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Abstract. We developed a fast numerical scheme for solving ambipolar diffusion MHD equations
with the strong coupling approximation, which can be written as the ideal MHD equations
with an additional ambipolar diffusion term in the induction equation. The mass, momentum,
magnetic fluxes due to the ideal MHD equations can be easily calculated by any Godunov-
type schemes. Additional magnetic fluxes due to the ambipolar diffusion term are added in the
magnetic fluxes, because of two same spatial gradients operated on the advection fluxes and
the ambipolar diffusion term. In this way, we easily kept divergence-free magnetic fields using
the constraint transport scheme. In order to overcome a small time step imposed by ambipolar
diffusion, we used the super time stepping method. The resultant scheme is fast and robust
enough to do the long term evolution of star formation simulations. We also proposed that the
decay of alfv́en by ambipolar diffusion be a good test problem for our codes.
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1. Introduction
Ambipolar diffusion (AD), which arises in partially ionized plasmas, causes the relative

drift of ions coupled to magnetic fields with respect to neutrals. AD enables molecular
cloud cores to collapse gravitationally, so is one of important processes for star formation
(e.g., Mestel & Spitzer 1956; Mouschovias 1987; Shu et al. 1987).

Several numerical methods have been proposed in the studies of the dynamics of par-
tially ionized plasmas within the frame of single or two fluid formulations. An incomplete
list of them is Tóth (1994), Mac Low et al. (1995), Mac Low & Smith (1997), Stone
(1997), Li et al. (2006), and Tilley & Balsara (2008). Implicit schemes for the multifluid
treatment of the Hall term and ambipolar diffusion have also been suggested by Falle
(2003) and O’Sullivan & Downes (2006, 2007). In this work, we describe a fully explicit
method for incorporating ambipolar diffusion with the strong coupling approximation
into a multidimensional MHD code based on the total variation diminishing scheme. The
divergence-free condition of magnetic fields is ensured by a flux-interpolated constrained
transport scheme, and a super time stepping method is used in order to considerably
accelerate the otherwise painfully short diffusion-driven time steps. More detailed infor-
mation on this work can be found in Choi, Kim, & Wita (2009).

2. AD MHD Equations and Numerical Methods
The isothermal MHD equations including ambipolar diffusion with the strong coupling

approximation can be written as
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∂ρ

∂t
+ ∇· (ρv) = 0, (2.1)

∂v

∂t
+ v · ∇v +

a2

ρ
∇ρ − 1

ρ
(∇ × B) ×B = 0, (2.2)

∂B

∂t
− ∇× (v × B) = ∇×

{[
1

γρiρ
(∇ × B) ×B

]
×B

}
, (2.3)

∇ · B = 0, (2.4)
where a is an isothermal sound speed, γ is the collisional coupling constant between ions
and neutrals, and ρi is the ion density. The other variables ρ, v, and B denote neutral
density, neutral velocity, and magnetic field, respectively. We further assume that the ion
density is constant in this work.

The above equations except the term in the right hand side of equation (2.3) are same
as the ideal MHD equations. So our strategy of solving the above AD MHD equations
is first to update the fluxes of ρ, v, and B using any Godunov type schemes for solving
the isothermal MHDs, then to make a correction to the fluxes of B due to AD with the
divergence free condition. We take a total variation diminishing scheme in Kim et al.
(1999) for the flux calculations due to the idea MHD.

Let’s now look at the induction equation in details. The Bx component, for example,
of the equation can be written as

∂Bx

∂t
+

∂

∂y
(Bxvy − Byvx) − ∂

∂z
(Bzvx − Bxvz ) =

∂Sz

∂y
− ∂Sy

∂z
, (2.5)

where Sy and Sz are defined by

Sy =
1

γρiρ

[(
∂Bz

∂y
− ∂By

∂z

)
ByBx +

(
∂Bz

∂x
− ∂Bx

∂z

)(
B2

x + B2
z

)

+
(

∂By

∂x
− ∂Bx

∂y

)
ByBz

]
, (2.6)

Sz =
1

γρiρ

[(
∂Bx

∂z
− ∂Bz

∂x

)
BzBy +

(
∂Bx

∂y
− ∂By

∂x

)(
B2

y + B2
x

)

+
(

∂Bz

∂y
− ∂By

∂z

)
BzBx

]
. (2.7)

Note that the first and second terms on the right-hand side of equation (2.5) have the
same gradients as the second and third terms do on the left-hand side, respectively.
Applying the second-order finite difference operators to equations (2.6) and (2.7), we
calculate their values at every grid center, Sy,i,j,k , and Sz,i,j,k . And their values at every
face center can be simply calculated as the half of the sum of two nearby grid centered
values. Then we can define a new flux for Bx along y- and z-directions at face centers as

f
(5)
y ,i,j+1/2,k = f̄

(5)
y ,i,j+1/2,k − 1

2
(Sz,i,j,k + Sz,i,j+1,k ) , (2.8)

f
(5)
z ,i,j,k+1/2 = f̄

(5)
z ,i,j,k+1/2 +

1
2

(Sy,i,j,k + Sy,i,j,k+1) , (2.9)

respectively, where the first term in right hand side is the conventional flux due to the
advection and the second term is due to ambipolar diffusion. Similarly, we can define
f

