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Abstract
Host–microbial co-metabolism products are being increasingly recognised to play important roles in physiological processes. However, studies
undertaking a comprehensive approach to consider host–microbial metabolic relationships remain scarce. Metabolomic analysis yielding
detailed information regarding metabolites found in a given biological compartment holds promise for such an approach. This work aimed
to explore the associations between host plasma metabolomic signatures and gut microbiota composition in healthy adults of the Milieu
Intérieur study. For 846 subjects, gut microbiota composition was profiled through sequencing of the 16S rRNA gene in stools.
Metabolomic signatures were generated through proton NMR analysis of plasma. The associations between metabolomic variables and
α- and β-diversity indexes and relative taxa abundances were tested using multi-adjusted partial Spearman correlations, permutational
ANOVA and multivariate associations with linear models, respectively. A multiple testing correction was applied (Benjamini–Hochberg,
10 % false discovery rate). Microbial richness was negatively associated with lipid-related signals and positively associated with amino acids,
choline, creatinine, glucose and citrate (−0·133≤ Spearman’s ρ≤ 0·126). Specific associations between metabolomic signals and abundances
of taxa were detected (twenty-five at the genus level and nineteen at the species level): notably, numerous associations were observed for
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creatinine (positively associated with eleven species and negatively associated with Faecalibacterium prausnitzii). This large-scale population-
based study highlights metabolites associated with gut microbial features and provides new insights into the understanding of complex host–gut
microbiota metabolic relationships. In particular, our results support the implication of a ‘gut–kidney axis’. More studies providing a detailed
exploration of these complex interactions and their implications for host health are needed.

Key words: Gut microbiota: Host–gut microbiota relationships: NMR metabolomics: Cross-sectional population-based studies:
Epidemiology

The gut metagenome has been estimated to be 150–400 times
larger than the human genome(1,2), yielding a colossal meta-
bolic potential(3). Products of the microbial metabolism com-
prise a vast range of molecules involved in a variety of
biological functions(4,5) and integrated in proposed ‘host–
microbial metabolic axes’. These molecules complement the
host metabolism and subsequently influence the host health
through potential beneficial or harmful effects(5–9).
Consequently, the gut microbiota is now fully considered as
an endocrine pseudo-organ within the mammalian holobiont
superorganism(6,10).

Specific studies investigating targeted molecules – such as
SCFA, bile acids, choline metabolites, etc. – have considerably
increased the mechanistic knowledge of microbial–human
co-metabolism(4,11–13). However, studies addressing more com-
prehensively the highly complex microbial–host metabolic
interactions remain scarce(9). Metabolomics – the systematic
identification and quantification of the low-molecular-weight
metabolic products of a biological system at a specific point
in time – enables the simultaneous detection and relative quan-
tification of hundreds of molecules and thus holds promise to
elucidate microbial–host interactions(14). Studies integrating a
metabolomic approach have started to expand. Notably, gut
microbiota has been reported to associate with the serum
metabolome. Pedersen et al.(15) indeed showed that the serum
metabolome of insulin-resistant individuals presents increased
levels of branched-chain amino acids, which were further cor-
related with gut microbial genetic characteristics (namely the
potential for biosynthesis of branched-chain amino acids and
lack of genes encoding bacterial inward transporters
branched-chain amino acids). Additionally, comparisons of
the host metabolomes (in plasma or urine) between diseased
individuals(16–18) or subjects included in nutritional interven-
tions(19–22), and controls have detected molecules stemming
exclusively from microbial activity (e.g. hippurate or p-cresol)
as discriminant metabolites. However, in these studies, neither
the gut microbiota composition nor its activity was analysed
and direct associations between the gut microbiota and the
host metabolomewere not investigated. In fact, research inves-
tigating such associations is scarce and often has been con-
ducted on limited sample sizes (n ≤ 100)(9,23–27) or focused
on subjects with specific characteristics or conditions like
chronic heart failure(23), spleen-yang-deficiency syndrome(26),
obesity(24,27), physiological and metabolic stress(25), etc. More
recently, studies were performed on larger population-based
samples, including several hundreds of participants and report-
ing associations between the composition and diversity of the gut
microbiota and circulating metabolites, using metabolomics(28–32).

Following these approaches, our objective was to investigate the
associations between untargeted plasma metabolomic signatures
and gut microbiota composition in a large sample of healthy
French subjects.

