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Abstract

We analyse an additive-increase and multiplicative-decrease (also known as growth–
collapse) process that grows linearly in time and that, at Poisson epochs, experiences
downward jumps that are (deterministically) proportional to its present position. For
this process, and also for its reflected versions, we consider one- and two-sided exit
problems that concern the identification of the laws of exit times from fixed intervals
and half-lines. All proofs are based on a unified first-step analysis approach at the first
jump epoch, which allows us to give explicit, yet involved, formulas for their Laplace
transforms. All eight Laplace transforms can be described in terms of two so-called scale
functions associated with the upward one-sided exit time and with the upward two-sided
exit time. All other Laplace transforms can be obtained from the above scale functions
by taking limits, derivatives, integrals, and combinations of these.
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1. Introduction

We analyse an additive-increase and multiplicative-decrease (also known as growth–
collapse or stress–release) process X ≡ (Xt)t≥0 that grows linearly with slope β and experiences
downward jumps at Poisson epochs, say (Ti)i∈N with fixed intensity λ. The collapses are
modelled by multiplying the present process position by a fixed proportion p ∈ (0, 1), i.e.
−�XTi = (1 − p)XTi− for �Xt = Xt − Xt−. We assume that the process starts on the posi-
tive half-line X0 = x > 0. An illustration of a path of the process Xt is depicted in Fig. 1. For
more information on this class of processes, the interested reader is referred to [39]. Note that,
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86 R. VAN DER HOFSTAD ET AL.

FIGURE 1. Additive-increase and multiplicative-decrease process path.

without loss of generality, we can assume that β = 1. Results for general β may be obtained
using a simple time rescaling. On a logarithmic scale the considered process is equivalent to a
jump diffusion with drift coefficient 1/x and jumps coming from the Poisson process multiplied
by log p, which is a particular jump diffusion.

The additive-increase and the multiplicative-decrease (AIMD) process has various appli-
cations. For example, it appears as the fluid limit scaling for some queueing models (with
binomial catastrophe rates) used in modelling population growth subject to mild catastrophes;
see, e.g., [1, 2] and the references therein. Such processes can be viewed as a particular exam-
ple of the so-called shot noise model, which is used in models of earthquakes, avalanches,
or neuron firings. Moreover, this process is also used in the AIMD algorithm to model the
Transmission Control Protocol (with p = 1

2 ), the dominant protocol for data transfer over the
internet (see [17, 26]).

1.1. Main contribution of the paper

The main objective of this work is to identify the laws of the exit (aka first passage) times

τ↑a(x) = inf{t ≥ 0 : Xt > a | X0 = x} (1.1)

for x ∈ [0, a), and
τ↓b(x) = inf{t ≥ 0 : Xt ≤ b | X0 = x} (1.2)

for x ∈ [b, +∞), and to present a unifying framework for their derivation.
The master plan, in a fluctuation theory of Markov processes with jumps in one direction, is

to produce a great variety of exit identities in terms of a few key functions only (the so-called
scale functions, a term originating from diffusion theory; see, e.g., [21, 22, 23, 27]). These
crucial functions appear in the Laplace transform of the exit times in (1.1) and (1.2). Hence,
the first main step is to identify these ‘alphabet functions’. This is the main result in this paper,
where we identify these scale functions. It is commonly believed that at most only three scale
functions (or three letters) are needed.

In the case of Lévy processes there are only two scale functions, which are related to the
various ways in which the process can exit the interval: only in a continuous way via the upper
end of this interval, and possibly by a jump via the lower end of this interval; see [5] for further
discussion. With these scale or key functions at hand, we are usually able to solve most other
identities for the original process or for related transformed ones. Such transformations are usu-
ally obtained by a reflection (at the running infimum or supremum of the process), a refraction
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(only a fixed portion of the process is reflected), a twisting of measure, or an additional random-
ization (via Poisson observation, subordination, etc.). Finally, this ‘scale-functions paradigm’
is used in many applications, appearing in queueing theory, actuarial science, optimization,
mathematical finance, or control theory, again exemplifying their importance; see [33] for
details.

The above complete plan has been executed only for spectrally negative Lévy processes—
an overview of this theory is given in [33]; see also [4, 8, 9, 10, 16, 18, 31, 45, 49]. Most proofs
in this theory only rely on two key properties: the Markov property and the skip-free property.
Hence, there is hope that part of this master plan can be realized for other processes with
only downward jumps as well. In this paper we identify ‘alphabet’ functions for the additive-
increase and multiplicative-decrease process X introduced formally above.

We show that for the additive-increase and multiplicative-decrease process, as well as for
related transformed ones, we only need two scale functions, with which all other Laplace
transforms can be related; see Remarks 2.3 and 2.6.

There are already some results of this kind for other Markov processes; see [11] for an
overview. In risk and queueing theories some of the Lévy-type results have been already gen-
eralized to compound renewal processes; see [3]. Other deep results have been obtained for
diffusion processes (see [12, 15, 19, 34, 38, 47]). Similar results have been derived in the con-
text of generalized spectrally negative Ornstein–Uhlenbeck processes (see [24, 29, 41, 42]).
Later, spectrally positive self-similar Markov processes were analysed as well; see [36]. Other
types of processes where scale functions have been successfully identified concern Lévy-driven
Langevin-type processes [14]; affine processes [7]; Markov addititive processes [28, 32]; and
Segerdahl–Tichy processes [6, 40, 43, 46, 48].

The additive-increase and multiplicative-decrease processes under consideration have one
substantial difference from the abovementioned Lévy processes, namely the jump size depends
on the position of the process X prior to this jump. This produces substantial difficulties in solv-
ing the exit problems, and handling them requires a new approach. In particular, the principal
tools in Lévy-type fluctuation theory, Wiener–Hopf factorization and Itô’s excursion theory,
are not available in our case. Instead, we rely on a first-step analysis that allows us to identify
the two scale functions. This is a novel approach for such problems, as we explain in more
detail now.

1.2. First-step analysis as a main method

The proposed unifying approach for the computation of the exit identities relies on a first-
step analysis based on finding the position of the considered processes right after the first jump
epoch. This approach produces a recursive equation, which we subsequently solve. Instead of
this approach, one could also implement the differential equation method, as often used for
diffusion and Lévy processes, and this would yield the same recursive equation as the first-step
analysis proposed in this paper.

This method has long been known in the literature (see, e.g., [3, Chapter XII], [13, Part 2],
and [20]), but we believe that it is the first time that this type of analysis (i.e. the identification
of all scale functions) has been done for our process with a proportional size of down-jumps
from the present position. We think that this approach, using only the Markov property and
the structure of trajectories, could be used for other Markov processes having the skip-free
property as well.

We manage to solve the exit problems for reflected processes (where reflection occurs at
the lower and upper fixed levels, as well as at the running infimum and maximum). For such
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processes, our approach is more standard and it is based on using the method in [38], and on
the construction of a Kennedy martingale adapted to our model, followed by an application of
the optimal stopping theorem.

1.3. Organisation of the paper

The remainder of this paper is structured as follows. In Sections 2 and 3 we present our main
results with their proofs. In Section 4, we close with a discussion of our results, alternative
approaches, and possible future directions.

