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Meridional rank and bridge number of
knotted 2-spheres
Jason Joseph and Puttipong Pongtanapaisan
Abstract. The meridional rank conjecture asks whether the bridge number of a knot in S3 is equal
to the minimal number of meridians needed to generate the fundamental group of its complement.
In this paper, we investigate the analogous conjecture for knotted spheres in S4 . Towards this end,
we give a construction to produce classical knots with quotients sending meridians to elements of
any finite order in Coxeter groups and alternating groups, which detect their meridional ranks. We
establish the equality of bridge number and meridional rank for these knots and knotted spheres
obtained from them by twist-spinning. On the other hand, we show that the meridional rank of
knotted spheres is not additive under connected sum, so that either bridge number also collapses,
or meridional rank is not equal to bridge number for knotted spheres.

1 Introduction

In the classical setting, the bridge number β(K) is a fundamental measure of com-
plexity for a knot K in S3. The bridge number provides a comprehensive exhaustion
of all knots; indeed, 2-bridge knots are the simplest of knots in many ways, and
their classification by Schubert was a triumph of early knot theory [18]. Cappell and
Shaneson’s meridional rank conjecture posits that β(K) is equal to the meridional rank
μ(K), the minimal number of meridians needed to generate π1(S3/K). Tools such
as knot contact homology and Coxeter quotients have been used to verify that the
conjecture holds for several families of knots (see [2] and the references therein) but
no counterexamples have been discovered. In this paper, we study the bridge numbers
and meridional ranks of knotted spheres in S4.

The bridge number of a knotted sphere is completely analogous to the classical
case: it is the minimal number of local minima of the surface taken over all Morse
embeddings in S4 with respect to the standard height function. However, unlike
the classical case, not much is known about the bridge number of knotted spheres.
Scharlemann showed that a sphere in S4 with four critical points is standard [17], but
it is conceivable that a nontrivial sphere could have a single minimum and three or
more maxima. Such a sphere would have group Z, so by work of Freedman, it would
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be topologically unknotted [8]. Hence, it is not known if β(K) = 1 implies that K is
the unknot.

Twist-spinning is an operation introduced by Zeeman [22] which produces a knot-
ted sphere τm K from a classical knot K ⊆ S3 and an integer m, called the twist index.
By construction, β(τm K) ≤ β(K). Similarly, μ(τm K) ≤ μ(K), because the group of
a twist-spun knot is a quotient of the classical knot group. Note that m = ±1 always
yields an unknotted sphere.
Question 1.1 Given K ⊆ S3, does there exist m ≠ ±1 such that μ(τm K) < μ(K), or
β(τm K) < β(K)?

In Theorem 1.2, we find conditions on K and m so that the equality of μ(K)
and β(K) ensure the equality of all four of these values. To do so, we need to find
quotients of knot groups which are compatible with the quotient maps π1(S3/K) →
π1(S4/τm K). In the case that m is even, Coxeter quotients are sufficient, and we make
use of large families of examples for which the MRC is known, due to Baader, Blair,
and Kjuchukova in [2], and these authors and Misev in [3].
Definition 1.1 We will refer to the arborescent knots and twisted knots admitting
Coxeter quotients found in [2, 3] as BBKM knots.

These knots can be represented using special diagrams, which we call BBKM
knot diagrams, formed by piecing rational tangles together in an organized way (see
Sections 2.3 and 2.3 for more details).

For odd-twist spinning, we adapt the construction of Brunner [6], utilized in [2],
to find quotients of classical knot groups sending meridians to p-cycles of any finite
order p. This may be of independent interest, as it works in situations where Coxeter
quotients, the Alexander module, and Kei colorings all fail. When applicable, we will
mention how these techniques allow us to compute the meridional rank for more
general deform-spun knots. We summarize these results in the following theorem.
The knots referenced in the theorem can be found in Construction 3.4.
Theorem 1.2 Let m, n ∈ Z with ∣m∣ ≠ 1, n ≥ 2. Then there exist infinitely many classical
knots K ⊆ S3 such that μ(τm K) = β(τm K) = n.

Twist-spun knots can be used to exhibit interesting behaviors. It is an open question
whether the meridional rank is (−1)-additive under connected sum of classical knots,
whereas Schubert proved that the bridge number is (−1)-additive for classical knots.
On the other hand, both μ(S) and β(S) fail to be (−1)-additive for connected sum
of knotted surfaces if we do not require that S is orientable. Although he was working
in the context of abstract knot groups, Maeda proved in [15] that there exist knotted
surfaces S1 and S2 of genus one such that μ(S1) = μ(S2) = 2 and μ(S1#S2) = 2. For
the bridge number, there is an example due to Viro in [20] of a knotted sphere F
with β(F) = 2, such that connected sum with a standard projective plane RP2 is again
a standard projective plane. Hence, β(F#RP2) = β(RP2) = 1. The (−1)-additivity of
bridge number appears to remain open in the case of orientable knotted surfaces.
However, using examples first studied by Kanenobu [12], we show that the meridional
rank of a connected sum of spheres can achieve any value in between the theoretical
limits. So, either the meridional rank conjecture fails for knotted spheres, or bridge
number also fails to be (−1)-additive.
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Meridional rank and bridge number of knotted 2-spheres 3

Theorem 1.3 Let p1 , . . . , pn , q ≥ 1 such that max{p i} ≤ q ≤ ∑ p i − (n − 1). Then there
exist 2-knots K1 , . . . , Kn , with μ(K i) = p i for all i and such that μ(K1# ⋅ ⋅ ⋅ #Kn) = q.

Corollary 1.4 Either bridge number fails to be (−1)-additive on 2-knots, or there exist
2-knots K with μ(K) < β(K).

We conclude by finding a lower bound on the meridional rank of a connected sum
of twist-spun 2-knots. This is in contrast to the previous theorem, and shows that if
the twist-indices of a family are bounded, the meridional rank of increasingly long
connected sums grows without bound.

Theorem 1.5 Let {K i}∞i=1 be a collection of twist-spun 2-knots: K i = τm i k i
for nontrivial classical knots ki , with ∣m i ∣ ≥ 2. If {m i}∞i=1 is bounded, then
lim

n→∞
μ(K1# ⋅ ⋅ ⋅ #Kn) = ∞.