Methods

Study population

This study was conducted in the framework of the Milieu
Intérieur project, which enrolled 1000 healthy French adults
with primary aim to assess the determinants of immunological
variance within the general healthy population. The objectives
of the present study are secondary objectives to the Milieu
Intérieur project, for which the rationale, design and methods
have been extensively described elsewhere(33). Briefly, 500
females and 500 males equally distributed across five classes
of age (from 20 to 69 years old), and of mainland French descent
for at least three generations, were recruited in the suburban
area of Rennes (Ille-et-Vilaine, Bretagne, France), between
September 2012 and August 2013. Participants were considered
‘healthy’ upon recruitment, as defined per stringent exclusion
criteria comprising any chronic disease or condition involving
the immune system, abnormal physical examination or any
abnormal clinical–biological analysis(33). Questionnaires and
biological samples were administered and collected by trained
medical investigators supported by a full clinical team. The study
is sponsored by Institut Pasteur (Pasteur ID-RCB number: 2012-
A00238-35). It was conducted as a single centre study and with-
out any investigational product and was approved by Comité de
Protection des Personnes –Ouest 6 on 13 June 2012 (CPP Ouest
6-728/MS2) and by Agence Nationale de Sécurité du Médicament
on 22 June 2012 (ID-RCB number: 2012-A00238-35, reference
ANSM: B120239-70). The protocol, which is registered under
ClinicalTrials.gov (NCT01699893), was designed and con-
ducted in accordance with the Declaration of Helsinki and
good clinical practice as outlined in the International Conference
on Harmonization of Technical Requirements for Registration of
Pharmaceuticals for Human Use Guidelines for Good Clinical
Practice.

Data collection

Covariates. During the medical visit, investigators measured
BMI using standardised methods and collected information
related to age, sex, smoking status, educational level, employ-
ment status, occupational category, income level and physical
activity.
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Gut microbiota profiling from stool samples. Gut microbiota
composition was determined through the sequencing of the 16S
ribosomal RNA gene in stool samples produced at home maxi-
mum 24 h before the scheduled medical visit, collected in a dou-
ble-lined sealable bag maintaining strict anaerobic conditions
and aliquoted and stored at −80°C upon reception at the clinical
site. Detailed information regardingDNApreparation, barcoding
PCR protocol, sequencing and computation of microbial diver-
sity indexes are provided in online Supplementary Material
and Methods 1.

Untargeted NMRmetabolomics analysis in plasma samples.
Fasting whole blood was collected in heparin tubes and centri-
fuged (300 g, 10 min, room temperature) maximum 6 h after
blood draw, and supernatants were stored at −80°C maximum
10min after centrifugation. Plasma samples underwent two
freeze-thaw cycles before proton NMR analysis, the additional
freeze-thaw cycle being done for all samples in order to prepare
internal quality control samples necessary for the study(34,35) and
so that all samples would go through the same process. TheNMR
analysis was performed blindly on samples (randomised for age
and sex) according to a previously published protocol(36).
Briefly, two complementary one-dimensional NMR sequences
were acquired per plasma sample, on a 500 MHz-Bruker
Avance III spectrometer (Bruker) at 300 K – namely the 1H
one-dimensional NMR pulse sequence nuclear Overhauser
effect spectroscopy (NOESY1D) with z-gradient (Bruker pulse
program noesygppr1d) and the Carr–Purcell–Meiboom–Gill
(CPMG) sequences. Consequently, to acquisition, all spectra
were pre-processed, calibrated and ultimately ‘sliced’ into ‘buck-
ets’ with pre-defined limits so as to maximise recovery of peak
entities. The buckets were then scaled to the total summed inte-
grals for each spectrum, and the integrals of peak entities were
calculated to obtain continuous NMR variables that were used
in further statistical analyses. Finally, NMR signals were assigned
using ad hoc literature(37). CHENOMX software (CHENOMX)
and the Human Metabolome Database(38) were used to confirm
the assignments using the medium spectrum (online
Supplementary Fig. S3)(37). After the statistical analyses, the
assignments of the buckets that was associated with the gut
microbiota were newly carefully looked and confirmed to be
unambiguously assigned by gathering information from S-total
correlated spectroscopy, additional two-dimensional NMR
experiments (recorded on random samples) such as 1H–1H total
correlated spectroscopy and J-resolved experiments. The
detailed NMR metabolomic analysis protocol (sample prepara-
tion, post-acquisition spectra pre-processing and intelligent
bucketing of spectra and obtaining of NMR variables) is provided
in online Supplementary Material and Methods 2.

Statistical analyses

Associations between each NMR variable and each α-diversity
index were tested using non-parametric partial Spearman corre-
lations. Associations between each NMR variable and inter-indi-
vidual dissimilarities in gut microbiota composition (Bray–Curtis
index of β-diversity) were tested using permutational ANOVA
(PERMANOVA) with 999 permutations. Associations between

each NMR variable and the relative abundances of genera and
species were tested using multivariate associations with linear
models (MaAsLin). This statistical framework performs boosted,
additive general linear models and is suited to test the associa-
tions between the relative abundance of microbial community
members andmetadata (here the NMR variables and covariates).
Relative abundances are first transformed through a variance-
stabilising arcsin-square root transformation. Genera and species
were included only if their relative abundance and prevalence
were higher than 0·01 and 1 %, respectively.

