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This paper proposes a consistent nonparametric test with good sampling properties to
detect instantaneous causality between vector autoregressive (VAR) variables with
time-varying variances. The new test takes the form of the U-statistic, and has a
limiting standard normal distribution under the null. We further show that the test
is consistent against any fixed alternatives, and has nontrivial asymptotic power
against a class of local alternatives with a rate slower than T−1/2. We also propose a
wild bootstrap procedure to better approximate the finite sample null distribution of
the test statistic. Monte Carlo experiments are conducted to highlight the merits of
the proposed test relative to other popular tests in finite samples. Finally, we apply
the new test to investigate the instantaneous causality relationship between money
supply and inflation rates in the USA.

1. INTRODUCTION

The concept of causality, as introduced by Granger (1969), plays a key role in
analyzing dynamic relationships between time series. In studying Granger causal-
ity, predictability is the central issue, which is of great importance to economists,
policymakers, and investors. Testing for Granger-causality has become a standard
procedure to assess whether changes in one variable can help explain movements
in another variable. Most existing literature focuses on Granger causality in
conditional means. For example, Sims (1972) and Geweke (1982, 1984) investigate
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2 JILIN WU ET AL.

linear Granger causality based on VAR models. Dufour and Taamouti (2010)
extend Geweke’s work and design a test that can study short-run and long-run
Granger causality separately. Li et al. (2012) and Song and Taamouti (2018)
develop new test statistics that can be used to detect nonlinear Granger causality
in conditional means. There is also other work considering testing for Granger
causality in conditional distributions, see Taamouti, Bouezmarni, and El Ghouch
(2014), Hu and Liang (2014), and Song and Taamouti (2021).

Instantaneous causality is also one type of causality proposed by Granger
(1969). We say that there exists instantaneous causality between Y1t and Y2t if
the prediction of Y2t, given the past values of Yt = (

Y ′
1t,Y

′
2t

)′
, can be improved by

adding the current information in Y1t (see Lütkepohl, 2005, p. 42). If {Yt}T
t=1 take

the form of a VAR representation, then testing instantaneous causality is equivalent
to examining whether the off-diagonal elements of the error covariance matrix are
equal to zero (see Lütkepohl, 2005, pp. 46–47). In this case, the standard Wald test
and the heteroskedasticity-robust Wald test can serve this purpose. The importance
of caring about instantaneous causality can be summarized as follows: First, it is
quite common that the releases of macroeconomic data are asynchronous, partic-
ularly for those collected at a low frequency (e.g., monthly, quarterly, and yearly).
For example, two sequences of time series data may be available monthly and the
actual causal lag in one sequence is only a couple of days. Temporal aggregation is
also a similar reason for resulting in possible instantaneous causality. In this case,
testing for instantaneous causality can help reveal causal relationships among the
considered variables. Second, as pointed out by Hyvärinen et al. (2010) and Faes
and Nollo (2010), whether instantaneous causality is considered or not in VAR
models can significantly impact the estimated values of time-lagged coefficients.
Neglecting instantaneous influences may result in misleading interpretations of
causal effects measured by the time-lagged coefficients. Therefore, it is crucial to
test for instantaneous causality first, enabling the selection of an appropriate model
under the specified setups for accurate estimation of lagged coefficients. Third,
instantaneous causality can sometimes occur because of omitted variables. For
instance, this may happen when there are actually three variables {Y1t,Y2t,Wt−1},
and the third variable, Wt−1, influences the first two, which are independent
within the group of three variables. However, if the third variable is missing
and thus marginalized, observed instantaneous causality may occur. For detailed
discussion on this, see Granger (1988). Clearly, in this case, testing instanta-
neous causality can indirectly help prejudge whether there exists such an omitted
variable.

Up to now, there are many theoretical and empirical studies concerning instan-
taneous causality. Pierce and Haugh (1977) review and compare several recent
methodologies proposed for empirically examining causal relationships between
variables, which also include the detection of instantaneous causality. Granger
(1988) discusses three possible explanations for the presence of instantaneous
causality. Breitung and Swanson (2002) investigate the impact of temporal aggre-
gation on detecting instantaneous causality. Hafner (2009) discusses the effects of
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A NONPARAMETRIC TEST FOR INSTANTANEOUS CAUSALITY 3

temporal aggregation on causality and forecasting in multivariate GARCH pro-
cesses, and finds that instantaneous causality also occurs in volatility. In addition,
Faes and Nollo (2010) and Faes et al. (2013) employ instantaneous causality to
study either fast (within-sample) physiologically meaningful interactions or non-
physiological effects in physiological data. Raïssi (2011) extends the Wald tests for
instantaneous causality to a more generalized framework that allows for nonlinear
dynamics of unknown forms in error terms.