Weidmann proved that if k1 , . . . , kn are nontrivial classical knots, then
μ(k1# ⋅ ⋅ ⋅ #kn) ≥ n + 1 [21]. A corollary of Theorem 1.5 is the following statement,
providing an analogous bound for the m-twist spin of a connected sum.

Corollary 1.6 Let k1 , . . . , kn be nontrivial classical knots and ∣m∣ ≥ 2. Then

1 + n/m ≤ μ(τm(k1# ⋅ ⋅ ⋅ #kn)) ≤ μ(k1# ⋅ ⋅ ⋅ #kn).

1.1 Organization

This paper is organized as follows: In Section 2, we define bridge number and
meridional rank of classical knots and review some families of knots for which the
MRC is known. In Section 3, we develop a construction to build knots which can be
labeled by p-cycles. We use this technique in Section 4 to establish the MRC for a large
family of 2-knots in Theorem 1.2. We then investigate the additivity of meridional rank
under connected sum of 2-knots in Section 4.3, and prove Theorems 1.3 and 1.5.

2 Preliminaries

2.1 Meridional rank and bridge number of knots in S3

Here, we define the quantities in the classical meridional rank conjecture.

Definition 2.1 Let K ∶ S1 → S3 be a knot, and let N(K) be a tubular neighborhood of
K. A fiber of N(K) is a meridional disk D = {∗} × D2 with K ∩ D = {∗}. A meridian
of K is an element of π1(S3/N(K)) which is freely homotopic to ∂D for some point ∗
on K. The meridional rank of K is the minimal number of meridians which generate
π1(S3/N(K)).

Of course, the rank of the knot group is a lower bound for the meridional rank,
and a lower bound for the rank is (one plus) the minimal number of generators of the
Alexander module. More subtle lower bounds are achieved by finding a quotient G
of π1(S3/N(K)) which sends the meridians of K to a specified conjugacy class of G.
The minimal number of elements of this conjugacy class needed to generate G is then
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a lower bound for μ(K). For example, although the rank of the symmetric group Sn
is two, the number of transpositions needed to generate is n − 1. See [14] for more
examples and background.

There are multiple equivalent ways to define the bridge number. Each perspective
has its own advantage, but the following formulation is the most suitable for this paper.

Definition 2.2 The bridge number of K, denoted β(K), is the minimal number of
local minima of K, taken over all Morse embeddings in S3 with respect to the standard
height function.

2.2 Coxeter groups

The Coxeter group C(Δ) associated with a finite simple graph Δ with weighted edges
is defined as follows: (1) Each vertex of Δ corresponds to a generator of C(Δ). (2) If s is
a generator of C(Δ), the s2 = 1. (3) If s and t are vertices that are connected by an edge
of weight k, then (st)k = 1. An element conjugate to any of the generators is called a
reflection and the number of vertices of Δ is the reflection rank of C(Δ). In particular,
a generator is itself a reflection. The following proposition, which was observed in [2],
will be very useful in computing the meridional rank.

Proposition 2.1 Suppose that there is a surjective map from π1(S3/N(K)) to C(Δ)
sending meridians to reflections, where the weight on each edge of Δ is at least two. Then,
the meridional rank of K is bounded below by the reflection rank of C(Δ).

2.3 BBKM knots

In [2, 3], many explicit surjections from classical knot groups to Coxeter groups are
realized, with specified conjugacy classes for the meridians to map to, thus providing
lower bounds for meridional rank. In these examples, they show that the classical
Wirtinger number also equals the Coxeter group rank thus proving the meridional
rank conjecture for these knots. We begin by giving brief descriptions of these BBKM
knots introduced earlier in the paper.

For our applications, we need the fact that these knots are constructed by piecing
together simple pieces. For the twisted knot case, the building blocks are twist regions
and each twist region is associated with two meridians. For the arborescent case, the
building blocks are rational tangles, where each rational tangle is associated with either
a single Coxeter generator or two distinct Coxeter generators.

2.3.1 Classical twisted knots

Consider a classical knot diagram D that is reduced so that it does not admit simplifi-
cations via Reidemeister I and II moves. It is well-known that D can be checkerboard
colored. There are two associated checkerboard surfaces each of which can be thought
of as a union of disks and twisted bands, where a band is an alternating sequence of
disks and half-twists shown in Figure 1a. One can construct a graph Γ from this surface,
with one vertex for each disk and one edge for each band, weighted according to the
number of signed half-twists in the band. If a classical knot K admits a diagram with a
checkerboard surface (see Figure 1b) such that the edge weights of the induced graph
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Figure 1: (a) A band. (b) A reduced checkerboard colored diagram. (c) After collapsing the
bands into thin lines, we get the associated graph Γ. Here, we treat the disk as a fat vertex.

(see Figure 1c) Γ are all at least two in absolute value, and such that the plane dual
graph Γ∗ has no multiple edges, then K is called a twisted knot [2].

2.3.2 Classical arborescent knots

Each classical arborescent knot can be encoded with a weighted tree. Each vertex
in this weighted tree is an annulus where the weight corresponds to the number of
twists. An edge connecting two vertices corresponds to a plumbing of the two annuli.
The arborescent knots that are BBKM knots can be further broken into two sub-
families: arborescent knots associated with bipartite trees with even weights [2], and
arborescent knots associated with plane trees whose branching points carry a straight
branch to at least three leaves [3].

3 Labeling knots with p-cycles

In this section, we develop a procedure to obtain knots colorable by p-cycles. We will
often use the following terminology, which also appeared in the work of Annin and
Maglione [1].

Definition 3.1 A k-cycle σ in the symmetric group Sn is called a step k-cycle (or
simply a step cycle) if σ can be written in the form σ = (a0 , a1 , a2 , . . . , ak−1) such that
a i ∈ Z/nZ and a i = a0 + i in Z/nZ for all i = 0, 1, 2, . . . , k − 1.

When we label knot diagrams with elements of order greater than two, orientations
become important. We begin by showing that twist regions can be consistently labeled
by p-cycles. More specifically, in the following lemma, we refer to the four endpoints
of the arcs on the boundary of a tangle diagram as NE, NW, SW, SE. By a consistent
labeling, we require that the label of the NE arc (resp. NW arc) is the same as the label
of the SE arc (resp. SW arc).

Lemma 3.1 The oriented classical two braid with 2p − 1 crossings pictured in Figure 2
can be labeled with step p-cycles (1, 2, . . . , p) and (p, p + 1, . . . , 2p − 1).
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Figure 2: Labeling a twist region with 2p − 1 crossings by overlapping step p-cycles.