Partial Spearman correlations, PERMANOVA and MaAsLin
were all multi-adjusted for age (20 to <30, 30 to <40, 40 to
<50, 50 to <60, and 60 to <70 years old), sex, BMI (continuous
variable, in kg/m2), smoking status (non-smoker, ex-smoker,
current smoker) and physical activity (continuous variable, in
h/week). These covariates were indeed reported in the literature
to have a potential impact on gut microbiota composition or
metabolomic signature, or significantly associatedwithmicrobial
or metabolomic features in our analyses. These associations
between covariates and gut microbial and metabolomic features
were tested using PERMANOVA and principal component par-
tial R2 analysis, respectively, enabling to measure the percentage
of variation in microbial composition or metabolomic data
explained by the factors tested. Additionally, α- and β-diversity
models (partial Spearman correlations and PERMANOVA) were
adjusted for sequencing depth. P-values were adjusted for multi-
ple testing using a Benjamini–Hochberg correction with a 10 %
false discovery rate.

To better visualise the inter-individual variation in metabolo-
mics signatures in our study sample, principal component analy-
sis of the metabolomic data sets was plotted and colour-coded
based on age, sex and BMI.

Spearman correlations were performed using SAS 9.4;
PERMANOVA, MaAsLin, principal component partial R2 and
principal component analysis representations of metabolomic
data sets were performed using R 3.3.2 (packages vegan,
Maaslin, FactoMineR and FactoExtra).

Results

Characteristics of the study sample

Among 1000 participants to theMilieu Intérieur study, 138 were
excluded from the study sample because of missing gut micro-
biota composition data – due to failure during PCR, insufficient
number of detected reads or insufficient quantity of stool aliquot
or DNA extracted. Among the 862 participants with available gut
microbiota data, sixteen were further excluded because their
metabolomic signatures could not be determined – due to insuf-
ficient quantity of plasma aliquot or failure during NMR spectra
acquisition. Participant flow chart is presented in online
Supplementary Fig. 1. Characteristics of the 846 subjects are pre-
sented in Table 1. Mean BMI was 24·3 (SD 3·3) kg/m2, and mean
physical activity (including both professional and leisure physi-
cal activity) was 5·4 (SD 6·3) h/week. The proportion of smokers
was 19·9 %.

Characteristics of the gut microbiota in the Milieu Intérieur
study have been previously described(39,40). Microbiota analysis
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yielded sequencing depth ranging from 5064 to 240 472 reads
per sample (mean sequencing depth 21 427 (SD 19 180) reads).
Detected reads clustered into 8422 operational taxonomic units
were classified into eleven phyla, 328 genera and 698 species.
Firmicutes (mean relative abundance 0·68 (SD 0·13)),
Bacteroidetes (0·29 (SD 0·13)), Proteobacteria (0·02 (SD 0·03)),
Actinobacteria (0·007 (SD 0·01)) and Verrucomicrobia (0·004
(SD 0·008)) were the five most abundant phyla. Online
Supplementary Table S1 presents the twenty-two genera consti-
tuting the ‘core microbiota’ – defined as the genera shared by at
least 95 % of samples(41) – in our study population. A complete
description of genera and species composing the gut microbiota
of our sample is available in online Supplementary Table S2.
Regarding α-diversity indexes, Simpson’s index ranged from
0·41 to 0·98 (mean 0·92 (SD 0·05)); observed richness from 56
to 346 (mean 193·4 (SD 55·1)) and Chao1 richness estimate from
62 to 1039 (mean 298·3 (SD 117·0)). Univariate associationsmeas-
uring the percentage of variation in inter-individual dissimi-
larities in the gut microbial composition (Bray–Curtis index of
β-diversity) that is explained by different covariates (age, sex,
BMI, smoking status, physical activity and sequencing depth)
are shown in online Supplementary Table S3.

NMR analysis on plasma samples generated 260 CPMG and
269 NOESY1D variables. Spectral regions most likely corre-
sponding to noise (i.e. CPMG regions 0–0·5, 4·3–5·0 and 8·55–
10·0 ppm; and NOESY1D regions 4·3–5·0 and 9·5–11·0 ppm)
were excluded from further analysis. A list of the resulting 424
NMR continuous variables used in our analyses (202 CPMG sig-
nals and 215 NOESY1D: spectral regions with their metabolite

assignments, as well as mean and SD) is presented in online
Supplementary Tables S4 and S5. Results of the principal com-
ponent analysis performed on the CPMG and NOESY1D metab-
olomic data sets are shown in Fig. 1 and online Supplementary
Fig. S2, respectively. Although no clear clustering appears,
grouping patterns along gradient of sex, age and BMI can be
observed. Results of the principal component partial R2 analysis
measuring the percentage of variation in the metabolomic data
set that is explained by the covariates (age, sex, BMI, smoking
status and physical activity) are shown in online Supplementary
Table S6.