However, the above-mentioned tests are constructed under the assumption of
constant unconditional variances. In fact, more and more evidence shows that time
variation in unconditional variances is a common feature in macroeconomic and
financial data. For example, Sensier and Van Dijk (2004) report that about 80%
of 214 U.S. macroeconomic time series displayed breaks in variances during the
period 1959–1999. Kim and Nelson (1999) and Justiniano and Primiceri (2008)
demonstrate that the volatilities of U.S. major macroeconomic variables, especially
GDP, have declined since the 1980s. Clark (2011) provides empirical evidence
strongly suggesting that the volatilities of U.S. macroeconomic variables rose
sharply during the severe recession of 2007–2009. Similarly, Andreou and Ghysels
(2002) discover that the Asian and Russian financial crises have caused obvious
structural breaks in the volatility dynamics of international financial markets.
Mikosch and Stǎricǎ (2004) and Liu and Maheu (2008) also find strong evidence
of structural change relating to shifts in the variance of S&P 500 returns.

The presence of time-varying variances could invalidate conventional statistical
inference and hypothesis testing. Lamoureux and Lastrapes (1990) and Granger
and Hyung (2004) prove that structural change in unconditional variance causes
spurious persistence and long memory effects in volatility dynamics. Hamori and
Tokihisa (1997), Kim, Leybourne, and Newbold (2002), and Cavaliere (2005)
show that ignoring the effect of a volatility shift results in significant over-sized
distortion in unit root tests. Hansen (1995), Xu and Phillips (2008), and Linton and
Xiao (2019) point out that time-varying variances lead to inefficient estimation and
unreliable inference in parametric and nonparametric models. Hammoudeh and Li
(2008) and Groen, Paap, and Ravazzolo (2013) conclude that the macroeconomic
predictors not allowing for structural breaks in variances result in very poor
point and density forecasts. Of course, the presence of time-varying variances
also damages Granger causality testing. Vilasuso (2001) shows that unconditional
heteroskedasticity leads to an erroneous claim that a statistically significant causal
relation exists in conditional means. Van Dijk, Osborn, and Sensier (2005) also
find that structural breaks in unconditional variances will distort testing size and
power when examining Granger causality in second moments. Patilea and Raïssi
(2012) prove that the standard Wald test for Granger causality in VAR models
is invalid in the presence of time-varying variances, and thus suggest adaptive
Wald tests to improve the testing reliability. Similarly, the Wald-type tests for
instantaneous causality do not provide suitable critical values under time-varying
variances. Moreover, they may suffer from severe power loss when the integration
of time-varying covariance is close to zero. Hence it is also of great necessity to
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4 JILIN WU ET AL.

develop powerful tests for instantaneous causality that are robust to time-varying
variances.

In order to avoid power loss incurred by the Wald-type tests, Gianetto and
Raïssi (2015) propose a cumulative-sum (cusum) test for instantaneous causal-
ity. Because the new test has an asymptotically nonstandard null distribution
and depends on unknown time-varying variance–covariance structures, a wild
bootstrap method is therefore suggested to improve its testing robustness. Monte
Carlo shows that the new test of Gianetto and Raïssi (2015) controls Type I
error reasonably well and achieves decent power gains, clearly outperforming
those traditional tests. However, it is well-known that the cusum-type tests mainly
consider one-time shift as the alternative, making them the most appropriate (in
terms of the most powerful) when the parameters of the underlying statistical
model only contain one single changepoint, and they may not have good power
against multiple breaks or smooth change, see Chen and Hong (2012) and Wu and
Xiao (2018b). The test of Gianetto and Raïssi (2015) is no exception. It is powerful
to test for instantaneous causality with a single structural break in variances, but
does not perform satisfactorily when the unconditional variances exhibit multiple
structural breaks or smooth structural change. This observation is also consistent
with the findings in our Monte Carlo experiments of Section 4. In practice, more
and more evidence demonstrates that financial and macroeconomic data are better
characterized by multiple breaks or smooth change, see Bai and Perron (1998),
Hansen (2001), and Fu, Hong, and Wang (2023). Hence, it is desirable to develop
an omnibus test to diagnose instantaneous causality that is robust to various forms
of structural changes in unconditional variances.