Proof The tangle has two components (colored black and gray in Figure 2). Starting
at the bottom right label (p + 1, p + 2, . . . , 2p − 2, 2p − 1, p), this component will
go under the other component p times and the sequence of labelings that will
appear in order after the bottom left label is (p + 1, p + 2, . . . , 2p − 2, 2p − 1, p − 1) →
(p + 1, p + 2, . . . , 2p − 2, p − 2, p − 1) → (p + 2, p + 3, . . . , p − 3, p − 2, p − 1) → . . .
and will emerge on the top left as (p, 1 . . . , p − 1).

Similarly, starting at the bottom left label (1, 2, . . . , p), this component will go
under the other component p − 1 times and emerges on the top left as (p + 1, . . . , 2p −
2, 2p − 1, p).

If the labels (1, 2, . . . , p) and (p, p + 1, . . . , 2p − 1) are permuted, a similar calcula-
tion shows that the top left labeling will agree with bottom left, and top right labeling
with the bottom right. ∎

We now introduce a subset of the set of p-cycles which we will use to create more
complicated knots with labelings. For convenience, we define Gp,n as the symmetric
group Snp−(n−1) when p is even, and as the alternating group Anp−(n−1) when p is odd.

Definition 3.2 A step p-cycle is a p-cycle of the form (a, a + 1, a + 2, . . . , a + p − 1).
Given integers p, n, with p ≥ 3, n ≥ 2, we will refer to the set of once-overlapping
step p-cycles Op,n = {(1, . . . , p), (p, . . . , 2p − 1), . . . , ((n − 1)p − (n − 2), . . . , np −
(n − 1))} ⊂ Gp,n .

Note that if x and y are in Op,n , then they are either once-overlapping, or
they permute disjoint elements and therefore commute: x y = yx. Note also that if
they are once-overlapping, their product is a (2p − 1)-cycle, e.g., (1, 2, 3)(3, 4, 5) =
(1, 2, 3, 4, 5).

With the intention of applying the following result of Annin and Maglione, we also
would like to make sure that the elements of Op,n generate Gp,n .

Theorem 3.2 [1, Theorem 3.1] Let m and r be positive integers with m ≥ r ≥ 2 such that
(m, r) ≠ (2, 2) and (m, r) ≠ (3, 3). If r is odd (respectively, even), then the minimum
number of r-cycles needed to generate Am (respectively, Sm) is max{2, ⌈m−1

r−1 ⌉}.

If m = np − (n − 1) = n(p − 1) + 1, then ⌈m−1
p−1 ⌉ = ⌈

np−n
p−1 ⌉ = n. Note that knots in

Kp,n can be labeled by n p-cycles from Gp,n . We still need to show that these
overlapping step cycles generate.
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Lemma 3.3 The collection of n overlapping step p-cycles Op,n =
{(1, . . . , p), (p, . . . , 2p − 1), (2p − 1, . . . ., 3p − 2), . . . , ((n − 1)p − (n − 2), . . . , np −
(n − 1))} generates Anp−(n−1) (respectively, Snp−(n−1)), when p is odd (respectively,
even).

Proof By Corollary 2.4 of [1], the set of all step cycles of length p generates
Anp−(n−1) for p odd (resp. Snp−(n−1) for p even), so we need only show that Op,n
generates the set of all step p-cycles. Note that the (ordered) product of the ele-
ments of Op,n is (1, . . . , p)(p, . . . , 2p − 1) ⋅ ⋅ ⋅ ((n − 1)p − (n − 2), . . . , np − (n − 1)) =
(1, 2, . . . , np − (n − 1)), an (np − (n − 1))-cycle: we denote this element by τ. Now, we
will show that any step p-cycle is generated by τ and (1, 2, . . . , p). Let a be an integer
in {1, 2, . . . , np − (n − 1)}. Observe that the step cycle of length p starting at a can be
written as

τa−1(1, 2, . . . , p)τ−(a−1) = (τa−1(1), τa−1(2), . . . , τa−1(p)) = (a, a + 1, . . . , a + p − 1).

∎
Brunner described a method to construct a link in S3 from a weighted simple planar

graph, which admits a surjection to an Artin group whose presentation can be read off
from the graph. Now, we adapt his construction to the more subtle case of labeling by
step p-cycles as opposed to just order two elements. The following construction builds
links in S3 which can be labeled by overlapping p-cycles, yielding a surjection of the
link group to Gp,n which detects the meridional rank.

Construction 3.4 Let Γ be a simple planar graph, and form its dual Γ∗. Label the edges
of Γ∗ with elements from the set {0, 1}. As in [6], blow up the vertices of Γ∗ to disks,
and the edges to twisted bands. At this stage, the number of half-twists in each band is
only determined up to parity: an even number of half-twists if that edge was labeled with
0, and an odd number if labeled with 1. This labeling determines the connectivity of the
resulting link diagram. Choose an orientation on each component. Let n = ∣V(Γ)∣. As
shown in [2], there is a choice of n meridians, one for each region of R2 − Γ∗, which
will generate the group of the complement of the resulting link. The following claim
summarizes a strategy to choose the number of half-twists in each box so that the resulting
link L will be colorable by step p-cycles.

Claim. If a generating set of n meridians on the resulting link diagram from Construction
3.4 can be labeled by the n elements of Op,n , subject to the following rules, then
the labeling corresponds to a surjection π1(S3/L) → Gp,n , sending meridians to step
p-cycles.

Rule 1. If the labels at the bottom of a twist box are the same or permute disjoint
cycles, then any number of half-twists may be chosen (respecting the parity choice already
made).

Rule 2. If the labels at the bottom of a twist box are once-overlapping, then the number
of half-twists can be chosen as follows (see Figure 3):

Case I. If both strands travel upward, then any multiple of 2p − 1 half-twists may be
chosen (respecting the parity choice already made).

Case II. If one strand travels up and one down, then any even multiple of 2p − 1 half-
twists may be chosen (note this necessitates having an even twist box to begin with).
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Figure 3: The allowable twist regions in Construction 3.4. The relations x i = x′i and y i = y′i are
guaranteed whenever x i and y i are chosen from Op,n .