2. Exit identities

Given the initial position of the stochastic process, say X0 = x, the exit problems are solved
by characterizing the Laplace–Stieltjes transforms of τ↑a(x) in (1.1), τ↓b(x) in (1.2), and

τa,b(x) = min{τ↑a(x), τ↓b(x)} (2.1)

with x ∈ (b, a). Note that the stochastic process X will hit the threshold a when crossing
upwards as it can only move continuously upwards (creeping). On the other hand, it jumps
over the threshold b when crossing b from above. As such (creeping versus jumping), the
derivation of the two exit times encompasses different properties requiring typically very dif-
ferent techniques. Here, we propose a unifying framework for exit times, for both one- and
two-sided exit problems. In what follows, suppose that the law Px corresponds to the condi-
tional version of P given that X0 = x. Analogously, Ex denotes the expectation with respect to
Px. Let Ft be a right-continuous natural filtration of X satisfying the usual conditions.

We now state our main results, given in Theorems 2.1 and 2.2, which study upward and
downward crossing problems, and Theorems 2.3 and 2.4, which study two-sided exit problems,
below. We start by discussing upward one-sided exit problems.

Theorem 2.1. (Upward one-sided exit problem.) Given x ∈ (0, a), the Laplace–Stieltjes trans-
form of the upward exit time τ↑a(x) of the additive-increase and multiplicative-decrease process
(Xt)t≥0 is given by

Z↑(w; x, a) := Ex
[
e−wτ↑a(x)]= Z↑(w; 0, a)

Z↑(w; 0, x)
, Re[w] > 0,

with

Z↑(w; 0, x) = 1∑∞
k=0

(x/(w+λ))k

k! (λ/(w + λ); p)k

, (2.2)

with (u; p)k denoting the Pochhammer numbers given by

(u; p)k =
⎧⎨⎩1, k = 0,∏k−1

i=0 (1 − upi), k = 1, 2, . . .

Note that this result matches the result reported in [37, Section 4.2], in which the authors
instead used a martingale approach for the derivation of the recursive equation satisfied by the
Laplace–Stieltjes transform of the exit time.
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Proof. Note that τ↑a(0) = τ↑x(0) + τ↑a(x) for all x ∈ (0, a), where τ↑x(0) and τ↑a(x) are inde-
pendent. This is due to the strong Markov property, combined with the fact that Xτ↑a(x) = a
since X does not have upward jumps (only creeps upwards). Hence,

Z↑(w; 0, a) = Z↑(w; 0, x)Z↑(w; x, a) (2.3)

for all w ∈C with Re[w] > 0, and for all x ∈ (0, a). This implies that in order to prove
Theorem 2.1 it suffices to prove (2.2).

For this purpose, we write τ↑a(0)
d= a1{T>a} + (T + τ↑a(Tp))1{T≤a}, with T = inf{t : Xt <

Xt−} denoting the time of the first downward jump, which is exponentially distributed with
intensity λ, and 1{·} denoting the indicator function taking value one if the event inside the
brackets is satisfied and zero otherwise. The above result readily implies that

Z↑(w; 0, a) := E0[e−wτ↑a(0)] = e−(λ+w)a +
∫ a

0
λe−λte−wt

Etp[e−wτ↑a(tp)] dt

= e−(λ+w)a + λ

∫ a

0
e−(λ+w)tZ↑(w; tp, a) dt.

In light of (2.3), this yields

Z↑(w; 0, a) = e−(λ+w)a + λZ↑(w; 0, a)
∫ a

0
e−(λ+w)t 1

Z↑(w; 0, tp)
dt.

This may be rewritten as

1 = e−(λ+w)a

Z↑(w; 0, a)
+ λ

∫ a

0
e−(λ+w)t 1

Z↑(w; 0, tp)
dt. (2.4)

Let Z̃↑(w, s) = ∫∞
0 e−sa[1/Z↑(w; 0, a)] da (note that this is well defined for s ∈C with Re[s] >

λ + Re[w]). Multiplying both sides of (2.4) by e−sa and integrating over a yields, after
straightforward manipulations,

sZ̃↑(w, λ + w + s) = −λ

p
Z̃↑
(

w,
λ + w + s

p

)
+ 1.

Setting z = λ + w + s leads to the recursive relation (λ + w − z)Z̃↑(w, z) = (λ/p)Z̃↑(w, zp−1)
−1. All in all, the above can be written as Z̃↑(w, z) = A(w, z) + B(w, z)Z̃↑(w, zp−1), yielding,
upon iterating,

Z̃↑(w, z) =
∞∑

k=0

A(w, zp−k)
k−1∏
i=0

B(w, zp−i) + lim
k→∞ Z̃↑(w, zp−k)

k−1∏
i=0

B(w, zp−i),

with

A(w, z) = −1

λ + w − z
, B(w, z) = λ

p(λ + w − z)
.

Note that limk→∞ Z̃↑(w, zp−k) = 0 and that limk→∞
∏k−1

i=0 B(w, zp−i) = 0 for all Re[z] > λ +
Re[w]. Hence,

Z̃↑(w, z) = −
∞∑

k=0

1

λ + w − zp−k

k−1∏
i=0

λ

p(w + λ − zp−i)

∞∑
k=0

1

zk+1

k−1∏
i=0

(λ + w − λpi).
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The last equation follows by a straightforward application of [25, Equation (1.5.4)]. Equation
(2.2) then follows immediately.

Alternatively, one can look for a solution in the form Z̃↑(w, z) =∑∞
k=−∞ck(w)z−k with

unknown ck(w). The above relation readily implies that ck(w) = 0 for all k ≤ 0, c1(w) = 1, and,
for k ≥ 2, ck(w) =∏k−1

i=0 (λ + w − λpi). �

In the following remark we prove the uniqueness of the solution obtained in Theorem 2.1
(equivalently, the uniqueness of the solution of Theorem 2.2).

Remark 2.1. (Uniqueness solutions.) Let us assume that there are two solutions, say Z̃+
↑ (w, z)

and Z̃−
↑ (w, z), to a recursive equation of the type

Z̃↑(w, z) = A(w, z) + B(w, z)Z̃↑(w, zp−1). (2.5)

Then, the uniqueness of the solution follows from the recursive application of (2.5), since

Z̃+
↑ (w, z) − Z̃−

↑ (w, z)
(2.5)= B(w, z)

(
Z̃+

↑ (w, zp−1) − Z̃−
↑ (w, zp−1)

)
= lim

k→∞
(
Z̃+

↑ (w, zp−k) − Z̃−
↑ (w, zp−k)

) k−1∏
i=0

B(w, zp−i) = 0

as limk→∞ Z̃↑(w, zp−k) = 0 by the definition of the transform, and since

lim
k→∞

k−1∏
i=0

B(w, zp−i) = lim
k→∞

k−1∏
i=0

λ

p(w + λ − zp−i)
= 0

for all Re[z] > λ + Re[w]. Thus, the solution obtained is unique.

We continue by studying downward one-sided exit problems.