Associations between plasma metabolomic signals
and α- and β-diversity indexes

The associations betweenmetabolomic variables and α-diversity
indexes are presented in Fig. 2. Overall, and after correcting for
multiple testing with a 10 % false discovery rate, observed rich-
ness was associated with twenty-four CMPG and eight
NOESY1D signals. Negative associations were observed with
lipid-related signals (namely lipoproteins or unsaturated lipids)
as well as with ester- and ketone-related metabolites (partial
Spearman’s ρ range −0·133 to −0·097), while positive associa-
tions were detected with signals pertaining to amino acids (polar
glutamine and histidine and aromatic tyrosine, as well as related
metabolites) and proteins, creatinine, as well as with choline-
and glycolysis-related metabolites (glucose and citrate) (partial
Spearman’s ρ range 0·087 to 0·126). Similar results were obtained
with Chao1 richness estimate, but no association was detected
with Simpson’s α-diversity index. Likewise, no association was
observed between NMR metabolomic variables and inter-indi-
vidual dissimilarities in gut microbiota composition (Bray–
Curtis β-diversity index).

Associations between plasma metabolomic signals
and bacterial taxa (relative abundances)

The associations (significant at 10 % false discovery rate)
between NMRmetabolomic variable and the relative abundance
of gut microbiota genera and species are presented in Table 2. At
the genus and species levels, twenty-five and nineteen associa-
tions were detected, respectively. Associated taxa comprised
genera and species with prevalence ranging from 20 to 100 %
of the study population. Creatinine was the metabolite associ-
ated with most taxa (sixteen genera and eleven species).
Notably, consistent positive associations were found between
the CPMG and the NOESY1D analyses for genera Catabacter,
Saccharofermentans and Oscillibacter, and a negative associa-
tion was observed for Faecalibacterium prausnitzii.

Discussion

In the present work, we investigated the associations between
characteristics of the gut microbiota – namely α-diversity,
inter-individual dissimilarities and the relative abundances of
genera and species – and plasma NMR metabolomic signatures
of the host in a large population-based sample of 846 healthy
French adults. Overall, our results suggest that gut bacterial fea-
tures are associated with the systemic metabolism of the host. In

Table 1. Characteristics of the study population, Milieu Intérieur study,
France, 2012 (n 846)
(Numbers and percentages; mean values and standard deviations)

n %

Sex
Male 433 51·2
Female 413 48·8

Age (years)
20–29 159 18·8
30–39 165 19·5
40–49 174 20·6
50–59 171 20·2
60–69 177 20·9

Smoking status
Non-smoker 442 52·2
Ex-smoker 236 27·9
Current smoker 168 19·9

BMI (kg/m2)
Mean 24·3
SD 3·3

Physical activity (h/week)
Mean 5·4
SD 6·3

Simpson’s index
Mean 0·92
SD 0·05

Observed richness
Mean 193·4
SD 55·1

Chao1 richness estimate
Mean 298·3
SD 117·0
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particular, we found that bacterial richness was positively asso-
ciated with signals pertaining to amino acids (glutamine, histi-
dine, tyrosine), as well as with creatinine-, choline- and
glycolysis-related metabolites, while negative associations were
observed with lipid-, as well as ester- and ketone-related signals.
Finally, specific associations between metabolomic signals and
bacterial members of the gut microbiota were detected.

The metabolic relevance and importance of the gut micro-
biota for the host are now widely admitted, and research scruti-
nising host–gut microbial metabolic relationships is an active
area of investigation(42). However, studies investigating direct
associations between gut microbiota composition and host
blood metabolome in large population-based samples are
scarce, while more available studies have been conducted on
a limited number of participants or focused on specific popula-
tions(15,23,26,27). In particular, a study by Org et al.(28) assessed the
relationships between gut microbiota composition and

circulating metabolites in 531 healthy Finnish males from the
METSIM cohort. Consistent with their study,we reported positive
correlations between bacterial richness and glutamine, histidine
and creatinine – with similar Spearman correlation coefficients.
Furthermore, a study on 399 subscribers to a US Scientific
Wellness programme was able to explain 45 % of the gut micro-
biota α-diversity with forty plasma metabolites, among which a
high frequency of phenylalanine and tyrosine metabolites
(including p-cresol sulphate, a potentially uraemic toxin) and
hippurate(32), while a study in 1529 females from the TwinsUK
cohort found five metabolites that consistently correlated with
gut microbiota α-diversity (Shannon index) including hippurate,
p-cresol sulphate, phenylacetylglutamine, 3-phenylpropionate
and hyodeoxycholate(31).