We now prove that the rules above yield a valid labeling of the diagram, which
amounts to showing that the labels at the bottoms of the twist boxes agree with the
corresponding labels at the top. We prove the case k = 1, which implies the statement
for all positive k. The proof is similar for negative k, and trivial when k = 0.

Let x , y ∈ Op,n . If x and y do not overlap, then they commute, and the Wirtinger
relations become trivial. Similarly, if x = y the relations are trivial. Otherwise, x and y
are once-overlapping, so x y and x y are (2p − 1)-cycles.

First consider Case I, the left-hand picture of Figure 3. The calculation in Figure 2
shows that the top-left label is (1, . . . , p) and the top-right label is (p, . . . , 2p − 1).
In terms of x1 and y1, this says that x′1 = (x1 y1)−(p−1)y1(x1 y1)p−1 = x1, and y′1 =
(x1 y1)−px1(x1 y1)p = y1 (in fact, the first equation implies the second, since (x1 y1)2p−1

is trivial). As noted in the proof of Lemma 3.1, the desired conclusion holds if these
labels are permuted.

Now, consider Case II, the right-hand picture of Figure 3. The Wirtinger rela-
tions from the crossings in the twist-box imply that x′2 = (x2 y2)−(2p−1)x2(x2 y2)2p−1.
Since x2 y2 is a (2p − 1)-cycle, we have x′2 = x2. Similarly, y′2 = (x2 y2)−(2p−1)

y2(x2 y2)2p−1 = y2.

Definition 3.3 Let p, n ∈ Z with p, n ≥ 2. We define Kp,n to be the set of knots
resulting from the above construction.

Example 3.5 K2,2 is the set of 2-bridge twisted knots with a surjection to S3, the third
symmetric (and dihedral) group. It is straightforward to check that when ∣V(Γ)∣ =
2, any knot resulting from Construction 3.4 will be of the form T(2, 2m + 1). Thus,
K2,2 = {T(2, 6k + 3) ∶ k ∈ Z}, the 2-bridge torus knots which admit a tricoloring.

Example 3.6 The torus knot T(2, 2p − 1) is inKp,2, and therefore admits a surjection
to Gp,2, sending meridians to p-cycles. The n-fold connected sum of T(2, 2p − 1) is in
Kp,n+1.

Remark 3.7 Note that Construction 3.4 shows that a single knot may admit arbi-
trarily many surjections to symmetric or alternating groups of different orders,
sending meridians to cycles of different lengths. For example, consider the torus knot
T(2, 35) = K. Since 35 = 2 ∗ 18 − 1, K may be labeled by 18-cycles in G18,2 = S35. Since
35 = 7 ∗ 5 = 7(2 ∗ 3 − 1) = 5(2 ∗ 4 − 1), K may also be labeled by 3-cycles in G3,2 = A5,
and by 4-cycles in G4,2 = S7.
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Figure 4: At left, the cycle graph Γ and its dual Γ∗ are shown. The vertices of Γ∗ are fattened
into disks and edges into twisted bands, forming the generalized pretzel knot K ∈ K3,4 (right).

Figure 5: The closure of a rational tangle in Kp,2. Each rectangle represents a horizontal twist
region containing a multiple of 2p − 1 crossings (one odd and one even).

Example 3.8 Recall that the generalized pretzel knot is a knot that admits a diagram
formed by joining two components of a planar unlink with parallel twisted bands. The
generalized (q1 , q2 , q3 , . . . , qn)-pretzel knot where q i = 2p − 1 for i ≠ n and qn is even
is in Kp,n . Figure 4 depicts a specific case where our knot J is the (5, 5, 5, 2)-pretzel
knot, an element of K3,4.

Remark 3.9 Instead of using just twist regions in the construction of Kp,n , one may
use non-integer rational tangles by making sure that the end result is a knot and the
orientations are compatible (see Figure 5).

The preceding discussion proves that for any knot K in Kp,n , the meridional rank
of K is equal to n. The same techniques utilizing the Wirtinger number as in [5] show
that their bridge number is also n. While the values of bridge numbers and meridional
ranks for these knots can also be found by methods of [2], the existence of knot group
epimorphisms is interesting in its own right [19].

Corollary 3.10 If K ∈Kp,n , then μ(K) = β(K) = n.

Proposition 3.11 This construction is well-suited for connected sums of knots. If
K1 ∈Kp,n1 and K2 ∈Kp,n2 , then K1#K2 ∈Kp,n1+n2−1.

Proof Since the connected sum operation is well-defined, we may performed the
connected sum operation in any location on the knot diagram. Since K i ∈Kp,n i for
i = 1, 2, there is an arc of K1 with label (1, 2, 3, . . . , p) and also an arc of K2 with label
(1, 2, 3, . . . , p). Performing the connecting sum operation on these two arcs describe
a desired surjection to an alternating group that needs at least n1 + n2 − 1 p-cycles to
generate the group. ∎

https://doi.org/10.4153/S0008414X23000883 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000883


10 J. Joseph and P. Pongtanapaisan

Figure 6: An embedded sphere in Morse position with two minima. Meridians near the minima
(shown in blue) generate the knot group.

4 Meridional rank and bridge number of 2-knots

In this section, we define the meridional rank and bridge number of knotted spheres
in S4, and use the labelings from the previous section to prove Theorem 1.2, verifying
that meridional rank and bridge number coincide for families of twist-spun 2-knots
with any possible twist indices. We then investigate the additivity of meridional rank
under connected sum of 2-knots and prove Theorems 1.3 and 1.5.

4.1 2-knots in S4

A 2-knot K ∶ S2 → S4 is a smoothly embedded sphere in S4. We assume our embed-
dings are in Morse position with respect to the standard height function S4 → R, and
therefore have finitely many critical points.

The bridge number and meridional rank of a 2-knot are defined exactly analogously
as in the case of knots in S3: the bridge number is the minimal number of minima
over all Morse embeddings, and the meridional rank is the minimal number of
meridians needed to generate the knot group, π1(S4/N(K)). A meridian is an element
of π1(S4/N(K)) which can be represented by a simple closed curve bounding a disk
in S4 that transversely intersects the sphere in a single point. As in the case of classical
knots, the meridional rank of a 2-knot is a natural lower bound for its bridge number.