Theorem 2.2. (Downward one-sided exit problem.) Given x ∈ (b, ∞), the Laplace–Stieltjes
transform

Z↓(w; x, b) := Ex[e−wτ↓b(x)], Re[w] > 0, (2.6)

of the downward crossing time τ↓b(x) of the additive-increase and multiplicative-decrease
process (Xt)t≥0 equals

Z↓(w; x, b)

= w

w + λ

∞∑
k=1

(
λ

w + λ

)k

1{b<x≤bp−k}

+ w

λ(w + λ)

∞∑
k=0

(
λ

w + λ

)k+1 k∑
i=0

1 − (1 + C̃(w; b))pi−k∏k
j=0,j �=i (1 − pi−j)

1{bp−k>x}e(w+λ)pix, (2.7)

with

C̃(w; b) =
∑∞

l=0 e−b(w+λ)p−l λl(−1)lpl(l+1)/2

(w+λ)l(p; p)l∑∞
l=0 e−b(w+λ)p−l λl(−1)lpl(l−1)/2

(w+λ)l(p; p)l

− 1. (2.8)
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Proof. In order to compute the first downward crossing time, we employ a first-step analysis
approach yielding

τ↓b(x)
d= T1{(x+T)p≤b} + (T + τ↓b((x + T)p))1{(x+T)p>b}, (2.9)

with T denoting the time of the first downward jump, which is exponentially distributed
with intensity λ. Let Z̃↓(w, z; b) := ∫∞

b e−zx
Ex[e−wτ↓b(x)] dx with Re[z] > λ + Re[w]; then the

above result, after cumbersome but straightforward computations, implies that

Z̃↓(w, z; b) = λ

w + λ

(
eb(w+λ)(1−p−1)−bz − e−bzp−1

w + λ − z
+ e−bz − e−bzp−1

z

)

− λeb(w+λ−z)

p(w + λ − z)
Z̃↓(w, (w + λ)p−1; b) + λ

p(w + λ − z)
Z̃↓(w, zp−1; b). (2.10)

All in all, the above can be written as Z̃↓(w, z; b) = C(w, z) + D(w, z)Z̃↓(w, zp−1; b), yielding,
upon iterating,

Z̃↓(w, z; b) =
∞∑

k=0

C(w, zp−k)
k−1∏
i=0

D(w, zp−i) + lim
k→∞ Z̃↓(w, zp−k; b)

k−1∏
i=0

D(w, zp−i).

Note that limk→∞ Z̃↓(w, zp−k; b) = 0 and that limk→∞
∏k−1

i=0 D(w, zp−i) = 0 for all z ∈C with
Re[z] > λ + Re[w]. All in all,

Z̃↓(w, z; b) = λ

w + λ

∞∑
k=0

(
eb(w+λ)(1−p−1)−bzp−k − e−bzp−k−1

w + λ − zp−k
+ e−bzp−k − e−bzp−k−1

zp−k

)

×
k−1∏
i=0

λ

p(w + λ − zp−i)

− Z̃↓(w, (w + λ)p−1; b)
∞∑

k=0

eb(w+λ−zp−k)
k∏

i=0

λ

p(w + λ − zp−i)
. (2.11)

In order to compute Z̃↓(w, (w + λ)p−1; b), we first multiply (2.11) by w + λ − z. After sim-
plifying the resulting expressions we set z = w + λ, rendering the left-hand side of (2.11) zero.
This yields, after some straightforward algebraic manipulations,

Z̃↓(w, (w + λ)p−1; b)

=
[

λ

w + λ

∞∑
k=1

(
eb(w+λ)(1−p−1−p−k) − e−b(w+λ)p−k−1

(w + λ)(1 − p−k)
+ e−b(w+λ)p−k − e−b(w+λ)p−k−1

(w + λ)p−k

)

×
k−1∏
i=1

λ

p(w + λ)(1 − p−i)

][ ∞∑
k=0

eb(w+λ)(1−p−k)
k∏

i=1

λ

p(w + λ)(1 − p−i)

]−1
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= p

w + λ
e−b(w+λ)p−1 − p

w + λ
e−b(w+λ)p−1 1∑∞

k=0 e−b(w+λ)p−k ∏k
i=1

λ
p(w+λ)(1−p−i)

+ λ

w + λ
e−b(w+λ)p−1

[ ∑∞
k=1

e−b(w+λ)p−k

(w+λ)p−k

∏k−1
i=1

λ
p(w+λ)(1−p−i)∑∞

k=0 e−b(w+λ)p−k ∏k
i=1

λ
p(w+λ)(1−p−i)

−
∑∞

k=1

(
e−b(w+λ)p−k−1

(w+λ)(1−p−k)
+ e−b(w+λ)p−k−1

(w+λ)p−k

)∏k−1
i=1

λ
p(w+λ)(1−p−i)∑∞

k=0 e−b(w+λ)p−k ∏k
i=1

λ
p(w+λ)(1−p−i)

]

= p

w + λ
e−b(w+λ)p−1 − w

w + λ
e−b(w+λ)

∑∞
k=1

e−b(w+λ)p−k

(w+λ)p−k

∏k−1
i=1

λ
p(w+λ)(1−p−i)∑∞

k=0 e−b(w+λ)p−k ∏k
i=1

λ
p(w+λ)(1−p−i)

.

In light of this expression, (2.11) yields

Z̃↓(w, z; b)

= λ

w + λ

∞∑
k=0

(
− e−bzp−k−1

w + λ − zp−k
+ e−bzp−k − e−bzp−k−1

zp−k

)
k−1∏
i=0

λ

p(w + λ − zp−i)

+ w

w + λ

∑∞
l=1

e−b(w+λ)p−l

(w+λ)p−l

∏l−1
i=1

λ
p(w+λ)(1−p−i)∑∞

l=0 e−b(w+λ)p−l ∏l
i=1

λ
p(w+λ)(1−p−i)

∞∑
k=0

e−bzp−k
k∏

i=0

λ

p(w + λ − zp−i)

= e−bz

z
− w

w + λ

∞∑
k=0

e−bzp−k

zp−k

k−1∏
i=0

λ

p(w + λ − zp−i)

+ w

w + λ

p

λ
C̃(w; b)

∞∑
k=0

e−bzp−k
k∏

i=0

λ

p(w + λ − zp−i)
, (2.12)

with C̃(w; b) as given in (2.8).
We now proceed with the inversion of the Laplace–Stieltjes transform with respect to z. To

this end, we rewrite (2.12) by expanding the products into summations:

Z̃↓(w, z; b)

= e−bz

z
− w

w + λ

∞∑
k=0

e−bzp−k
λk

z

k−1∏
i=0

1

w + λ − zp−i

+ w

w + λ

p

λ
C̃(w; b)

∞∑
k=0

e−bzp−k
λk+1

pk+1

k∏
i=0

1

w + λ − zp−i

= λ

w + λ

e−bz

z

+ w

w + λ

∞∑
k=1

(
λ

w + λ

)k
(

1

(w + λ)

k−1∑
i=0

1∏k−1
j=0,j �=i (1 − pi−j)

e−bzp−k

z − (w + λ)pi
− e−bzp−k

z

)
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− w

w + λ

p

λ
C̃(w; b)

∞∑
k=0

(
λ

p(w + λ)

)k+1 k∑
i=0

pi∏k
j=0,j �=i (1 − pi−j)

e−bzp−k

z − (w + λ)pi

= w

w + λ

∞∑
k=1

(
λ

w + λ

)k e−bz − e−bzp−k

z

+ w

(w + λ)2

∞∑
k=1

(
λ

w + λ

)k k−1∑
i=0

1∏k−1
j=0,j �=i (1 − pi−j)

e−bzp−k

z − (w + λ)pi

− w

w + λ

p

λ
C̃(w; b)

