.

Table 2. Detection performance on K63 ribosome and EMPIAR-10304 datasets. Highest values for
each column are indicated in boldface.

K63 ribosome EMPIAR-10304

Precision Recall AUPRC Precision Recall AUPRC

Topaz detect only 0.867 0.23 0.55 0.48 0.67 0.54
Topaz denoise+detect 0:873 0.27 0.58 N/A N/A N/A
crYOLO general model 0.305 0.31 0.28 0.259 0.146 0.12
crYOLO fine-tuned 0.573 0.4 0.45 0.341 0.221 0.21
Ours sequential 0.823 0.41 0.59 0.605 0.443 0.57
Ours detect only 0.814 0.33 0.57 0.584 0.44 0.561
Ours joint 0.835 0:43 0:69 0:7 0:86 0:74
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4.3.3. CnTPS
After 2D classification and filtering, 1,228,334 clean particles were left from an initial set of 1,638,619
positions picked by Topaz. Our approach resulted in 1,927,359 good particles from a total of 2,403,560
starting positions. As shown in Figure 6, despite using fewer particles for training, our method is able to
identify more good particles while keeping a low FP rate (ours 21% vs. Topaz 25%). We then compared
the quality of each particle set through 3D reconstruction. For each set of particles, clean particles obtained
from 2D classification were used for further processing using fixed seeding. We confirmed that the 2D
class averages showed the characteristic views of the complex. With that knowledge, ab initio recon-
struction was performed in cryoSPARC followed by 7 iterations of homogeneous refinement using D2
symmetry. We found that particles picked using our method yield a structure at 3.0 Å resolution
determined using the 0.143-cutoff of the FSC curve, compared to 3.1 Å obtained from Topaz. While
our method results in almost 600,000 more particles compared to Topaz, the resolution difference is not
significant, indicating that factors other than the number of particles may be limiting the resolution in this
case. In order to further assess the quality of the particles, we removed particles identified using Topaz
from the set of particles obtained using our method, and used these particles to produce a 3D reconstruc-
tion. Using the resulting 866,339particles (picked by ourmethod andmissed by Topaz), we obtained a 3D
structure at 3.15 Å (Figure 6). This validates the quality of the set of additional particles identified using
our method, showing that they can be used to produce a reconstruction of similar resolution to that
obtained using Topaz particles only.

4.3.4. EMPIAR-10304
Wemanually labeled 12 tilt series and treated manual labels as the ground truth. Precision, recall, and F1
scores are calculated as described in Equation 15. Using a radius of three pixels, our method obtains a
precision of 0.70 and recall of 0.86, compared to 0.48 and 0.67 obtained fromTopaz picking, and 0.34 and
0.22 obtained from crYOLO. Similar to the K63 ribosome dataset, we observed a lack of generalizability
of Topaz and crYOLO to unseen data distributions.

Figure 6. Comparison of 3D reconstructions of CnTPSobtained using particles produced by Topaz and
our method. (a) Overall reconstructions and secondary structure features corresponding to the areas
highlighted in red is shown with atomic model in wire-frame representation fit into the density. Map
produced with particles picked by our approach and missed by Topaz (gray) and map produced using
particles picked by Topaz. (b) Corresponding Fourier shell correlation (FSC) curves obtained from

particles picked by our approach with Topaz particles removed (gray, Diffs) and using particles picked by
Topaz (purple), showing that particles picked by our algorithm (and missed by Topaz) still produce a

high-resolution reconstruction.
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5. Discussion

In this section, we delve into a deeper analysis of the proposed joint-learning framework. Specifically, we
look at how denoising can be beneficial to detection, how to choose the proper positive prior πp, and
analyze the effect of hyperparameters on overall performance.

5.1. Features learned through denoising can be directly used for detection

In order to better understand how denoising can be beneficial to detection, we froze the weights of the
detection head, trained the model with denoise loss exclusively (without the PU loss for detection), and
assessed the resulting particle center heatmap generated by the untrained detection head (the input features
to the detection head are trained through denosing loss only). Themodel received inputs consisting of both
particle-containing patches and randompatches cropped from the inputmicrograph. As Figure 7 suggests,
at the beginning of training, where all weights are randomly initialized, it is very hard to separate particles
from the background using the resulting heatmap. As weights are updated based on the denoising loss,
input features to the detection head are no longer random. Therefore, even though the weights of the
detection head remain random, by using learned features, it is easier to differentiate particles from the
background on the generated output. This shows that with denoising, the background and particle features
become more easily separable. This separability improves particle detection accuracy. This also means
that features extracted through denoising learning are good enough for particle detection and additional
feature extraction is not necessary. Therefore, instead of performing denoising and detection independ-
ently where features are learnedmultiple times, these two tasks can be performed jointly as the same set of
features can be used to perform both tasks. In addition, as shown in Table 1, joint learning leads to better
denoising results compared to performing denoising alone.