Proposition 4.1 Let K be a 2-knot. Then μ(K) ≤ β(K).
Proof Consider an embedding K with β(K) = n minima. As suggested in Figure 6,
taking a meridian to each of these minima yields a generating set for π1(S4/N(K)),
since the index 0 critical points of K correspond to the 1-handles in a handle decom-
position of S4/N(K) [9]. ∎

Sometimes, we will write πK as an abbreviation for π1(S4/N(K)). Also note that
any meridians drawn as simple loops are joined by paths to the basepoint of S4/N(K).

4.1.1 Twist-spun knots

Let K ⊆ S3 be a knot. Delete a small neighborhood of a point on K to obtain a tangle
(B3 , K○). Let (B4 , D)denote the trace of the identity isotopy of K○ in B3, i.e., (B4 , D) =
(B3 , K○) × I and D is the standard half-spun disk for K#−K. Let (B4 , Dm) denote the
trace of the isotopy that rotates K○ about the polar axis relative to B3 m-times, for
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some m ∈ Z. The m-twist spin of K is defined to be the 2-knot (S4 , τm K) = (B4 , D) ∪
(B4 , Dm).

Twist-spun knots were introduced by Sir Christopher Zeeman [22], who proved
the amazing fibering theorem below.

Theorem 4.2 (Zeeman [22]) Let Σm k be the ∣m∣-fold cyclic cover of S3 branched over
the knot k. If m ≠ 0, then the twist-spun knot τm k is fibered by a punctured copy of Σm k.

Note this implies that τ±1K is always unknotted. Another implication of this
theorem we make use of in Theorem 1.5 is that the commutator subgroup of π(τm k)
is isomorphic to π1(Σm k) (since the infinite cyclic cover is Σm k ×R). Moreover,
the group of τm K is a quotient of πK, obtained by centralizing the mth power of a
meridian.

More generally, we can consider a general ambient isotopy f = { ft ∣ t ∈ [0, 1]} of the
tangle, where f ∣∂B3 = id , f1(K○) = K○, as in [13]. The isotopy f is called a deformation
and f K is called a deform-spin of K.

Proposition 4.3 Let K be a knot in S3. Then, β( f K) ≤ β(K) and μ( f K) ≤ μ(K).

Proof The deform-spun knot f K can be thought of as only doing the deformation
in the top half, i.e., we glue together the deform-spun disk on top and the standard
half-spun ribbon disk for K# − K on bottom. By starting with K in minimal bridge
position, and removing a small 3-ball centered on a maximum of K, the half-spun
disk will have β(K) minima. The top half has no minima, as it is a ribbon disk for
K# − K. Thus, β( f K) ≤ β(K).

The group π( f K) is obtained from πK by identifying f1(x) with x, for each
meridian x of πK [13]. Thus, there is a quotient map πK → π( f K), which sends
meridians to meridians because meridional curves of the punctured K are meridional
curves of f K. This shows the second inequality. ∎

4.2 Proof of Theorem 1.2

Before proving the theorem, we prove a lemma demonstrating how the techniques of
Section 3 can be useful for measuring the meridional rank of twist-spun 2-knots for
any possible twist indices.

Lemma 4.4 If a knot K ∈Km ,n , then for any integer p, τpm K also has a surjection to
Gm ,n , sending meridians to step m-cycles.

Proof Let K ∈Km ,n . By definition, there is a surjection ϕ ∶ πK → Gm ,n , sending
meridians x1 , . . . , xn of K to a set of n step m-cycles which generate Gm ,n . Let τ denote
the quotient map τ ∶ πK → π(τpm K). As explained in Section 4.1, this quotient map
is induced by centralizing the (pm)th power of a meridian, say x, in πK. Therefore,
the kernel of τ is the normal closure of {[x pm , g] ∶ g ∈ πK}, where [g , h] = g−1h−1 gh
denotes the usual commutator. The kernel of ϕ contains xm , so it contains all elements
of the form [x pm , g] as well. Thus, ϕ factors through τ, and there is a unique
homomorphism ψ ∶ π(τpm K) → Gm ,n such that ψ ○ τ = ϕ. Then ψ(τ(x i)) = ϕ(x i) for
1 ≤ i ≤ n, that is the meridians τ(x1), . . . , τ(xn) of τpm K are sent by ψ to the same
generating set of step m-cycles as the original meridians of K under ϕ. ∎
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We are now prepared to prove Theorem 1.2. The condition ∣m∣ ≠ 1 is necessary, as
it guarantees by [22] that the resulting m-twist spun 2-knots are not unknotted.

Theorem 1.2 Let m, n ∈ Z with ∣m∣ ≠ 1, n ≥ 2. Then there exist infinitely many classical
knots K ⊆ S3 such that μ(τm K) = β(τm K) = n.

Proof of Theorem 1.2 As in Lemma 4.4, we take K from the family Km ,n , defined
in Section 3. It is evident from Construction 3.4 and the ensuing examples that each
of the sets Km ,n in question is infinite. These knots have surjections to Gm ,n , sending
meridians to step m-cycles. Lemma 4.4 shows that τm K also has a surjection to Gm ,n ,
sending a generating set of meridians of τm K to step m-cycles. As shown in Section 3,
n m-cycles are needed to generate Gm ,n , so μ(τm K) ≥ n.

The bridge number of τm K is at most β(K) = n, by Proposition 4.3. Thus,
μ(τm K) = β(τm K) = n. ∎
Remark 4.5 If we combine Theorem 1.2 with the observation in Remark 3.7,
we can actually show that for any n ≥ 2 and vector (m1 , . . . , mq) with ∣m i ∣ ≠ 1,
there exist infinitely many knots K ⊂ S3 such that μ(τm i K) = β(τm i K) = n for all
i. For example, for odd j ≥ 1, let K j be the n-fold connect sum of T(2, jM), where
M = (2m1 − 1)(2m2 − 1) . . . (2mq − 1).

We remark that Coxeter quotients, where images of meridians have order two, are
sufficient to prove the theorem for all even twist indices. Thus, any BBKM knot will
suffice when m is even. This observation was the starting point of our efforts to find
compatible quotients for any m-twist-spun knot.

We remark that the technique used in Theorem 1.2 can be used for other motions
that affect the fundamental group of K by centralizing powers of a certain element
γ of πK. To elaborate, we remind the reader of the proof of Proposition 4.3. Given
a meridional presentation ⟨x1 , . . . , xn ∣ R⟩ of K, we get a meridional presentation
⟨x1 , . . . , xn ∣ R, f1(x i) = x i (i = 1, . . . , n)⟩ for the deform spin of K with motion f.
Note that γ is a meridian when the motion is m-twist-spinning and f1(x i) = x−m x i xm

for a meridian x. When the motion is Litherland’s m-roll spinning [13], the element γ
is the Seifert longitude λ and f1(x i) = λ−m x i λm .