The purpose of this article is to propose a consistent nonparametric test for
instantaneous causality in the presence of time-varying variances. The idea is
to first estimate the instantaneous causality nonparametrically and then develop
an L2-type test statistic by comparing the norms of the nonparametric estimators
with zero. After expanding and modifying the expression, as well as dropping the
negligible terms, our final test statistic can be formulated as a convenient U-statistic
form. The appealing advantages of our proposed test statistic are summarized
as follows: First, the proposed test is consistent against various alternatives that
deviate from the null hypothesis, and no prior information about the alternatives
is required. Specifically, our test allows for smooth structural changes and sudden
single or multiple structural breaks with unknown breakdates or unknown number
of breaks in the unconditional covariance matrix. Second, unlike many tests for
Granger causality in the literature, which often have nonstandard asymptotic
null distributions, the new test is automatically centered and, after appropriate
standardization, has an asymptotically standard normal distribution under the
null hypothesis of no instantaneous causality. Third, a wild bootstrap procedure
is proposed to better approximate the finite sample null distribution of the test
statistic.

The structure of this article is organized as follows: Section 2 presents the basic
model, describes the hypotheses of interest, and constructs the nonparametric test.
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A NONPARAMETRIC TEST FOR INSTANTANEOUS CAUSALITY 5

In Section 3.1, we study the asymptotic distribution of the proposed test statistic
under the null hypothesis. Section 3.2 investigates the asymptotic power properties
of our test statistic under a fixed alternative and a sequence of local alternatives.
Section 3.3 discusses lag length identification and bandwidth selection in testing
procedures, and Section 3.4 proposes a wild bootstrap to improve the testing
accuracy under the null. We report the results of Monte Carlo simulations to
assess the finite sample performance of our test statistic compared with other
popular tests in Section 4. Section 5 applies the proposed test statistic to examine
the instantaneous causality between money supply and inflation in the United
States. Section 6 considers one possible extension, and the conclusion is given
in Section 7. Proofs and other simulation results are relegated to Supplementary
Material.

2. THE BASIC MODEL AND THE TEST

Let Yt = (
Y ′

1t,Y
′
2t

)′
be a d-dimensional vector of multivariate time series with Yit

of dimension di,i = 1,2. It is assumed that Yt is generated by the following stable
vector autoregressive model of lag order p:{

Yt = ∑p
j=1 AjYt−j +ut,

ut = Gtεt,t = 1,2, . . . ,T,
(1)

where the d × d parameter matrices Aj, j ∈ {1, . . . ,p}, are such that

det
(

Id −∑p
j=1 Ajzj

)
�= 0 for all |z| ≤ 1. The error term ut is the product of two

components, the long-run component Gt and the short-run component εt. The
d × d matrix Gt is a lower triangular nonsingular matrix with positive diagonal
elements, and εt is a d × 1 martingale difference sequence (m.d.s.) satisfying
E(εt|Ft−1) = 0 and E(εtε

′
t|Ft−1) = Id, where Ft−1 is the information set at time

t − 1. Here Gt is assumed to be a nonstochastic matrix. �t = GtG′
t is assumed to

be a symmetric and positive definite covariance matrix and it represents possibly
time-varying unconditional multivariate heteroskedasticity, see, e.g., Hafner and
Linton (2010), Xu (2012), and Patiliea and Raïssi (2013), for more discussion.