∞∑
k=0

(
λ

w + λ

)k+1 k∑
i=0

pi−k−1∏k
j=0,j �=i (1 − pi−j)

e−bzp−k

z − (w + λ)pi

= w

w + λ

∞∑
k=1

(
λ

w + λ

)k ∫ ∞

b
e−zx1{b<x≤bp−k} dx

+ w

λ(w + λ)

∞∑
k=0

(
λ

w + λ

)k+1 k∑
i=0

1 − pi−k∏k
j=0,j �=i (1 − pi−j)

∫ ∞

b
e−zx1{bp−k<x}e(w+λ)pix dx

− w

λ(w + λ)
C̃(w; b)

∞∑
k=0

(
λ

w + λ

)k+1

×
k∑

i=0

pi−k∏k
j=0,j �=i (1 − pi−j)

∫ ∞

b
e−zx1{bp−k<x}e(w+λ)pix dx

= w

w + λ

∞∑
k=1

(
λ

w + λ

)k ∫ ∞

b
e−zx1{b<x≤bp−k} dx

+ w

λ(w + λ)

∞∑
k=0

(
λ

w + λ

)k+1

×
k∑

i=0

1 − (1 + C̃(w; b))pi−k∏k
j=0,j �=i (1 − pi−j)

∫ ∞

b
e−zx1{bp−k<x}e(w+λ)pix dx,

which completes the proof of the theorem. �

Remark 2.2. (Alternative approach.) Instead of the above solution, we could equivalently
consider that

Z̃↓(w, z; b) =
∞∑

n=−∞
cn(w; b)zn, (2.13)

and substitute this into the recursion (2.10). This yields

(w + λ − z)
∞∑

n=−∞
cn(w; b)zn =

∞∑
n=0

an(w; b)zn +
∞∑

n=−∞
λcn(w; b)p−n−1zn,
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with
∞∑

n=0

an(w; b)zn = λ

w + λ

(
eb(w+λ)(1−p−1)−bz − e−bzp−1 + (

e−bz − e−bzp−1)w + λ − z

z

)
− λ

p
eb(w+λ−z)Z̃↓(w, (w + λ)p−1; b).

Equating the coefficients of zn, n ∈Z, yields

2cn(w; b) = an(w; b) + cn−1(w; b)

w + λ(1 − p−n−1)

=
n∑

k=0

ak(w; b)∏n+1
i=k+1 (w + λ(1 − p−i))

+ c−1(w; b)
n+1∏
i=1

(w + λ(1 − p−i))

, n ≥ 0, (2.14)

c−n(w; b) = (w + λ(1 − pn−2))c−n+1(w; b)

=
n−2∏
i=0

(
w + λ(1 − p−i)

)
c−1(w; b), n ≥ 2, (2.15)

with c−1(w; b) = 1{w=0}. On the one hand, note that limn→∞ c−n(w; b) = 0. On the other hand,
taking the limit in the left-hand side of (2.15) yields

∞∏
i=0

(
w + λ(1 − p−i)

)=
{

0 if w = 0,

∞ otherwise.

Moreover, Z̃↓(0, z; b) = ∫∞
b e−zx dx = e−bz/z. So, all in all, c−1(w; b) = 1{w=0} and

c−n(w; b) = 0 for all n ≥ 2. Note that this is consistent with the result from (2.12), as
limz→0 zZ̃↓(w, z; b) = 1 − 1{w�=0} = 1{w=0}.

Furthermore, we can compute Z̃↓(w, (w + λ)p−1; b) by noting that the sequence an(w; b)
can be decomposed into an(w; b) = an,1(w; b) + Z̃↓(w, (w + λ)p−1; b)an,2(w; b), where the
subsequences an,1(w; b) and an,2(w; b) are fully known (they are the coefficients of the Taylor
expansions of the exponents). Then, by the definition of (2.13) and by (2.14) and (2.15),

Z̃↓(w, (w + λ)p−1; b) =
∞∑

n=0

n∑
k=0

(ak,1(w; b) + Z̃↓(w, (w + λ)p−1; b)ak,2(w; b))
(w+λ

p

)n∏n+1
i=k+1(w + λ(1 − p−i))

+ 1{w=0}
∞∑

n=−1

(w+λ
p

)n∏n+1
i=1 (w + λ(1 − p−i))

,

which yields, after straightforward computations, the value of Z̃↓(w, (w + λ)p−1; b). Note that
this form of the double Laplace–Stieltjes transform does not permit a straightforward inversion
with respect to z, as done in the proof of Theorem 2.2.

Having established the laws governing the one-sided exit problems (up-crossing by creeping
or down-crossing by a jump), we proceed with the next two theorems, in which we analyse the
double-sided exit problems.

Theorem 2.3. (Upward two-sided exit problem.) For x ∈ [b, a), the Laplace–Stieltjes trans-
form

L↑(w; x, a, b) := Ex
[
e−wτ↑a(x)1{τ↑a(x)<τ↓b(x)}

]
(2.16)
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of the upward two-sided exit time τ↑a(x) of the additive-increase and multiplicative-decrease
process (Xt)t≥0 equals

L↑(w; x, a, b) = L↑(w; b, a, b)

L↑(w; b, x, b)
, (2.17)

and L↑(w; b, x, b) (similarly for L↑(w; b, a, b)) may be found recursively for all values of x as
follows:

For x ∈ (b, bp−1],
L↑(w; b, x, b) = e−(w+λ)(x−b). (2.18)

For x ∈ (b/pk, b/pk+1] and all k ≥ 1,

L↑(w; b, x, b) = e−(w+λ)(x−b/pk)

×
[

1

L↑(w; b, b/pk, b)
−
∫ x−b/pk

0

λe−(λ+w)t

L↑(w; b, b/pk−1 + pt, b)
dt

]−1

, (2.19)

where it is assumed that recursively L↑(w; b, y, b) is known for all y ≤ b/pk, the starting point
of the recursion being given by (2.18).

Proof. First, we have, for all y ∈ [b, x), τ↑a(y)1{τ↑a(y)<τ↓b(y)}
d= τ↑x(y)1{τ↑x(y)<τ↓b(y)} +

τ↑a(x)1{τ↑a(x)<τ↓b(x)}, and note that the random variables on the right-hand side are indepen-
dent, which follows straightforwardly from the Markov property. Taking y = b proves (2.17).
We can therefore focus only on the computation of L↑(w; b, x, b) for b < x ≤ a, in which the
starting position is set to b.

If x ∈ (b, b/p), then L↑(w; b, x, b) =Eb
[
e−wτ↑x(b)1{τ↑a(b)<τ↓b(b)}

]= e−w(x−b)
P(T > x − b) =

e−(w+λ)(x−b), which proves (2.18).
Next, assume that x ∈ (b/pk, b/pk+1] for k ≥ 1. Then, from arguments similar to those used

in the proof of (2.17),

L↑(w; b, x, b) = L↑(w; b, b/pk, b)L↑(w; b/pk, x, b). (2.20)

Now note that

τ↑x(b/pk)1{τ↑x(b/pk)<τ↓b(b/pk)}
d= (x − b/pk)1{T>x−b/pk}

+
(

T + τ↑x(p(b/pk + T))1{τ↑x(p(b/pk+T))<τ↓b(p(b/pk+T))}
)

1{T≤x−b/pk}.

Taking Laplace transforms, we obtain

L↑(w; b/pk, x, b) = e−(w+λ)(x−b/pk) +
∫ x−b/pk

0
λe−(w+λ)tL↑(w; b/pk−1 + pt, x, b) dt.