Proposition 4.6 Take K ∈Kp,n . Using the notations in the previous paragraph, sup-
pose that f1(x i) = γ−1x i γ. Then, μ(K) = μ( f m K) = β( f m K) = n, where m = ∣Gp,n ∣ =
1
2 (np − (n − 1))! when p is odd and (np − (n − 1))! when p is even.

Proof Recall that K ∈Kp,n has a surjection to Gp,n . Call that surjection ϕ. We obtain
a surjective homomorphism from π( f m K) = ⟨x1 , . . . , xn ∣ R, γ−m x i γm = x i (i =
1, . . . , n)⟩ to Gp,n as well because ϕ(γ) raised to the order of Gp,n is trivial. ∎
Example 4.7 Baader and Kjuchukova proved the meridional rank conjecture for
some of the knots they referred to as (n

2)-colorable knots [4]. This means that for each
of these knots, there exists a surjective homomorphism from the knot group onto the
symmetric group, mapping meridians to transpositions. Consider the fundamental
group of the complement of the dth roll spun ρd K of K in S4, which can be obtained
from the knot group of K by making the dth power of the longitude central. It is known
that the longitude is an element of the second commutator subgroup of the knot group
(see Proposition 3.12 of [7], for example). The second commutator subgroup of Sn is
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An , and ∣An ∣ = n!
2 . By Proposition 4.6, the surface ρn!/2K satisfies the property that

the meridional rank equals the bridge number.

4.3 Behavior of meridional rank under connected sum

In this section, we study how the meridional rank of 2-knots (knotted spheres in S4),
changes under connected sum. Note that if the meridional rank conjecture for classical
knots is true then their meridional ranks must be (−1)-additive, since the bridge
number is known to have this property. One elementary bound for the meridional
rank of a connected sum is the following.

Proposition 4.8 Let K1 and K2 be 2-knots. Then

max{μ(K1), μ(K2)} ≤ μ(K1#K2) ≤ μ(K1) + μ(K2) − 1.

Proof The group of K1#K2 surjects onto the group of K i by abelianizing the other
factor. So if x1 , . . . , xn are meridians which generate π(K1#K2), then their images
under this quotient map are meridians which generate π(K i). This proves the first
inequality. The second is proved by taking the obvious presentation for π(K1#K2): a
minimal set of meridional generators for each factor, and then identifying a meridian
of K1 with one of K2 to form the amalgamated product. ∎

Theorem 1.3 is the main theorem of this section and proves that the meridional rank
of a connected sum of 2-knots is not, in general, (−1)-additive. Indeed, it can achieve
any value in between the theoretical bounds given by Proposition 4.8. Thus, either
the bridge number also fails to be (−1)-additive for these examples, or the meridional
ranks of these knotted spheres are strictly less than their bridge numbers.

Theorem 1.3 Let p1 , . . . , pn , q ≥ 1 such that max{p i} ≤ q ≤ ∑ p i − (n − 1). Then there
exist 2-knots K1 , . . . , Kn , with μ(K i) = p i for all i and such that μ(K1# ⋅ ⋅ ⋅ #Kn) = q.

Corollary 1.4 Either bridge number fails to be (−1)-additive on 2-knots, or there exist
2-knots K with μ(K) < β(K).

The lemma below is one of the more striking special cases of the theorem, from
which the other cases are obtained by taking connected sums wisely (see Figure 7 for
a schematic).

Lemma 4.9 Let n, m1 , . . . , mn ∈ N such that m i ≥ 2 are relatively prime. Let k1 , . . . , kn
be 2-bridge knots, and let K i = τm i k i . Then μ(K i) = 2 = μ(K1# ⋅ ⋅ ⋅ #Kn).

Proof Let ⟨x i , y i ∣r i⟩ be a Wirtinger presentation for πk i , where x i and y i are merid-
ians of k i . Then a presentation for K i is obtained by adding the relation [xm i

i , y i] = 1.
Note that this relation is equivalent to the relation xm i

i = ym i
i . This is because the

Wirtinger relation r i tells us that x i and y i are conjugate: x i = w−1
i y iw i for some

w i ∈ πk i . After adding the twist-spinning relation xm i
i and ym i

i are both conjugate and
central, so they must be equal in the group of τm i k i . In the other direction, we show
that xm i

i = ym i
i implies xm i

i y i = y i xm i
i . We have xm i

i y i = ym i
i y i = y i ym i

i = y i xm i
i .

It is convenient to think of the group of the connected sum K1# ⋅ ⋅ ⋅ #Kn as being
amalgamated in a “zig-zag” fashion from the groups of the summands K i : for i odd
we amalgamate x i with x i+1, and for i even we amalgamate y i with y i+1. Then a
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Figure 7: A schematic for Lemma 4.9 with five summands. Amalgamated meridians have
matching colors; the orange and pink meridians (y1 and x5 , respectively) generate the knot
group.

presentation for the group of the connected sum is ⟨x1 , y1 , . . . , xn , yn ∣r1 , . . . , rn , xm1
1 =

ym1
1 , . . . , xmn

n = ymn
n , x1 = x2 , y2 = y3 , . . . , zn−1 = zn⟩, where the symbol z stands for x

if n is even and y if n is odd (Figure 7).
Now, we prove by induction that for n even, the meridians y1 and yn generate the

group of K = K1# ⋅ ⋅ ⋅ #Kn , and that for n odd, y1 and xn generate the group of K. Since
each of the groups πK i inject into the group of K, πK is not cyclic, so we will conclude
that μ(K) = 2.

Specifically, we will show that for n even, xn = xn−1 is in the subgroup generated by
y1 and yn , and for n odd, yn = yn−1 is in the subgroup generated by y1 and xn . Then,
by induction, the stated pairs of elements generate the group of K.

When n = 1, the group of K = K1 is generated by x1 and y1 by assumption. Now,
assume the claim is true for less than or equal to n − 1 summands, and consider the
case of K = K1# ⋅ ⋅ ⋅ #Kn .