Let ut = (
u′

1t,u
′
2t

)′
, where uit = Gitεt has dimension di, i = 1,2, with Gt =(

G′
1t,G

′
2t

)′
, and define also �12

t the upper right block of �t =
(

�11
t �12

t
�21

t �22
t

)
, where

�21
t = (

�12
t

)′
. We are interested in testing whether or not there is instantaneous

causality between Y1t and Y2t. In VAR models, it is well known that there is no
instantaneous causality between Y1t and Y2t if and only if all elements of �12

t are
equal to zero. Therefore, testing for instantaneous linear causality between Y1t and
Y2t amounts to testing the following hypothesis

H0 : �12
t = 0d1×d2 for all t, (2)

where 0d1×d2 represents a d1 ×d2 zero matrix. The null indicates no instantaneous
causality between Y1t and Y2t in the observation period (see Lütkepohl, 2005,
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6 JILIN WU ET AL.

pp. 46–47). The alternative hypothesis is

HA : �12
t �= 0d1×d2 . (3)

Under the alternatives, �12
t can be a nonzero constant matrix, be smoothly

changing over time or contain unknown finite breakpoints. Following Robinson
(1989) and Cai, Wang, and Wang (2015), we assume that Gt = G(rt), where
rt = t/T , is a deterministic function of sample-size scaled time index, which also
implies that �t = �(rt). Then, the null in (2) and the alternative in (3) become

H0 : �12(r) = 0d1×d2 , for all r ∈ [0,1], (4)

versus

HA : �12(r) �= 0d1×d2 for r ∈ S ⊆ [0,1],

where S is a set of positive Lebesgue measure. (5)

If �12(r) were observable, it is therefore natural to measure the discrepancy
between �12(r) and the zero matrix 0d1×d2 for all 0 ≤ r ≤ 1, then an L2-type
distance can be designed as follows:

λ =
∫ 1

0
φ (r)

∥∥vec
(
�12 (r)

)∥∥2
dr, (6)

where φ(·) is a positive weighting function over [0,1], ‖·‖ represents the usual
Euclidean norm, and vec(·) is the operator that stacks the columns of matrix as a
vector. Under the null, λ should be close to zero, and under the alternative, λ should
be a strictly positive constant. The L2-type function has been widely employed to
test model specifications, see Härdle and Mammen (1993) and Chen and Hong
(2012).

Construction of a formal test based on (6) requires estimation of �12(·). Because
E(u1tu′

2t|Ft−1) = �12(rt), we consider the following regression model

u1tu
′
2t = �12(rt)+ et, (7)

where et is an m.d.s. over time. If
{
u1tu′

2t

}T

t=1 were observable, we could estimate
�12(·) nonparametrically based on (7). However, the innovations {ut}T

t=1 are
unobservable in practice, but they can be replaced by the OLS residuals estimated

from the first equation in (1). Denote � =
(
(vec(A1))

′ , . . . ,
(
vec

(
Ap

))′)′
and

Xt−1 = (
Y ′

t−1,Y
′
t−2, . . . ,Y

′
t−p

)′
. The VAR(p) model in (1) can be rewritten as

Yt = (
X′

t−1 ⊗ Id
)
�+ut, (8)

where ⊗ is the Kronecker product. Then, the OLS estimator for � is given by

�̂ =
⎛
⎝ T∑

t=p+1

Xt−1X′
t−1 ⊗ Id

⎞
⎠

−1

vec

⎛
⎝ T∑

t=p+1

YtX
′
t−1

⎞
⎠, (9)
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A NONPARAMETRIC TEST FOR INSTANTANEOUS CAUSALITY 7

and the estimated residual is given by ût = Yt − (
X′

t−1 ⊗ Id
)
�̂. Based on ût =(

û′
1t,û

′
2t

)′
, we have the following Nadaraya–Watson estimator for �12(r):

�̂12(r) =
∑T

t=p+1 kh (rt − r) û1tû′
2t∑T

t=p+1 kh (rt − r)
, (10)

where kh (·) = k(·/h)
/

h, k(·) is a kernel function defined on [−1,1], and h is a

bandwidth parameter satisfying h → 0 and Th → ∞ as T → ∞. With �̂12(r)
at hand, the L2-type test statistic corresponding to (6) can be constructed via the
following quadratic form

λ̂T =
∫ 1

0
φ (r)

∥∥∥vec
(
�̂12 (r)

)∥∥∥2
dr. (11)

Remark 1. It is possible to extend the testing procedure proposed in this paper
to test the null hypothesis of constant instantaneous causality over time, that is,
H0 : �12

t = �̄12 for all t, where �̄12 is a d1 ×d2 nonzero constant matrix.

Remark 2. Note that the nonparametric estimator �̂12(r) is not consistent in
the neighboring regions around the breakpoints in �12(r). However, the number
of breakpoints is assumed to be finite (see Assumption 3 below), so the set of
inconsistent estimators has zero measure and is negligible in integration.