We can now apply (2.20) to rewrite the above as

L↑(w; b, x, b)

L↑(w; b, b/pk, b)
= e−(w+λ)(x−b/pk) +

∫ x−b/pk

0
λe−(λ+w)t L↑(w; b, x, b)

L↑(w; b, b/pk−1 + pt, b)
dt,

which leads to (2.19). �
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Remark 2.3. (Relation of Theorems 2.1 and 2.3.) The result of Theorem 2.1 might be retrieved
from Theorem 2.3 if we use the fact that limb→0 L↑(w; x, a, b) = Z↑(w; x, a) when a and x are
fixed. In particular, note that (2.19) looks very similar to, for instance, the equation just above
(2.4). However, it is hard to perform this limit from the result in Theorem 2.3 since, when
we let b tend to 0 while leaving x fixed, b/pk tends to zero as well. This makes it difficult
to explicitly compute the limit. Thus, while theoretically the scale function Z↑(w; x, a) can be
directly related to L↑(w; x, a, b), in practice this is difficult.

Remark 2.4. (Convenient rewrite of (2.19).) Note also that, if we introduce

K↑(w; a, x, b) = 1

L↑(w; a, x, b)
,

then (2.19), rewritten for K↑, for x ∈ (b/pk, b/pk+1] and all k ≥ 1, simplifies to

K↑(w; b, x, b) = e(w+λ)(x−b/pk)K↑(w; b, b/pk, b)

− e(w+λ)(x−b/pk)
∫ x−b/pk

0

λ

p
e−(λ+w)tK↑(w; b, b/pk−1 + pt, b) dt

= e(w+λ)(x−b/pk)K↑(w; b, b/pk, b)

− e(w+λ)(x−b/pk)
∫ px

b/pk−1

λ

p
e−(λ+w)(s/p−b/pk)K↑(w; b, s, b) ds

= e(w+λ)(x−b/pk)K↑(w; b, b/pk, b)

− e(w+λ)x
∫ px

b/pk−1

λ

p
e−(λ+w)s/pK↑(w; b, s, b) ds,

where K↑(w; b, x, b) = e(w+λ)(x−b) for x ∈ (b, b/p].
This also allows us to perform the iteration explicitly for more values of x. Indeed, for k = 1

and thus x ∈ (b/p, b/p2], the recursion yields

K↑(w; b, x, b)

= e(w+λ)(x−b/p)K↑(w; b, b/p, b) − e(w+λ)x
∫ px

b

λ

p
e−(λ+w)s/pK↑(w; b, s, b) ds

= e(w+λ)(x−b/p)e(w+λ)(b/p−b) − e(w+λ)x
∫ xp

b

λ

p
e−(λ+w)s/pe(w+λ)(s−b) ds

= e(w+λ)(x−b) − e(w+λ)x
∫ xp

b

λ

p
e−(w+λ)s(1−1/p) ds

= e(w+λ)(x−b) − e(w+λ)x λ

(1 − p)(w + λ)

[
e−(w+λ)b(1−1/p) − e−(w+λ)x(1−p)]. (2.21)

We extend this one iteration further, to obtain, for k = 2 and thus x ∈ (b/p2, b/p3],

K↑(w; b, x, b) = e(w+λ)(x−b/p2)K↑(w; b, b/p2, b)

− e(w+λ)x
∫ px

b/p
λe−(λ+w)s/pK↑(w; b, s, b) ds.
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After this, we can substitute (2.21) to compute K↑(w; b, x, b) for x ∈ (b/p2, b/p3]. By iteration,
it is easily seen that there exist coefficients an,k = an,k(p, w, λ) such that, for x ∈ (b/pk, b/pk+1]
and all k ≥ 1,

K↑(w; b, x, b) =
k∑

n=0

an,ke(w+λ)pnx. (2.22)

In turn, this representation looks similar to (2.7), but here we have no exact formula for the
coefficients an,k, whereas in (2.7) we do.

Remark 2.5. (Continuity and differentiability of a �→ L↑(w; x, a, b).) The above formulas
are also convenient for studying the continuity and differentiability properties of x �→
L↑(w; b, x, b). Indeed, by K↑(w; x, a, b) = 1/L↑(w; x, a, b) and (2.22), x �→ L↑(w; b, x, b) is
continuous everywhere, while it is continuously differentiable at every point except possibly
x = b/pk for all k ≥ 0. In this countable number of points, however, left- and right-derivatives
do exist. Through (2.17), this can be extended to continuity and almost everywhere differen-
tiability of a �→ L↑(w; x, a, b) for general x and b.

Theorem 2.4. (Downward two-sided exit problem.) For x ∈ [b, a), the Laplace–Stieltjes
transform

L↓(w; x, a, b) =Ex
[
e−wτ↓b(x)1{τ↑a(x)>τ↓b(x)}

]
(2.23)

of the downward two-sided exit time τ↓b(x) of the additive-increase and multiplicative-decrease
process (Xt)t≥0 equals

L↓(w; x, a, b) = Z↓(w; x, b) − L↑(w; x, a, b)Z↓(w; a, b). (2.24)

Proof. Clearly, for all x ∈ [b, a), τ↓b(x)1{τ↑a(x)<τ↓b(x)}
d= τ↑a(x)1{τ↑a(x)<τ↓b(x)} + τ↓b(a), and

note again that the random variables τ↑a(x)1{τ↑a(x)<τ↓b(x)} and τ↓b(a) on the right-hand
side are independent. Thus, we have Ex

[
e−wτ↓b(x)1{τ↑a(x)<τ↓b(x)}

]=Ex
[
e−wτ↑a(x)1{τ↑a(x)<τ↓b(x)}

]
Ex
[
e−wτ↓b(a)

]
. Noting that

Ex
[
e−wτ↓b(x)]=Ex

[
e−wτ↓b(x)1{τ↑a(x)<τ↓b(x)}

]+Ex
[
e−wτ↓b(x)1{τ↑a(x)>τ↓b(x)}

]
,

and using Theorems 2.2 and 2.3, completes the proof of the theorem. �

Remark 2.6. (Relation of Theorems 2.3 and 2.4 and number of scale functions.) Note that
τ↓b(a) ≥ T1 + · · · + Tlog1/p (a/b) for independent T1, T2, . . . ∼ Exp(λ), and hence τ↓b(a) → ∞
almost surely as a → ∞ while b remains fixed. As L↑(w; x, a, b) ≤ 1 for any set of param-
eters, if we let a → ∞ with a fixed b in (2.24), we obtain that the second term vanishes,
so that lima→∞ L↓(w; x, a, b) = lima→∞ Ex

[
e−wτ↓b(x)1{τ↑a(x)>τ↓b(x)}

]= Z↓(w; x, b), as can be
expected from Theorem 2.2. Thus, the scale function Z↓(w; x, b) can be directly related to
L↑(w; x, a, b). Since (2.24) in Theorem 2.4 also identifies L↓(w; x, a, b) in terms of L↑ and Z↓,
we conclude that in total we need the two scale functions Z↑ and L↑, rather than four.