(6)
x,i+1/2,j,k , f

(6)
z ,i,j,k+1/2 f

(7)
x,i+1/2,j,k , and f

(7)
y ,i,j+1/2,k , where the first two are fluxes for By
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Figure 1. Left panel: A dispersion relation of the Alfv́en waves in a partially ionized medium.
The solid lines represent the real and imaginary (monotonically increasing one) parts of the
complex angular frequency. Circles are measurements from numerical experiments. Right panel:
Time evolution of the root-mean-square of the Bz component for the cases of γρi = 100 (top),
50 (middle), 10 (bottom). Solid lines are from theoretical predictions and open circles are from
numerical simulations.

along x- and z-directions, and the latter two are fluxes for Bz along x- and y-directions.
These combined fluxes at face centers, f

(n)
x,i+1/2,j,k , f

(n)
y ,i,j+1/2,k , and f

(n)
z ,i,j,k+1/2 , are used

to enforce ∇ · B = 0 as well as to update the magnetic field components to the next time
step, as the advection only fluxes for the ideal MHD case do. In fact, we used the flux-
interpolated CT (Constraint Transport) scheme developed in Balsara & Spicer(1999).

The time step for the ambipolar diffusion term is proportional to the square of the
grid size, so the explicit treatment of ambipolar diffusion terms leads to very small time
steps (Mac Low et al. 1995). In this work we adopt the “super time stepping” approach
(Alexiades et al. 1996) to increase the effective time interval and allow much faster
computations for ambipolar diffusion. O’Sullivan & Downes (2006,2007) also used this
strategy in their multifluid MHD models. The super time stepping technique considerably
accelerates the explicit schemes for parabolic problems (Alexiades et al. 1996). The key
advantage of this approach is that it demands stability over large compound time steps,
rather than over each of the constituent substeps. In addition to allowing larger effective
time steps, the super time stepping approach offers relatively simple implementation.
Readers who are interested in the technical details may look up Alexiades et al. (1996)
and Choi et al.(2009).

3. A New Test Problem
Probably, the most popular test problem for AD or two fluid codes is oblique C (con-

tinuous) shocks, whose steady state solutions can be easily obtained (Mac Low et al.
1995). In fact, we also tested our code with this problem and presented its results in
Figure 1 in Choi et al. (2009). One drawback of this test problem is the steady-state
nature, which doesn’t enable us to check any states in between from an initial state to
the final steady state.

We proposed a new test problem that is standing Alfv́en waves in a weakly ionized
plasma. In the strong coupling approximation, a dispersion relation for the Alfv́en waves
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can be simply written as

ω2 − i
c2
Ak2

γρi
ω − c2

Ak2 = 0, (3.1)

where ω = ωR+iωI is the complex angular frequency of a wave and k is a real wavenumber
parallel to the direction of magnetic fields. The first and third terms give the well-known
Alfv́en waves of the ideal MHDs, and the additional second term gives the damping of the
Alfv́en waves by AD. The real part and imaginary parts of the angular frequency of the
solution of equation (3.1) as a function of the wavenumber are plotted with two solid lines
(The monotonically increasing one is for the imaginary part, which gives the damping
rate of the Alfv́en waves.) in the left panel of Figure 1, where γρi = 10 and cA = 1/

√
2.

We setup up a standing Alfv́en wave in a computational domain and measured the
period and damping rate of the wave, which correspond to the real and imaginary parts
of ω, respectively. In the right panel of Figure 1, the root-mean-square values of the Bz

component as a function of time are plotted for the cases of γρi = 100 (top), 50 (middle),
10 (bottom). As the couple of neutrals and ions becomes weaken, the damping of the
Alfv́en waves becomes stronger. We did several experiments with different wavenumbers
for the case of γρi = 10, measured the periods and decay rates, and put circles in the
left panel of Figure 1. It shows good agreements between the numerical measurements
and the theoretical prediction.

We also did decay and forced turbulence simulations with AD. The successful simu-
lation results show the flexibility of our method as well as its ability to follow complex
MHD flows in the presence of ambipolar diffusion. Readers who are interested in these
results may look up Choi et al. (2009).

4. Conclusion
We described a method for incorporating ambipolar diffusion in the strong coupling

approximation into a multidimensional magnetohydrodynamics code based on the total
variation diminishing scheme. Contributions from ambipolar diffusion terms are included
by explicit finite difference operators in a fully unsplit way, maintaining second order
accuracy. The divergence-free condition of magnetic fields is exactly ensured at all times
by a flux-interpolated constrained transport scheme. The super time stepping method is
used to accelerate the timestep in high resolution calculations and/or in strong ambipolar
diffusion. The test results of the decay of Alfvén waves in this paper and the steady-state
oblique C-type shocks in Choi et al. (2009) showed the accuracy and robustness of our
numerical approach.
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