Under H0, �̂12(r) is a consistent estimator of zero matrix, so the test statistic
λ̂T converges to 0; under HA, �̂12(r) is a consistent estimator of �12(r) that is
significantly different from the zero matrix except in the neighboring regions of
breakpoints. Consequently the statistic λ̂T converges to a strictly positive constant.
Thus, any significant departure of λ̂T from 0 is evidence of instantaneous causality
between Y1t and Y2t. Notice that (10) can be rewritten as

T∑
t=p+1

kh (rt − r)vec
(
�̂12 (r)

)
=

T∑
t=p+1

kh (rt − r)vec
(
û1tû

′
2t

)
. (12)

By taking the weighting function φ(r) =
(

1
T

∑T
t=p+1 kh (rt − r)

)2
, we rewrite

(11) as

λ̂T = 1

T2h

T∑
t=p+1

T∑
s=p+1

at,sm̂
′
tm̂s, (13)

where at,s = h
∫ 1

0 kh (rt − r)kh (rs − r)dr and m̂t = vec(û1tû′
2t). We notice that at,s

is actually a convolution kernel which converges to
∫ 1
−1 k

(
u+ rs−rt

h

)
k (u)du as

T → ∞. As pointed out by Cai et al. (2015), one does not even have to use
the convolution kernel. Simply replacing it with ks,t ≡ k

(
s−t
Th

)
will not affect the

essence of the test statistic since the local weight property is preserved. Finally,
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8 JILIN WU ET AL.

we use a leave-one-out estimator to remove a nonzero center term from the test
statistic and obtain the following kernel-smoothed test statistic:

λ̃T = 1

T2h

T∑
t=p+1

∑
s�=t

ks,tm̂
′
tm̂s. (14)

If the null hypothesis is true, λ̃T should be close to zero, and has an asymptotic
N(0,1) distribution after appropriate standardization. Under the alternative, λ̃T will
be distant away from zero. Juhl and Xiao (2005) and Wu and Xiao (2018a) have
employed similar U-statistic tests to examine parametric model specifications in
univariate time series. Thus, our proposed test can be regarded as an important
extension to diagnose instantaneous causality in multivariate time series.

3. ASYMPTOTIC RESULTS

In what follows we first establish the asymptotically normal distribution of λ̃T

under the null, then proceed to study its asymptotic power properties under a fixed
alternative and a sequence of local alternatives.

3.1. Asymptotic Null Distribution

To facilitate asymptotic analysis of the proposed test under the null, we introduce
the following regularity conditions.

Assumption 1. The autoregressive matrix parameters {Ai}p
i=1 are such that

det [A(z)] �= 0 for any |z| ≤ 1, where A(z) = Id −∑p
i=1 Aizi.

Assumption 2. (i) E(εt|Ft−1) = 0, E(εtε
′
t|Ft−1) = Id, and ϒ = E

(
εtε

′
t ⊗ εtε

′
t

)
,

whereFt−1 is the σ -field generated by {εt−1,εt−2, . . .}. (ii) {ut}T
t=1 are β-mixing pro-

cesses with mixing coefficient β(j) = sups E
{

supA∈G∞
s+j

∣∣Pr
(
A|Gs−∞

)−Pr (A)
∣∣} →

0, as j → ∞, where G t
s is the σ -field generated by {un,n = s, . . . ,t}, and {β(j)}∞j=1

satisfy
∑∞

j=1 j2β(j)δ/(1+δ) < C for some 0 < δ < 1. (iii) supt E‖uit‖8 < C, and

supt,s,t′,s′ E
∣∣u′

ituisu′
it′uis′

∣∣4(1+δ)
< C, i = 1,2, where at least two time indices of{

t,s,t′,s′} are not equal.

Assumption 3. G(·) is a d×d lower triangular nonsingular matrix with positive
diagonal elements, where the components of the matrix G(·) := {

gij (·)
}
,i,j =

1, . . . ,d, are bounded deterministic functions and have continuous second deriva-
tives except for a finite number of points on [0,1]. Moreover, �(·) = G(·)G(·)′ is
symmetric and positive definite on [0,1].

Assumption 4. k (·) : [−1,1] → R+ is a symmetric and bounded probability
density.