In a study conducted on 893 participants from the Dutch
LifeLines-DEEP cohort, Fu et al.(13) measured specific lipid levels
through targeted colorimetric methods and found that TAG and

Fig. 1. Interindividual variation in metabolomic signatures represented by principal component (PC) analysis (PCA) of the Carr–Purcell–Meiboom–Gill (CPMG) metab-
olomic data set,Milieu Intérieur study, France, 2012 (n 846). Each point represents an individual from the study sample. PCAwas obtained via thePCA function (package
FactoMineR) and plotted and colour-coded based on sex (a), age (b) and BMI (c) via the fviz_pca_ind function (package FactoExtra). Concentration ellipses (95%) are
shown. Percentages on the axes represent the proportion of variation explained by the two first components of the PCA. (a) , Female; , male. (b) , 20 to <30 years;
, 30 to <40 years; , 40 to <50 years; , 50 to <60 years; , 60 to <70 years. (c) , 18·5 to <25 kg/m2; , 25 to <30 kg/m2; , 30 to <35 kg/m2.
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HDL were, respectively, negatively and positively associated
with both bacterial richness and diversity. Consistently, a more
recent study using NMR metabolomics in 2309 individuals from
the Rotterdam Study and the LifeLines-DEEP cohort observed
inverse associations between the diversity of the gut microbiota
and serum levels of not only VLDL particles, TAG, total fatty
acids, MUFA and SFA but also glycoprotein acetyl, alanine, iso-
leucine and lactate and positive associations with HDL particles.
In addition, Le Chatelier et al.(43) associated a decreased gut
microbial richnesswithmetabolic impairments such as increased
fat mass and body weight, inflammation of the adipose tissue
and dyslipidaemia. In the present work, we consistently found
that lipid-related metabolomic signals were negatively associ-
atedwith bacterial richness. However, wewere unable to further
characterise these lipid-related signals and discriminate between
the different lipid classes potentially hampering the detection of
specific associations previously reported(13,28). Indeed, long-
chain metabolites such as fatty acids result in an overlap of sig-
nals of protons in NMR, limiting a more specific assignment(44).
Still, it should be noted that, in our sample, NMR signals assigned

to lipids demonstrated excellent correlation with blood TAG
(Spearman’s ρ> 0·65, P-value< 0·0001 for spectral regions
1·207–1·311, 2·151–2·166 and 2·166–2·167 ppm), adding support
to the consistency of our results with those previous findings.
Furthermore, high-fat Western diet has consistently been associ-
ated with gut microbiota impairments(45,46), and lipid-related sig-
nals in our study correlated positively with dietary intakes of
processed meat (Spearman’s ρ= 0·09, P-value= 0·006 for spec-
tral regions 2·166–2·167 ppm and ρ= 0·08, P-value= 0·02 for
1·207–1·311 and 2·151–2·166 ppm) and fried products
(ρ= 0·07, P-value= 0·04 for 2·166–2·167 ppm), and negatively
correlated with fruit (ρ=−0·09, P-value= 0·01 for 1·207–1·311
and 2·166–2·167 ppm and ρ=−0·08, P-value= 0·02 for 2·151–
2·166 ppm) and vegetables (ρ=−0·09, P-value= 0·007 for
2·166–2·167 ppm and ρ=−0·07, P-value= 0·04 for 2·151–
2·166 ppm). Nonetheless, these assumptions should be consid-
ered with caution as additional exploration and targeted identi-
fication of these lipid signals using MS or lipidomics are
necessary to get more detailed insights into the associations
we observed.

Our finding of a positive association between glutamine and
gut bacterial richness echoes a result fromDe Souza et al.(47) who
suggested that glutamine might have an anti-inflammatory effect
through a modulation of specific gut bacterial members follow-
ing the observation that an oral supplementation with L-gluta-
mine decreased the Firmicutes:Bacteroidetes ratio in obese
and overweight adults.

In our study, creatinine was the metabolomic signal most
associated with the relative abundances of bacterial taxa. This
by-product of muscle metabolism is exclusively excreted
through the kidneys, and a high creatinine level in blood is nota-
bly used as an indicator of kidney dysfunction(48). Our finding of
positive associations between plasma creatinine and the relative
abundance of various representatives of the Clostridiales order
and the Ruminococcaceae family matches results from Org
et al.(28). We also reported a negative association between cre-
atinine and Faecalibacterium prausnitzii, a species drawing a
particular attention from the research community as it has been
shown to exert anti-inflammatory properties through its ability to
produce anti-inflammatory metabolites (e.g. butyrate), or to
inhibit of the production of pro-inflammatory cytokines(49).
Various studies have reported that F. prausnitzii is reduced in
conditions such as ulcerative colitis, inflammatory bowel dis-
ease, colorectal cancer, diabetes, psoriasis, etc.(49–51).
Consequently, this species has been proposed as a potential bio-
marker of gut health(52) and is even considered as an interesting
probiotic candidate(53). In particular, a decrease in F. prausnitzii
was previously reported in chronic kidney disease patients com-
paredwith healthy controls(54,55). This echoes our result of a neg-
ative association between F. prausnitzii and creatinine obtained
in a healthy sample without renal dysfunction. Overall, the
numerous associations we detected between bacterial taxa
and creatinine are in support of a gut-kidney conversation(56,57).
In this previously described bi-directional organ axis, the gut
contributes to inflammation and renal injury through microbiota
dysbiosis and dysregulations inmicrobialmetabolite production.
Conversely, kidney perturbations lead to dysbiosis and disrup-
tions in tight junction function therefore promoting inflammatory