Let n be even, M = m1m2 . . . mn−1, and note that the twist-spinning relations imply
that yM

1 = xM
n−1 = xM

n . Since M is relatively prime to mn , there exist integers a and b
so that aM + bmn = 1. Then yaM

1 ybmn
n = xaM

n xbmn
n = xn = xn−1, so this element is in

⟨y1 , yn⟩.
Now, let n be odd and consider M , a, b as before. Then yM

1 = yM
n−1 = yM

n , and
yaM

1 xbmn
n = yaM

n ybmn
n = yn = yn−1. Thus, y1 and xn generate yn = yn−1, as claimed. ∎

We will use the examples created in [12] for a different purpose to show that
meridional rank is not necessarily (−1)-additive for 2-knots. In that paper, Kanenobu
defined a family of 2-knots in order to prove an analogous statement to Theorem 1.3
regarding the weak unknotting number of a 2-knot, the fewest number of meridian-
identifying relations which abelianize the knot group.

For the lower bound in Theorem 1.3, we will again make use of Construction 3.4.
Recall that this construction is (−1)-additive under connected sum (Proposition 3.11).
For a 2-knot K, let αJ denote the connected sum of α copies of J. The definition below
is essentially due to Kanenobu, however, we expand the number of usable examples
by using our p-cycle labelings from Section 3.

Definition 4.1 Let p1 , . . . , pn , q ≥ 1 such that max{p i} ≤ q ≤ ∑ p i and p1 ≥ p2 ≥

⋅ ⋅ ⋅ ≥ pn , and choose j such that
j−1

∑
i=1
(p i − 1) ≤ q − 1 ≤

j

∑
i=1
(p i − 1). Let m1 , . . . , mn be
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relatively prime integers with ∣m i ∣ ≥ 2, and let Ti = τm i k i , where k i ∈Km i ,2, e.g.,
k i = T(2, 2m i − 1). Now, define

K i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(p i − 1)T1 , i < j,
(q + j − 2 − (p1 + ⋅ ⋅ ⋅ + p j−1))T1#(p j − 1)Tj , i = j,
(p i − 1)Ti , i > j,

and let K = K1# ⋅ ⋅ ⋅ #Kn .

4.3.1 Proof of Theorem 1.3

Proof Given p1 , . . . , pn , q as in the statement of Theorem 1.3, choose a family
K1 , . . . , Kn as in Definition 4.1.

Note that each Ti has meridional rank at least 2, since π(τm i k i) has a surjection to
Gm i ,2. Each Ti also has meridional rank at most 2 due to the upper bound in terms of
the bridge number stated in Proposition 4.3. Regrouping so that T1’s are together, we
see that there are (∑ j−1

i=1 p i − ( j − 1) + q + j − 2 − (∑ j−1
i=1 p i)) = q − 1 copies of T1:

K = (q − 1)T1#(p j − 1)Tj# ⋅ ⋅ ⋅ #(pn − 1)Tn .

In particular, μ(K) ≥ μ((q − 1)T1) = q. Here, we are using the (−1)-additivity of μ for
knots in Kp,n (Proposition 3.11): k1 ∈Km1 ,2, so (q − 1)k1 ∈Km1 ,q . Note that K has a
connected summand

J = (q − 1)τm1 k1 = τm1(q − 1)k1 ,

so K has a surjection to Gm1 ,q as well, sending meridians to m1-cycles.
Following Kanenobu, we can also regroup the summands of K as

(q − p j)T1#(p j − p j+1)(T1#Tj)#(p j+1 − p j+2)(T1#Tj#Tj+1)# ⋅ ⋅ ⋅
#(pn−1 − pn)(T1#Tj# ⋅ ⋅ ⋅ #Tn−1)#(pn − 1)(T1#Tj# ⋅ ⋅ ⋅ #Tn).

Each of the 2-knots T1#Tj# ⋅ ⋅ ⋅ #Tj+i has meridional rank 2 by Lemma 4.9. Hence,
α(T1#Tj# ⋅ ⋅ ⋅ #Tj+i) has meridional rank at most α + 1. Then K is a connected sum of
q − 1 2-knots, each of meridional rank 2, so μ(K) is at most q, by repeated application
of Proposition 4.8. ∎

Due to the abundance of notation in the proof above, we elaborate Theorem 1.3 and
its proof with a specific example for clarity.

Example 4.10 Let p1 = 2, p2 = 3, p3 = 5, p4 = 5, q = 7. Proceeding along the state-
ment of Definition 4.1, we next have to choose j. If j = 3, then ∑2

i=1(p i − 1) = 1 + 2 =
3 ≤ q − 1 = 6 ≤ ∑3

i=1(p i − 1) = 1 + 2 + 4 = 7. We are now ready to define our summands
K1 , K2 , K3, and K4. We have that for i < j, K1 = (p1 − 1)T1 = T1 , K2 = (p2 − 1)T1 =
T1#T1. Note that each factor is T1 when i < j. Next, for i = j = 3, the 2-knot K3
is (7 + 3 − 2 − (p1 + p2))T1#(p3 − 1)T3 = 3T1#4T3. Finally, K4 = (p4 − 1)T4 = 4T4 . In
conclusion, K = T1#(2T1)#(3T1#4T3)#4T4, which can be factored as 6T1#4T3#4T4,
or as 4(T1#T3#T4)#2T1. The former factorization allows us to verify that μ(K) is at
least μ(6T1) = 7, and the latter shows that it is at most μ(4(T1#T3#T4)) + μ(2T1) − 1 =
5 + 3 − 1 = 7, hence, μ(K) = 7 as desired.

https://doi.org/10.4153/S0008414X23000883 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000883


16 J. Joseph and P. Pongtanapaisan

Remark 4.11 The weak unknotting number studied by Kanenobu in [12] is a
natural lower bound for the stabilization number, the minimal number of 1-handle
stabilizations needed to produce an unknotted surface. In [10], a theorem analogous
to Kanenobu’s theorem and Theorem 1.3 is proved for the (algebraic) Casson-Whitney
number of a 2-knot, a measure of complexity regarding regular homotopies to the
unknot, using the same examples. Theorem 1.3 implies both of these theorems, since
μ(K) − 1 is an upper bound for these algebraic unknotting numbers.