3. Exit identities for reflected processes

We now consider two types of reflected versions of the process X:

• For the first, we reflect at a, i.e. the stochastic process grows linearly over time until it
reaches a, then it stays there until the next jump occurs, and at the jump time, the process
jumps from a to ap. We denote this process by Xa = (Xa

t )t≥0.
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• For the second, we reflect at b, i.e. the process grows linearly and whenever, due to a
jump, the process jumps over the downward level b it is put back to b and it continues
its evolution in time according to the background process X from level b. We denote this
process by Xb = (Xb

t )t≥0.

In this section we analyse the first passage times of these two reflected processes defined as
τ a↓c(x) = inf{t ≥ 0 : Xa

t < c | X0 = x} and τ
b
↑c(x) = inf{t ≥ 0 : X

b
t > c | X0 = x}.

Finally, in this paper we identify the Laplace transforms of the first passage time τc(x) =
inf{t ≥ 0 : Yt > c | X0 = x} of the process Yt = Xt − Xt reflected at a running supremum Xt =
sups≤t Xs ∨ X0, as well as the first passage time τ̂c(x) = inf{t ≥ 0 : Ŷt > c | X0 = x} of the
process Ŷt = Xt − Xt reflected at its running infimum Xt = infs≤t Xs ∧ X0.

Note that the process Y stays at 0 until the first jump epoch T of X. Then, right after the first
jump it equals YT = (1 − p)XT−, and hence the jump of Y is positive (�YT = YT > 0). Later,
t �→ Yt decreases until the next jump.

The process Ŷt evolves in a different way. At the beginning, it equals t − x until the first
jump. Then, if at the epoch T of the first jump of X we have XT ≥ x, then the process Ŷ evolves
without any changes (except a shift by the initial position x). If XT < x instead, then ŶT = 0. In
this case, our new initial position equals XT and the process Ŷ evolves as before.

We now present results concerning the exit problems for the reflected processes.

Theorem 3.1. (First passage time for the reflected process at the upper level.) For x ∈ [c, a),
the Laplace–Stieltjes transform of the first passage time τ ā↓c(x) for the reflected process at the
upper level is given by

Ex
[
e−wτ ā↓c(x)]= L↓(w; x, a, c)

+ L↑(w; x, a, c)
λ

w + λ

(
L↓(w; pa, a, b)(w + λ)

w + λ − L↑(w; pa, a, b)λ
1{pa>c} + 1{pa≤c}

)
. (3.1)

Proof. To prove (3.1) note that, by the Markov property, for a > c/p,

Ex[e−wτ ā↓c(x)] =Ex[e−wτ↓c(x)1{τ↓c(x)<τ↑a(x)}]

+Ex[e−wτ↑a(x)1{τ↑a(x)<τ↓c(x)}]
λ

w + λ
Epa[e−wτ ā↓c(pa)]. (3.2)

Using (2.23) implies that Ex
[
e−wτ↓c(x)1{τ↓c(x)<τ↑a(x)}

]= L↓(w; x, a, c), i.e. the first term in (3.2)
is equal to the first part of (3.1).

To investigate the second term in (3.1), we commence by noting that, by

(2.16), Ex
[
e−wτ↑a(x)1{τ↑a(x)<τ↓c(x)}

]= L↑(w; x, a, c), so that (3.2) becomes Ex
[
e−wτ ā↓c(x)]=

L↓(w; x, a, c) + L↑(w; x, a, c)[λ/(w + λ)]Epa[e−wτ ā↓c(pa)]. Taking x = pa, we obtain a linear

equation for Epa
[
e−wτ ā↓c(pa)] that can be solved as

Epa
[
e−wτ ā↓c(pa)]= L↓(w; x, a, c)

1 − L↑(w; x, a, c) λ
w+λ

.

This proves (3.1) for a > c/p.
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For a ≤ c/p, we instead note that Epa
[
e−wτ ā↓c(pa)]= 1, so that now (3.2) becomes

Ex
[
e−wτ ā↓c(x)]=Ex

[
e−wτ↓c(x)1{τ↓c(x)<τ↑a(x)}

]+Ex
[
e−wτ↑a(x)1{τ↑a(x)<τ↓c(x)}

] λ

w + λ
.

Again using how the expectations can be translated into L↓(w; x, a, c) and L↑(w; x, a, c), this
completes the proof. �

Theorem 3.2. (First passage time for the reflected process at the lower level.) For x ∈ [b, c),
the Laplace–Stieltjes transform of the first passage time τ

b
↑c(x) for the reflected process at the

lower level is given by

Ex
[
e−wτ

b
↑c(x)]= L↑(w; x, b, c) + L↓(w; x, b, c)

L↑(w; b, b, c)

1 − L↓(w; b, b, c)
.

Proof. The proof is similar to the proof of Theorem 3.1, and our exposition is brief.
Indeed, starting from x, either we go to level c before visiting b or the other way

around. In the latter case we start from level b. Hence, (3.2) now becomes Ex
[
e−wτ

b
↑c(x)]=

Ex
[
e−wτ↑c(x)1{τ↑c(x)<τ↓b(x)}

]+Ex
[
e−wτ↓b(x)1{τ↓b(x)<τ↑c(x)}

]
Eb
[
e−wτ

b
↑c(b)], which in turn can be

written as Ex
[
e−wτ

b
↑c(x)] f = L↑(w; x, b, c) + L↓(w; x, b, c)Eb

[
e−wτ

b
↑c(b)]. Now taking x = b in

the above and using it to calculate Eb
[
e−wτ

b
↑c(b)] completes the proof. �

The statements for the process X reflected at the running supremum and infimum are
much more complex. They are much more important, though, as they describe the behaviour
of so-called drawdown and drawup processes Y and Ŷ . We start with the exit times when
the process is reflected at the supremum. In the statement, we write ∂L↑(w; z, y, u) =
(∂+L↑(w; z, v, u)/∂v)v=y for the partial right derivative ∂+ and similarly for L↓, where these
derivatives exist due to Remark 2.5, identity (2.24), and the definition of the function
Z↓(w; x, b) given in (2.7), and are continuous except at countable many points.

Theorem 3.3. (First passage time for the reflected process at running supremum.) Assume that
X0 = X0 = x. Then, the Laplace–Stieltjes transform of the exit time τc(x) of the process Y that
is the reflected version of X reflected at the running supremum, equals

Ex
[
e−wτc(x)] (3.3)

=
∫ +∞

x

∂L↑(0; w, w, w − c)

L↑(0; w, w, w − c)
exp

{
−
∫ w

x

∂L↑(w; z, z, z − c)

L↑(w; z, z, z − c)
dz

}
∂L↓(w; w, w, w − c)

∂L↓(0; w, w, w − c)
dw.

Remark 3.1. (More general initial positions.) In the above theorem, we can consider a more
general initial position of the reflected processes than zero. For example, to get (3.3) for X0 =
z ≥ x = X0, we can instead consider

Ex
[
e−wτc(x) | X0 = x, X0 = z

]=Ex
[
e−wτ↓z−c(x)1{τ↓z−c(x)<τ↑z(x)}

]
+Ex

[
e−wτ↑z(x)1{τ↑z(x)<τ↓z−c(x)}

]
Ez
[
e−wτc(z) | X0 = z, X0 = z

]
and apply Theorems 2.3 and 2.4.
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Remark 3.2. (Alternative approach to Theorem 3.3.) The first passage time for the reflected
process at running maximum considered in Theorem 3.3 could be analysed using [35, Theorem
3.1 and Example 3.5] in terms of the solution of some integral equation. We decided to do it in
a more explicit way.