Fig. 2. Associations between NMR variables and α-diversity indexes (observed
richness and Chao1 estimate of richness) from Spearman partial correlations
adjusted for age, sex, BMI, smoking status, physical activity and sequencing
depth, Milieu Intérieur study, France, 2012 (n 846). Q-values were obtained
applying a multiple testing correction (Benjamini–Hochberg false discovery rate
method). Only associations with Q-value ≤0·1 for observed richness, as well as
subsequent associations with Chao1 richness are presented. **P-value ≤ 0·003
and Q-value≤ 0·05; * P-value ≤ 0·01 and Q-value≤ 0·1; –, P-value≤ 0·05 and
Q-value >0·1. Corresponding values are shown in online Supplementary
Table S7. Spearman ρ: , 0·13; , −0·13. ppm, Parts per million;
CPMG, Carr–Purcell–Meiboom–Gill; NOESY1D, 1H one-dimensional NMR
pulse sequence nuclear Overhauser effect spectroscopy.

Metabolomic signatures and gut microbiota 987

https://doi.org/10.1017/S0007114520004870  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114520004870
https://doi.org/10.1017/S0007114520004870


Table 2. Associations between NMR variables and relative abundances of taxa with a Q-value≤ 0·1 after multiple testing correction, using multivariate associations with linear models (MaAsLins), Milieu
Intérieur study, France, 2012 (n 846)

Shift (ppm) Signal assignation Phylum | Class | Order | Family| Genus Species
MaAsLin coeffi-

cient Coverage* P† Q‡

CPMG 1·021–1·051 Unassigned signal Firmicutes| Negativicutes | Selenomonadales | Veillonellaceae| Sporomusa§ −68·5 35·22 <0·0001 0·07
1·527–1·631 CH2CH2COOC Firmicutes| Clostridia | Clostridiales | Lachnospiraceae | Clostridium

XlVa|
Clostridium C. bolteae 74·2 99·17 <0·0001 0·06

2·831–2·848 Citrate/=CH–CH2–
CH=

Firmicutes | Bacilli | Bacillales | Bacillaceae 1| Caldibacillus −198·2 35·34 <0·0001 0·07

2·967–3·071 Creatine/albumin
lysyl

Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Hydrogenoanaerobacterium H. saccharovorans −31·8 90·07 <0·0001 0·07

3·071–3·111 Creatinine Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Faecalibacterium −777·4 99·41 <0·0001 0·02
Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Faecalibacterium F. prausnitzii −797·3 99·41 <0·0001 0·03
Firmicutes | Negativicutes | Selenomonadales | Veillonellaceae| Sporomusa§ 31·8 35·22 <0·0001 0·06
Firmicutes | Negativicutes | Selenomonadales | Veillonellaceae| Sporomusa S. termitida 31·5 34·75 <0·0001 0·06
Tenericutes | Mollicutes | Acholeplasmatales | Acholeplasmataceae| Acholeplasma 42·0 32·98 0·0001 0·09
Firmicutes | Clostridia | Clostridiales | Clostridiaceae 1| Caloramator 63·9 58·63 <0·0001 0·06
Firmicutes | Clostridia | Clostridiales | Catabacteriaceae| Catabacter|| 67·0 68·56 <0·0001 0·001
Firmicutes | Clostridia | Clostridiales | Catabacteriaceae| Catabacter C. hongkongensis 64·0 68·56 <0·0001 0·002
Firmicutes | Clostridia | Clostridiales | Defluviitaleaceae| Defluviitalea 70·2 81·32 <0·0001 0·07
Firmicutes | Clostridia | Clostridiales | Defluviitaleaceae| Defluviitalea D. saccharophila 71·1 81·32 <0·0001 0·07
Firmicutes | Clostridia | Clostridiales | Peptococcaceae 2| Pelotomaculum 74·5 52·36 <0·0001 0·07
Firmicutes | Clostridia | Clostridiales | Peptococcaceae 2| Pelotomaculum P. propionicicum 82·6 51·30 <0·0001 0·01
Firmicutes | Clostridia | Clostridiales | Christensenellaceae| Christensenella 138·5 93·14 <0·0001 0·06
Firmicutes | Clostridia | Clostridiales | Christensenellaceae| Christensenella C. minuta 170·2 93·14 <0·0001 0·01
Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Saccharofermentans§|| 187·6 65·13 <0·0001 0·005
Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Saccharofermentans S. acetigenes|| 189·3 65·13 <0·0001 0·01
Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Sporobacter 305·1 93·50 <0·0001 0·02
Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Sporobacter S. termitidis 273·1 93·50 <0·0001 0·07
Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Intestinimonas 320·8 98·70 <0·0001 0·003
Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Intestinimonas I. butyriciproducens 352·4 98·70 <0·0001 0·002
Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Oscillibacter|| 396·2 99·76 <0·0001 0·03
Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Oscillibacter O. valericigenes 460·2 95·98 <0·0001 0·03
Firmicutes | Clostridia | Clostridiales | Eubacteriaceae| Eubacterium 447·6 99·88 <0·0001 0·06
Firmicutes | Clostridia | Clostridiales | Eubacteriaceae| Eubacterium E. coprostanoli-

genes
580·5 94·44 <0·0001 0·01

3·111–3·129 Unassigned signal Firmicutes | Clostridia | Clostridiales | Lachnospiraceae | Clostridium
XlVa|