Assumption 5. As T → ∞, h → 0 and Th2 → ∞.
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A NONPARAMETRIC TEST FOR INSTANTANEOUS CAUSALITY 9

Assumption 1 is the usual stationarity condition for VAR models, and ensures
that the eigenvalues of the matrix A(z) all lie outside the unit root. As a result,
the unit root or explosive processes are ruled out in our model. Additionally, the
true autoregressive order p in VAR models is supposed to be known. In practice,
the lag length p can be determined by some testing procedures, which will be
discussed in Section 3.3. Under Assumption 2(ii), the temporal dependence of
{ut}T

t=1 decreases fast as the time distance increases and thus is asymptotically
negligible. Assumption 2(iii) imposes some moment conditions on {uit}T

t=1 , i =
1,2, to help develop a martingale central limit theorem for the new test statistic λ̃T .
A similar moment assumption is also given by Hsiao and Li (2001), who propose a
U-statistic test for conditional heteroskedasticity. Assumption 3 allows for smooth
structural change and finite abrupt breaks with known or unknown breakpoints
in �(·). For abrupt breaks, the break size is bounded. The literature imposing
similar conditions on �(·) can be referred to Hafner and Linton (2010), Xu
(2012), and Patiliea and Raïssi (2013). Assumption 4 implies that

∫ 1
−1 k(u)du = 1,∫ 1

−1 uk(u)du = 0 and
∫ 1
−1 u2k(u)du < ∞. Assumption 5 is a standard assumption in

kernel regression literature.
In order to obtain a valid asymptotic test, we standardize λ̃T by Th1/2 and

a variance estimator, say, σ̂ 2
T , to achieve a standard normal limit. Formally, we

construct the final test statistic:

JT = Th1/2λ̃T

σ̂T
, (15)

where

σ̂ 2
T = 2

T2h

T∑
t=p+1

∑
s�=t

k2
s,t

(
m̂′

tm̂s
)2

(16)

is a consistent estimate of

σ 2 = 2(vec(ϒ))′
(∫ 1

0
(�(r)⊗�(r))dr

)
vec(ϒ)

∫ 1

−1
k2(u)du (17)

under the null and the alternatives, where �(·) = G′
2 (·)G2 (·)⊗G′

1 (·)G1 (·).
We now state the asymptotic distribution of JT under the null.

Theorem 1. Suppose that Assumptions 1-5 hold, then under the null of �12
t =

0d1×d2 , as T → ∞, we have

JT
d→ N(0,1) . (18)

Remark 3. The proof of Theorem 1 uses the fact that JT is asymptotically
equivalent to a degenerate U-statistic. However, the kernel function solely involves
deterministic components of sample-size scaled time index and {ut}T

t=1 is not
an independently and identically distributed sequence. Thus, we cannot directly
apply the result of Zheng (1996) and Hsiao and Li (2001) to establish asymptotic
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10 JILIN WU ET AL.

normality. To obtain the asymptotic null distribution of JT , we need to resort to the
martingale central limit theorem of Brown (1971). Additionally, it is well known
that the asymptotic null distributions of nonparametric kernel-based tests like JT

may not be well approximated by N(0,1) in finite samples, see, for example, Li
and Wang (1998) and Lee and Ullah (2007). More accurate critical values of the
finite sample distribution of JT under the null can be obtained via a wild bootstrap
procedure, see Section 3.4 for more discussion.

3.2. Asymptotic Power

Now, we study the power properties of the test under the alternatives. We first
consider the power of the test under a fixed alternative. The consistency property
of the test rejecting H0 for large values of JT is stated in the following theorem.

Theorem 2. Suppose that Assumptions 1-5 hold, then under HA, for any

sequence of nonstochastic constants
{

CT = o
(

T
√

h
)}

, as T → ∞, we have

Pr(JT > CT) → 1. (19)

Remark 4. From the proof of Theorem 2 in the Supplementary Material, it is
shown that JT diverges to positive infinity at the nonparametric rate Th1/2 as T →
∞. This implies that the proposed test is a one-sided test, and has an asymptotic
unit power against any fixed alternatives.