Proof of Theorem 3.3. To prove (3.3), we adapt the argument of [38] executed for diffusion
processes. In the first step, we will find the law of Xτc(x). To find Px(Xτc(x) > w) we partition the
interval [x, w] into n subintervals [sn

i , sn
i+1] (i = 0, 1, . . . , n − 1) such that mn = maxi(sn

i+1 −
sn

i ) → 0 as n → +∞. We approximate Px(Xτc(x) > w) by P(An) for An =⋂n−1
i=0 {X hits sn

i+1
before X jumps below sn

i − c}. To do this, we have to prove that this approximation does not
depend on the chosen partition, for which we use the fact that the process X crosses new levels
upward in a continuous way, so that Px(Xτc(x) > w) = limn→+∞ P(An).

Then, by the Markov property and Theorem 2.3,

Px(Xτc(x) > w) = lim
n→+∞ P(An)

= exp

{
lim

n→+∞

n−1∑
i=0

log L↑(0; sn
i , sn

i+1, sn
i − c)

}

= exp

{
− lim

n→+∞

n−1∑
i=0

(sn
i+1 − sn

i )
1

sn
i+1 − sn

i
log

(
1 − L↑(0; sn

i , sn
i+1, sn

i − c) − 1

L↑(0; sn
i , sn

i+1, sn
i − c)

)}

= exp

{
−
∫ w

x

∂L↑(0; z, z, z − c)

L↑(0; z, z, z − c)
dz

}
, (3.4)

where we have used the fact that ∂L↑(0; z, z, z − c) is a continuous function of z except possibly
at countably many points, so that the above Riemann integral is well defined. As a result,

P(Xτc(x) ∈ dw) = exp

{
−
∫ w

x

∂L↑(0; z, z, z − c)

L↑(0; z, z, z − c)
dz

}
∂L↑(0; w, w, w − c)

L↑(0; w, w, w − c)
dw. (3.5)

Define the sequence of stopping times �n
k = inf{t ≥ 0 : X�n

k−1+t − X�n
k−1

= sn
k − sn

k−1 or −c}
for �n

k =∑k
i=1 �n

i . Then

Ex
[
e−wτc(x) | Xτc(x) = w

]= lim
n→+∞

n∏
i=1

Ex
[
e−w�n

i | X�n
i−1

= sn
i−1, X�n

i
= sn

i

]
×Ex

[
e−w�n

n+1 | X�n
n
= w, X�n

n+1
≤ w − c

]
,

with sn
n+1 > w such that sn

n+1 − w tends to 0 as n → +∞. By Theorems 2.3 and 2.4,

Ex
[
e−w�n

i | X�n
i−1

= sn
i−1, X�n

i
= sn

i

]= L↑(w; sn
i−1, sn

i , sn
i−1 − c)

L↑(0; sn
i−1, sn

i , sn
i−1 − c)

and

Ex
[
e−w�n

n+1 | X�n
n
= w, X�n

n+1
≤ w − c

]= L↓(w; w, sn
n+1, w − c)

L↓(0; w, sn
n+1, w − c)

= L↓(w; w, sn
n+1, w − c)/(sn

n+1 − w)

L↓(0; w, sn
n+1, w − c)/(sn

n+1 − w)
.
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Hence, applying the same limiting arguments as in (3.4), we derive

Ex
[
e−wτc(x) | Xτc(x) = w

]= exp

{
−
∫ w

x

∂L↑(w; z, z, z − c)

L↑(w; z, z, z − c)
dz

}
(3.6)

× exp

{ ∫ w

x

∂L↑(0; z, z, z − c

L↑(0; z, z, z − c)
dz

}
∂L↓(w; w, w, w − c)

∂L↓(0; w, w, w − c)
.

Using the fact that Ex
[
e−wτc(x)

]= ∫ +∞
x Ex

[
e−wτc(x) | Xτc(x) = w

]
P(Xτc(x) ∈ dw), together with

(3.5) and (3.6), completes the proof. �

To analyse the reflection at the running infimum we use martingale theory for the first time.
We first set the stage. Let a(w, c, u) be a solution of the equation

Z↓(w; u + c, u) + L↑(w; u + c, a(w, c, u), u) = 1. (3.7)

We first argue that the solution to (3.7) always exists and is unique. Note that the above equation
is equivalent to

Eu+c
[
e−wτ↓u(u+c)]+Eu+c

[
e−wτ↑a(w,c,u)(u+c)1{τ↑a(w,c,u)(u+c)<τ↓u(u+c)}

]= 1.

By Theorem 2.3, a �→ L↑(w; u + c, a, u) is continuous. Moreover, L↑(w; u + c, a, u) =
Eu+c

[
e−wτ↑a(u+c)1{τ↑a(u+c)<τ↓u(u+c)}

]
tends to 1 as a ↓ u + c, and to 0 as a ↑ +∞.

Since Z↓(w; u + c, u) < 1, the solution of (3.7) indeed always exists. What is more,
Eu+c

[
e−wτ↑a(u+c)1{τ↑a(u+c)<τ↓u(u+c)}

]
is monotonic in a, which gives the uniqueness of the

solution of (3.7).

Theorem 3.4. (First passage time for the reflected process at the running infimum.) The exit
time τ̂c(x) of the process Ŷ that is the reflected version of X reflected at the running supremum
satisfies

(i) τ̂c(x) = τ↑c(x) when X0 = 0;

(ii) for X0 = x > 0 and 0 < X0 = u ≤ x, instead, the Laplace–Stieltjes transform of τ̂c(x)
equals Ex

[
e−wτ̂c(x)

]= Z↓(w; x, u) + L↑(w; x, a(w, c, u), u), where a(w, c, u) solves (3.7).

Proof. We follow the main idea of [44], although the proof requires substantial changes
compared to the case of Lévy processes, due to the lack of space-homogeneity of our pro-
cess X. Fix 0 < b < x < a. Recall that τa,b(x) = min{τ↑a(x), τ↓b(x)} by (2.1). By Theorem 2.3,
1{τ↑a(x)<τ↓b(x)} = L↑(w; Xτa,b(x), a, b), where we take L↑(w; x, a, b) = 0 for x < b. By the
Markov property, t �→Ex[e−wτa,b(x)L↑(w; Xτa,b(x), a, b) |Ft] = e−wτa,b(x)∧tL↑(w; Xτa,b(x)∧t, a, b)
can be seen to be a local martingale.