Clostridium C. viride −133·2 90·31 <0·0001 0·03

3·367–3·437 Firmicutes | Clostridia | Clostridiales | Eubacteriaceae| Eubacterium E. rectale§ 266·4 98·94 <0·0001 0·1
3·437–3·496 Firmicutes | Clostridia | Clostridiales | Eubacteriaceae| Eubacterium E. rectale§ −470·9 98·94 <0·0001 0·03
3·496–3·587 Glucose Firmicutes | Clostridia | Clostridiales | Eubacteriaceae| Alkalibaculum −20·1 74·35 <0·0001 0·07
5·687–5·727 Urea Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Saccharofermentans§|| −219·2 65·13 <0·0001 0·07

Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Saccharofermentans S. acetigenes|| −207·7 65·13 <0·0001 0·09
NOESY1D 3·071–3·111 Creatinine Firmicutes | Clostridia | Clostridiales | Catabacteriaceae| Catabacter§ 79·7 68·56 <0·0001 0·01

Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Saccharofermentans§|| 265·0 65·13 <0·0001 0·03
Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Oscillibacter|| 567·1 99·76 <0·0001 0·09

3·532–3·588 Glucose Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Pseudobacteroides§ 28·9 19·62 <0·0001 <0·0001
Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Pseudobacteroides P. cellulosolvens 31·9 19·62 <0·0001 <0·0001
Firmicutes | Clostridia | Clostridiales | Clostridiaceae 4| Salimesophilobacter 41·9 24·82 <0·0001 0·03
Firmicutes | Clostridia | Clostridiales | Clostridiaceae 4| Salimesophilobacter S. vulgaris 44·5 24·82 <0·0001 0·03

3·588–3·611 Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Pseudobacteroides§ −21·0 19·62 <0·0001 0·0001
9·471–9·511 Unassigned signal Firmicutes | Clostridia | Clostridiales | Ruminococcaceae| Clostridium III 1038·8 98·11 <0·0001 0·08

ppm, Parts per million; CPMG, Carr–Purcell–Meiboom–Gill; NOESY1D, 1H one-dimensional NMR pulse sequence nuclear Overhauser effect spectroscopy.
* Prevalence of bacterial taxa in the study sample.
† P-value for MaAsLin adjusted for age, sex, BMI, smoking status and physical activity before Benjamini–Hochberg correction; computed using the MaAsLin package on R.
‡ Corrected P-value (Benjamini–Hochberg method, 10% false discovery rate). Only associations with a Q-value≤ 0·1 are presented.
§ Taxa found in association with at least two NMR signals.
|| Taxa found with both CPMG and NOESY1D.
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conditions in the gut. Notably, Jiang et al.(55) reported that indica-
tors of the renal function such as serum creatinine, estimated glo-
merular filtration rate and cystatin C were the most important
environmental parameters to influence the overall microbial
communities in end-stage renal disease patients. In our study,
a link between the gut and the kidneys seemed to be already
observed even in a healthy setting where individuals were free
of kidney or gut impairments. However, further exploration of
renal function indicators (e.g. estimated glomerular filtration
rate, cystatin C and urine creatinine) would be of utmost impor-
tance to confirm such a link. If we hypothesise a gut–kidney
axis to interpret our results, alternate interpretations could also
be proposed. Indeed, negative associations have also been
reported between trimethylamine N-oxide and F. prausnit-
zii(28,58), and creatinine is a precursor for the gut bacterial synthesis
of trimethylamine, which is further oxidised into trimethylamine
N-oxide in the liver(48). Therefore,we cannot rule out that the asso-
ciation we observed between creatinine and F. prausnitzii may
actually reflect the overall trimethylamineN-oxidemetabolic path-
way instead of being a true association. However, because trime-
thylamine N-oxide could not be detected by NMR in our study, it
was not possible to verify this assumption.