In order to gain some insights into the local power of the test, the next theorem
shows the behavior of JT under the local alternatives given by

HLA : �12 (r) = jTπ(r), (20)

where π(·) : [0,1] → Rd1×d2 is a twice continuously differentiable function except
for a finite number of discontinuity points. The term jTπ(r) characterizes the
potential departure of �12 (r) from the null at the time Tr�, where x� is the integer
part of x. Here jT = j(T) governs the rate at which the local alternatives deviate
from the null. For notational simplicity, we have suppressed the dependence of
�12 (r) on T. In the special case of π(r) = 0d1×d2 , for any r ∈ [0,1], we obtain the
null model.

Theorem 3. Suppose that Assumptions 1-5 hold, then under HLA with jT =
T−1/2h−1/4, as T → ∞, we have

JT
d→ N(μ,1), (21)

where μ = tr
(∫ 1

0 π (r)π (r)′ dr
)/

σ .

Remark 5. The “non-centrality parameter” μ represents the shift in charge
of asymptotic local power against HLA. Clearly, when π(r) = 0d1×d2 in (20),
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A NONPARAMETRIC TEST FOR INSTANTANEOUS CAUSALITY 11

Theorem 3 is reduced to Theorem 1. Theorem 3 means that JT has nontrivial
power against the given alternatives (20) that diverge from the null at the rate
of T−1/2h−1/4. Note that T−1/2h−1/4, which is the typical rate for nonparametric
kernel tests, is slower than the parametric rate T−1/2. Therefore, unlike the test
proposed by Gianetto and Raïssi (2015), JT cannot detect Pitman local alternatives
that approach the null at the rate of T−1/2. In contrast, the test of Gianetto and Raïssi
(2015) enjoys nontrivial power against HLA with the rate T−1/2. However, their
test is constructed only utilizing the information of the null hypothesis, and does
not consider any information of the alternatives. As a result, the test of Gianetto
and Raïssi (2015) is mainly good at detecting the instantaneous causality with a
single breakpoint, although it also enjoys some power against the instantaneous
causality with multiple breakpoints or smooth structural change. In contrast,
our proposed nonparametric test is constructed by comparing the discrepancy
between the nonparametric estimators of �12(r) under the alternatives and the zero
matrix 0d1×d2 under the null, and any deviation from the null can be immediately
captured by JT . Hence, our new test has all-round power against various kinds of
alternatives, including smooth structural change and abrupt breaks, which will be
demonstrated in subsequent Monte Carlo experiments.

3.3. Lag Length Identification and Bandwidth Selection

The correct choice of lag length in the VAR model (1) is the first task. If the chosen
lag order is too small, the test may produce misleading outputs; if a large lag
order is chosen, then many unnecessary parameters are introduced into the model,
which will cause power loss in the proposed test. The information criteria (see, e.g.,
Hannan and Quinn, 1979; Cavanaugh, 1997; Boubacar, 2012) and the portmanteau
tests (see, e.g., Chitturi, 1974; Hosking, 1980) are the most recommended to
help identify lag length in VAR models. However, the presence of time-varying
variances invalidates these classic methods but the corrected portmanteau test
developed by Patilea and Raïssi (2013) can be applied to situations where the time-
varying variances are present. Specifically, the portmanteau statistic is given by

Q̃OLS
m = T2

m∑
i=1

(T − i)−1 tr
[
̂′

OLS (i) ̂−1
OLS (0) ̂OLS (i) ̂−1

OLS (0)
]
, (22)

where ̂OLS (i) = T−1 ∑T
t=i+1 ûtû′

t−i and ût = Yt −
(
X′

t−1 ⊗ Id
)
�̂. If the lag length

p is correctly selected, Patilea and Raïssi (2013) prove that the statistic Q̃OLS
m

converges to

U
(
δOLS

m

) =
d2m∑
i=1

δOLS
i U2

i

as T → ∞, where δOLS
m =

(
δOLS

1 , . . . ,δOLS
d2m

)′
is the vector of the eigenvalues of the

matrix �OLS
m (whose form is given in Theorem 4.1 of Patilea and Raïssi, 2013),
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12 JILIN WU ET AL.

and Ui is an independent N(0,1) variable. The limiting distribution of U
(
δOLS

m

)
in the presence of time-varying variances is very different from a chi-square law,
and its p-values cannot be obtained from the chi-square distribution. Therefore, a
simulated algorithm is suggested to generate the critical values of U

(
δOLS

m

)
, which

of course requires consistent estimation of the eigenvalue vector δOLS
m in advance.