5.2. Prior belief and its effect on performance

As particles are identified on a per-pixel basis, even for crowded datasets, we use a relatively small class
prior probability π. For CnTPS, EMPIAR-10215, and EMPIAR-10304, we used π¼ 0:08, and for the K63

Figure 7. Progression of denoised images and detection heatmaps during training. We show outputs
from the 0th (untrained, random initialization); 12,800th; 25,600th; 51,200th; and 76,800th iterations.
When training using the denoising loss alone, as the quality of the denoised output improves during
training, it is easier to differentiate particle locations from the background on the detection heatmap
(black rectangles), even though the detection head remains untrained. This shows that features learned

through denoising are sufficient for the detection task without explicit detection training.
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ribosome, we used π¼ 0:01. This is because the actual number of pixels that belong to the center of
particles is relatively small compared to the total number of pixels in a micrograph. If we use a larger
positive prior, more FPs get identified and the resulting heatmaps tend to have higher scores. Similarly, if
we use smaller positive priors, we are able tomaintain a high true-positive rate while sacrificing the rate of
FNs.While having a reliable estimation of π is important, this can be obtained by simple visual inspection
of micrographs and the size of the particles when doing annotations. For instance, π can be estimated by
calculating the product of the expected number of particles per micrograph by the number of pixels per
particle, and then dividing this product by the total number of pixels in a micrograph.

5.3. Effects of other hyperparameters on performance

In order to assess how hyperparameters in the loss function (Equation 14) can affect the performance of
our algorithm, we performed experiments with θ¼ 0:3,0:5,0:75, and 0:95. We found that as θ decreases,
the performance of both denoising and detection tasks worsens. This makes sense as while information
provided by both tasks is complementary, the detection task is more dependent upon the denoising task:
information from the detection task can be used to refine learned features from the denoising task, instead
of generating those features (as suggested in the previous section). Therefore, the denoising task should be
the dominating task in this case. The choice of α and β depends on the SNR level of the datasets. For
datasets with lower SNR where proteins are harder to identify, α> 1 results in better performance.
Increasing β forces pixels located at the center of particles to have a higher detection probability (classified
as particle) and pixels around the center of particles to have a lower probability (classified as background).
Therefore, for well-annotated training data, increasing β leads to better center localization. Experimen-
tally, we found that α¼ 2and β¼ 4works for most cases. The consistency regularization weight γhas only
minor effects on the overall performance.

6. Conclusion

Even though many deep-learning-based denoising and particle picking methods have been proposed,
existingmethods either require a large amount of training data or additional manual paired image curation,
and most importantly, they yield unsatisfying results on extremely low SNR and crowded datasets. In
these cases, the use of denoising as a preprocessing step can aid the detection task. However, this step
takes additional time, and in many cases, naive denoising can lead to over-smoothing, which leads to a
high FN rate. Intuitively, micrograph denoising and particle identification should not be treated as two
completely different problems. Instead, these two tasks are complementary: the underlying data distri-
bution for background and particles are different, and by knowing the location of particles, we should be
able to produce a denoisedmicrograph that better differentiates particles from background. Similarly, with
cleaner micrographs, we should be able to identify particles more easily. Therefore, by enabling
information sharing through joint training, we expect the performance of both tasks to improve. Here,
we present a framework that performs micrograph denoising and particle detection simultaneously
without the need of noiseless images or fully annotated datasets. The framework is able to identify small
particles under low SNR conditions and enables better visualization of these particles in both single-
particle cryo-EM and CET images. In addition, this approach can be easily adapted to perform a single
task if only one of the tasks is needed.

Even though the proposed framework uses a dataset-specific model, training requires only a few
partially annotated micrographs with a total of 100+ particle annotations, which significantly reduces
manual labor and training time. In addition, as shown in Reference (3), dataset-specific models often
outperform generalized particle picking models, especially in the case of challenging datasets. Similar to
Reference (3), our method requires only one hyperparameter, the class prior, which can be estimated by
visual inspection of micrographs during data labeling. While the default value for the task weight (α)
works well on multiple datasets, further dataset-specific tuning can further improve the performance.

Biological Imaging e4-17

https://doi.org/10.1017/S2633903X24000035 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000035


Our joint framework offers a viable way to enable particle localization under some of the most
challenging scenarios, such as those encountered when imaging proteins with low-molecular weight or in
crowded environments. The proposed method is modular, which allows it to be easily incorporated into
existing data processing software and is currently integrated into nextPYP.(62) A pre-trained model for
micrograph denoising can be downloaded fromZenodo. In addition, the framework can be extended to the
preprocessing of CET tilt series to improve tilt series alignment and tomogram reconstruction. We hope
that our algorithm will facilitate and expedite the structural analysis of challenging biomolecular targets
such as low-molecular-weight complexes or thick specimens imaged in their native context.

Data availability statement. The source code is freely available from https://github.com/nextpyp/spr_pick. A pre-trained model
for the denoising module is available at https://doi.org/10.5281/zenodo.10445797.
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