Similarly, from Theorem 2.4, by putting Z↓(w; x, b) = 1 for x < b, we con-
clude that 1{τ↓b(x)<τ↑a(x)} = Z↓(w; Xτa,b(x), b) − L↑(w; Xτa,b(x), a, b)Z↓(w; a, b), and hence
t �→ e−wτa,b(x)∧t

(
Z↓(w; Xτa,b(x)∧t, b) − L↑(w; Xτa,b(x)∧t, a, b)Z↓(w; a, b)

)
is a local martingale

as well.
By taking a linear combination, we observe that t �→ e−wτa,b(x)∧tZ↓(w; Xτa,b(x)∧t, b) is also a

local martingale. Denoting

F(w; x, a, b) = Z↓(w; x, b) + L↑(w; x, a, b), (3.8)

this finally means that t �→ e−wτa,b(x)∧tF(w; Xτa,b(x)∧t, a, b) is a local martingale. This is the
starting point of our analysis.
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Since 0 < b < a are general, we can conclude that the function y → F(w; y, a, b) is in the
domain of the extended generator A† of the process X when it is exponentially killed with
intensity w (denoted here by X†

t ), i.e. the function F(w; y, a, b) is in the set of functions f
for which there exists a function A†f such that the process f (X†

t ) − ∫ t
0 A†f (X†

s ) ds is a local
martingale. More precisely,

e−wτa,b(x)∧tF(w; Xτa,b(x)∧t, a, b) −
∫ τa,b(x)∧t

0
A†F(w; Xs, a, b) ds

is a local martingale. That is, for any 0 < b < a,

A†F(w; y, a, b) = 0, b < y < a. (3.9)

This completes the first step of our proof.
In the second step we use the following version of Itô’s formula (see also [30] adapted to

our setup). For a càdlàg adapted process t �→ Vt, which is of finite variation, and a function
(y, z) �→ f (y, z) that is continuous in y, that lies in the domain of A†, and that is continuously
differentiable with respect to z, we then obtain that

t �→ f (X†
t , Vt) −

∫ t

0
A†f (X†

s , Vs) ds −
∫ t

0

∂

∂z
f (X†

s , z)|z=Vs dVc
s

−
∑
s≤t

(f (X†
s , Vs) − f (X†

s , Vs−)) (3.10)

is a local martingale.
Without loss of generality we can assume that pka(w, c, z) �= z for any k ≥ 1. Indeed,

it is enough to choose an appropriate c and then an approximate τ̂c(x) for general c > 0
by the monotonic limit of τ̂cn (x) with respect to cn satisfying the above condition. Then
we can use (3.10) with Vt = Xt and f (y, z) = F(w; y, a(w, c, z), z), as this function is con-
tinuously differentiable with respect to z, which follows from the definition of the function
F given in (3.8), and the formulas (2.7), (2.18), and (2.19). Note that

∑
s≤t e−ws(F(w; Xs,

a(w, c, Xs), Xs) − F(w; Xs, a(w, c, Xs−), Xs−)
)= 0. Indeed, either Xs > Xs or Xs = Xs (i.e.

we crossed the previous infimum at time s). In the first case Xs = Xs− and hence F(w; Xs,

a(w, c, Xs), Xs) = F(w; Xs, a(w, c, Xs−), Xs−). Otherwise, Xs = Xs ≤ Xs− and F(w; Xs,

a(w, c, Xs), Xs) = F(w; Xs, a(w, c, Xs−), Xs−) = 1 because, by (3.8), we have F(w; x, a, z) = 1
for all x ≤ z. This follows from the observation that in this case Z↓(w; x, z) = 1 by (2.6) and
L↑(w; x, a(w, c, z), z) = 0 by (2.16). Moreover, in our model Xc

t = 0, because of the upward
drift and downward jumps of the process Xt we can cross past the infimum only by a jump.
By (3.9), this gives that t �→ e−wtF(w; Xt, a(w, c, Xt), Xt) is a local martingale. Note that up to
time τ̂c(x), the processes Xt and Xt are bounded by u + c. By the Optional Stopping Theorem,
we then obtain that

Ex
[
e−wτ̂c(x)F(w; Xτ̂c(x), a(w, c, Xτ̂c(x)), Xτ̂c(x))

]= F(w; x, a(w, x, u), u). (3.11)

We next argue that F(w; Xτ̂c(x), a(w, c, Xτ̂c(x)), Xτ̂c(x)) = 1 almost surely. Observe that
Xτ̂c(x) − Xτ̂c(x) = Ŷτ̂c(x) = c, and hence by the definition of a(w, x, u) in (3.7), we obtain
F(w; Xτ̂c(x), a(w, c, Xτ̂c(x)), Xτ̂c(x)) = F(w; Xτ̂c(x) + c, a(w, c, Xτ̂c(x)), Xτ̂c(x)) = 1 almost surely,
as required. This completes the proof by (3.8) and (3.11). �
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4. Discussion and further research

In this section we discuss alternative approaches as well as possible future research.

4.1. An alternative approach to the two-sided exit problems in Theorems 2.1–2.4

Two-sided exit problems related to the exit times in (1.1) and (1.2), as studied in
Theorems 2.1–2.4, can also be derived by solving exit problems for an appropriately scaled
sequence of queueing models. Consider, for example, an immigration-and-catastrophe model
in which immigrations occur according to a Poisson process at rate βm = mβ, and catastrophes
are governed by the so-called binomial catastrophes mechanism: at the epochs of a catastrophic
event that occurs according to an independent Poisson process at rate λm = mλ, every member
of the population survives with fixed probability independently of anything else. Denoting the
population size at time t by Q(m)

t , we can prove that the exit times of the fluid scaled limit
limm→∞ Q(m)

t /m converges weakly to the exit times of the process X. We decided to solve our
exit problems in a direct way, thus avoiding additional arguments related to weak convergence.

4.2. An alternative approach to our results, with a focus on Theorem 2.2

We note that a similar approach may be used to obtain the results when, instead of focusing
on the first time the process jumps downwards, we focus on an infinitesimally small time
interval right after 0, say (0, ε). We only provide a brief sketch of the derivation and only
consider the one-sided downward exit time as in Theorem 2.2.

We condition on the number of jumps in (0, ε). Two jumps will happen with a probability
that is o(ε), one jump with a probability λε + o(ε), and no jumps will happen with probability
1 − λε + o(ε).

Denote ϕ(x, t) = P(τ↓b(x) > t). Consider first x ∈ [b, b/p), in which case a jump in (0, ε)
takes the value of the process below b immediately, and therefore ϕ(x, t) = (1 − λε +
o(ε))P(τ−

b (x + ε) > t − ε) + o(ε). We now divide both sides by ε and let ε ↑ 0 to obtain

lim
ε↑0

ϕ(x, t) − ϕ(x + ε, t − ε)

ε
= −λϕ(x, t).

The numerator on the left-hand side may be written as ϕ(x, t) − ϕ(x, t − ε) + ϕ(x, t − ε) −
ϕ(x + ε, t − ε), and we therefore obtain

ϕ′
x(x, t) − ϕ′

t(x, t) = λϕ(x, t), (4.1)

which is valid for all x ∈ (b, b/p). Consider now x ≥ b/p. For these values, ϕ(x, t) =
λεP(τ−

b (xp) > t − ε) + (1 − λε + o(ε))P(τ−
b (x + ε > t − ε) + o(ε). Similar arguments imply

that
ϕ′

x(x, t) − ϕ′
t(x, t) = λϕ(x, t) − λϕ(xp, t), (4.2)

which is valid for all x ≥ b/p. We can then check that the differential equations in (4.1) and
(4.2) are equivalent to the integral equation implied, in a straightforward manner, by (2.9). We
refrain from discussing such approaches further.

4.3. Applications of our results and future directions

The exit problems studied in this paper might also be used in applications. An obvious
choice is to look at all problems where fluctuation theory has been applied for the Lévy
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processes. This is, of course, a long-term project and we are confident that our results will
contribute to its development. Another possible application might lie in the development of
asymptotic results. Indeed, the formulas that we provide for the Laplace transforms of exit
times are closely related to the tail behaviour of these exit times, through inversion or Tauberian
theorems. We refrain from such an analysis, as it requires various different techniques, and thus
would make the paper less coherent.
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