Remark 4.12 If one starts with a connected sum as in Lemma 4.9 with at least two
factors and performs a stabilization to affect Kanenobu’s relation, a torus S with group
Z is obtained; Kanenobu asks if this torus is smoothly unknotted [12]. In [10], it is
shown that S#T = T#T , where T is an unknotted torus. If S is smoothly knotted, and
if β(S) > 1, then β(S) > β(S#T), and this would be an example of bridge number
collapsing. This is purely conjectural, as current tools have not been able to identify
any smoothly knotted torus (or any orientable surface) with group Z, and if one was
identified it is also not obvious how to show that its bridge number is at least 2.

Question 4.13 Let K be as in Theorem 1.3, with μ(K) = q < ∑ p i − (n − 1). Does K
have a Wirtinger presentation with q meridional generators?

Conjecture 4.14 The examples in Theorem 1.3 (with q < ∑ p i − (n − 1)) are counterex-
amples to the MRC for knotted spheres.

4.4 A lower bound from the rank of the commutator subgroup

As proven in the previous section, meridional rank can behave erratically under
connected sum, even staying bounded in a connected sum with arbitrarily many
summands. In contrast, here we find a lower bound for the meridional rank of a
connected sum of twist-spun knots, which shows that if the twist indices in a family
are bounded, the meridional rank of increasingly long connected sums must increase
asymptotically. The proof is inspired by the well-known argument that μ(K) − 1
elements always generate the Alexander module (see, e.g., [16]).

Theorem 1.5 Let {K i}∞i=1 be a collection of twist-spun 2-knots: K i = τm i k i
for nontrivial classical knots ki , with ∣m i ∣ ≥ 2. If {m i}∞i=1 is bounded, then
lim

n→∞
μ(K1# ⋅ ⋅ ⋅ #Kn) = ∞.

The lower bound comes from the rank of the commutator subgroup of the group
of an m twist-spun knot, and the property that conjugation by a meridian has order at
most m. Recall Theorem 1.5 [22], which implies that the commutator subgroup of the
knot group of the m-twist spin of a knot k is isomorphic to the fundamental group of
the m-fold cyclic branched cover of k.

Lemma 4.15 Let {K i}∞i=1 be a collection of twist-spun 2-knots: K i = τm i k i for nontriv-
ial classical knots ki , with ∣m i ∣ ≥ 2, n ≥ 1. Let K = K1# ⋅ ⋅ ⋅ #Kn , M = lcm(m1 , . . . , mn),

and N =
n
∑
i=1

rk(πΣm i k i). Then μ(K) ≥ 1 + N/M.

Proof For clarity, we first prove the statement in the case that the number of
summands n is equal to 1, i.e., that K = τm k and μ(K) ≥ 1 + rk(π1(Σm k))

m .
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Suppose that meridians x1 , . . . , xp generate G = π1(S4/K). Denote by C the
commutator subgroup of π1(S4/K). Since τm k is fibered by Σm k, C ≅ π1(Σm k).
Recall that for any orientable surface knot group G with commutator subgroup C,
the abelianization short exact sequence 1 → C → G → Z→ 1 is split-exact: a splitting
is provided by sending 1 ∈ Z to a meridian of G. So we can regard G as a semidirect
product: G ≅ C ⋊ ⟨x1⟩. Then each x i = x1c i , for some c i ∈ C.

Now, letting x denote x1, we have G = ⟨x , xc2 , . . . , xcr⟩ = ⟨x , c2 , . . . , cr⟩. Let c ∈ C.
Then c = w(x , c2 , . . . , cr), i.e., c can be written as a word in these generators. Notice
that this word must have an exponent sum of zero for all of its x terms, since other-
wise it is nontrivial in the abelianization. This means that c = w′(x− jc i x j ∶ −∞ ≤ j ≤
∞, 2 ≤ i ≤ r), however, since xm is central in G, we need only consider 0 ≤ j ≤ m − 1.
Therefore,C = ⟨x− jc i x j ∶ 0 ≤ j ≤ m − 1, 2 ≤ i ≤ r⟩, and rk(C) ≤ m(r − 1). Taking r to
be minimal and rearranging, we get the desired inequality.

For the general case, the adaptation is to replace m with M = lcm{m1 , . . . , mn}.
Note that the commutator subgroup of the knot group of a connected sum is the free
product of the individual commutator subgroups. Therefore, C ≅ C1 ∗ ⋅ ⋅ ⋅ ∗ Cn , where
C i ≅ π1(Σm i k i) is the commutator subgroup of K i = τm i k i . If c ∈ C is nontrivial,
then c can be written as a product c = z1 . . . z�, where each z j is nontrivial and in
exactly one of the C i ’s. Then x−M cxM = c, because x−M z jxM = z j for each j. Following
the previous argument, C = ⟨x− jc i x j ∶ 0 ≤ j ≤ M − 1, 2 ≤ i ≤ r⟩, and rk(C) = rk(C1) +
⋅ ⋅ ⋅ + rk(Cn) = N ≤ M(r − 1). As before, the inequality μ(K) ≥ 1 + N/M follows by
taking r to be minimal. ∎

The proof of the theorem then follows by noticing that N ≥ n, since π1(Σm i k i) ≇ 1
and therefore rk(C i) ≥ 1 for each i. The lower bound 1 + n/M approaches infinity with
n when, e.g., M is finite. This proves that to exhibit the extreme behavior in Lemma 4.9,
it was necessary for the twist-indices to become arbitrarily large.

Weidmann proved that for a connected sum of n nontrivial classical knots, the
rank of the knot group, and therefore the meridional rank, is at least n + 1 [21]. Apply-
ing Theorem 1.5 to τm(k1# ⋅ ⋅ ⋅ #kn) = τm k1# ⋅ ⋅ ⋅ #τm kn yields the following corollary,
which gives an analogous version for the m-twist spin of a connected sum.

Corollary 1.6 Let k1 , . . . , kn be nontrivial classical knots and ∣m∣ ≥ 2. Then

1 + n/m ≤ μ(τm(k1# ⋅ ⋅ ⋅ #kn)) ≤ μ(k1# ⋅ ⋅ ⋅ #kn).

Remark 4.16 Although Theorem 1.5 and the above corollary are stated in terms
of meridional rank, these statements are true when meridional rank is replaced
with rank. The only change needed to the proof of Lemma 4.15 is the following: if
{z1 , . . . , zn} is any generating set for G, we can write z i = x p i c i . Using a clever trick
from [11] (during the proof of Theorem 1.1), we may assume that each p i = 1, and
proceed with the rest of the proof unchanged.
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