An important strength of this work pertains to its design –

namely the acquisition of both detailed metabolomics data
and gut microbiome data in a large population-based sample
of healthy adults. While individual or specific approaches con-
sider biomolecules separately, metabolomics allows for the
simultaneous detection and relative quantification of hundreds
of molecules, hence the monitoring of subtle system-wide met-
abolic interactions(59). In this study, we used NMRmetabolomics
with standardised and optimised protocols yielding high-quality
data(60). This robust and stable technology has demonstrated its
suitability for long-term epidemiological studies(61), notably by
allowing to analyse large samples quickly with a high reproduc-
ibility(62). From a statistical standpoint, the analyses implemented
here allowed to explore detailed associations between gut bac-
terial and metabolomic data sets, beyond the sole assessment of
global connections obtained through multivariate correlation-
based approaches (e.g. co-inertia or Procrustes analyses). In
addition, we were able to take into account a range of factors
reported to influence the gut microbiota composition or the sys-
temic metabolism of the host in our models, thus mitigating
potential confounding. Nonetheless, residual confounding can-
not be ruled out. For instance, intestinal transit time was shown
to be a major confounding factor of gut microbiota composi-
tion(63), and we were not able to collect this information.
Another important strength and originality of this work is that
it was based on a large sample from the general population
including only healthy men and women selected using strict cri-
teria. Hence, our results were not confounded by underlying dis-
ease and reflected normal range. Yet, this may also have induced
less variations in plasma metabolites levels or in gut microbiota
composition and therefore resulted in associations of smaller
magnitude. Some limitations should also be acknowledged for
this study. First, the cross-sectional design of our study, in which
blood and stool samples were taken at the same time, prevents
from drawing any conclusion regarding the sequential causality
of events between host metabolism (e.g. creatinine levels) and

gut microbiota composition (e.g. F. prausnitzii). Further,
plasma metabolomic signatures only give a metabolic
‘snapshot’ that results from both the endogenous and the
gut microbial metabolisms, which makes it not possible to dis-
criminate signals from human or microbial origin. In future
studies, subsequent time points with both metabolomic and
microbiota data collected would be of utmost interest to inves-
tigate the stability over time and the chronology of the asso-
ciations observed in the present cross-sectional work. In
addition, the fact that most detected metabolites result from
multiple metabolic pathways that may be related to gut
microbiota or not may also explain the modest correlation
coefficients observed between plasma metabolites and gut
microbial richness. It should also be acknowledged that,
although highly informative, the use of 16S rRNA gene
sequencing and NMR metabolomics presents technical limita-
tions. Shotgun metagenomics for instance would give a more
precise characterisation of microbiota features and also bring
additional information regarding the functional metabolic
capacity of the gut microbiota. This would allow to go beyond
the compositional approach, limited by the redundancy of
gene pool and metabolic functionalities between distinct
gut microbial members(64,65), but still relevant according to
recent studies arguing that some metabolic pathways pertain
to a handful of species(66). Likewise, while NMR detects only
themost abundant metabolites (μM to mM range), MS has lower
detection limits and higher sensitivity for signal assignment
and would therefore allow the detection of metabolites unde-
tectable with NMR(67). This technical limitation of NMR may
explain why several low-concentration metabolites deriving
specifically from gut microbiota were not detected in our
study. As already mentioned, the precision of NMR bucket
assignment was also limited for some metabolites, especially
for lipids and proteins. For instance, the unsaturation corre-
sponds to a chemical function in the aliphatic chain of various
lipids, and it is impossible to differentiate among the different
lipid types within the plasma sample. Hence, this limits the
comparability of our results to prior studies. In addition,
plasma samples underwent two freeze-thaw cycles prior to
NMR analyses (necessary to prepare internal quality controls)
so that the possibility of increased metabolites cleavage can-
not be ruled out. Still, this would similarly affect all samples as
they all went through the same process.

Although theMilieu Intérieur population is somewhat repre-
sentative of the French Ille-et-Vilaine region(33), our study sam-
ple is not representative of the whole French adult population –

caution is therefore needed in the generalisation of our results.
However, it is important to acknowledge that from a gut micro-
biota composition standpoint, our study sample was consistent
with other studies performed in Western settings(41,68), with the
same five most abundant phyla and shared ‘core genera’ (online
Supplementary Table S1). Finally, the results highlighted here
were mostly exploratory as they were obtained from a single
population. These results will need to be replicated and con-
firmed in the future, using independent samples and/or analyti-
cal techniques allowing a better refinement of the detected
metabolites (e.g. MS, lipidomics). In addition, the hypotheses
we proposed to interpret our results were based on existing

Metabolomic signatures and gut microbiota 989

https://doi.org/10.1017/S0007114520004870  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114520004870
https://doi.org/10.1017/S0007114520004870


literature and would need to be developed and confirmed in
experimental settings in vitro and/or in vivo. In particular,
detailed mechanistic studies comprehensively elucidating the
metabolic capability of gut microorganisms are needed to
enlighten the associations we detected.

Overall, the present study provides interesting insights
regarding the associations between gut microbiota composition
and plasma metabolic signatures of the host. Our results contrib-
ute to a better understanding of the host–gut microbiota relation-
ships and notably highlight a possible gut–kidney axis in healthy
subjects. Because the associations we found in healthy individ-
uals were already reported in chronic kidney disease patients,
this builds up to the concept that onset of chronic diseases is
a lengthy process that could be detected at early stages. This
appears all the more interesting that microbial–host co-metabo-
lites were shown to be excellent prodromal markers of future
divergence in metabolic and behavioural outcomes in mice(69).
However, our results remain to be confirmed in independent
populations, underlying mechanisms to be elucidated and
causal implications for the host health to be established.
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