The reader can be referred to Patilea and Raïssi (2013) and Imhof (1961) for more
discussion on estimating δOLS

m and computing the critical values of U
(
δOLS

m

)
.

The selection procedure is given as follows: We start with a VAR(1) model and
test whether the choice of lag length is appropriate by comparing the statistic Q̃OLS

m

with the simulated critical value of U
(
δOLS

m

)
at the significance level α, If Q̃OLS

m is
smaller than the given critical value, we choose p = 1; otherwise, the next step is
to estimate a VAR(2) model and perform the test again. This procedure is repeated
until a non-rejection occurs. In practice, a maximum lag order pmax is commonly
required to be prespecified due to limited sample sizes.

The proposed test statistic involves choosing the bandwidth parameter h, which
also plays an important role in our testing procedure. Because the test statistic is
derived from the nonparametric estimation of �12(·), following Xia and Li (2002)
and Li and Racine (2004) we consider the method of least-squares cross validation
(CV) to choose the bandwidth h. Define a “leave-one-out” estimator

�̂12
−t =

∑T
s=p+1,s�=t kh (rs − rt) û1sû′

2s∑T
s=p+1,s�=t kh (rs − rt)

. (23)

Then a data-driven choice of h based on (23) is given by

ĥcv = argmin
c1T−1/5≤h≤c2T−1/5

1

T −p

T∑
t=p+1

∥∥∥û1tû
′
2t − �̂12

−t

∥∥∥ 2, (24)

where c1 and c2 are two prespecified constants, and T−1/5 is the optimal order
of magnitude obtained by minimizing the asymptotic mean integrated squared
error of �̂12 (·). The data-driven bandwidth automatically adjusts to the data and
leads to a test based on the trade-off between size and power. Under the null (�12

t

is irrelevant to t), �̂12 (·) is unbiased and CV tends to minimize the integrated
variance, thereby selecting a bandwidth close to the upper limit. Under the
alternative, CV searches for a way of balancing bias and variance and settles down
at an optimal (shrinking) bandwidth. The CV method does not affect the limiting
distribution of our test statistic since it satisfies the requirement of Assumption
5 that ĥcv → 0 and Tĥ2

cv → ∞ as T → ∞. In finite samples, using the CV
method may introduce some extra noise into size performance, but it can help
achieve decent power1. In this article, we specify h = 1.03i−15T−1/5, 1 ≤ i ≤ 25,

1Of course, the bandwidth produced by the CV method varies with the sample. Extension of our testing procedure
allowing for a random bandwidth is possible along the lines of Li and Li (2010).
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A NONPARAMETRIC TEST FOR INSTANTANEOUS CAUSALITY 13

which implies that c1 = 0.661 and c2 = 1.344, and our Monte Carlo evidence
demonstrates that the data-driven bandwidth selection procedure works well.

3.4. A Bootstrap Method

The test statistic JT has an asymptotic standard normal distribution under the null
hypothesis. However, empirical sizes of the kernel-based nonparametric test using
asymptotic critical values may differ quite a bit from the nominal levels in finite
sample applications, and can be sensitive to bandwidth selection. For this reason,
a wild bootstrap procedure is proposed to improve the testing accuracy of JT under
the null. We show that the bootstrap-based test is asymptotically valid. The Monte
Carlo results in Section 4 also show that the bootstrap-based test indeed has a much
better size than the asymptotic test using normal critical values.

In the following, we outline the key steps in computing the bootstrapped test
statistic.

(a) Determine the lag length p in the VAR(p) model, and obtain the OLS
estimator �̂ by (9) as well as the corresponding OLS residuals ût. Select the
bandwidth h and calculate the test statistic JT by (15).

(b) Generate B bootstrap sets given by m̂(i)
t = ξ

(i)
t vec(û1tû′

2t),t ∈ {p+1, . . . ,T},
and i ∈ {1,...,B}, where the univariate random variable ξ

(i)
t is taken from the i.i.d.

standard Gaussian distribution, independent of the original samples {Yt}T
t=1.

(c) Calculate the test statistic J∗
T,(i) in the same way as JT with the bootstrapped

m̂(i)
t replacing the original m̂t, where i ∈ {1,...,B}.
(d) Obtain the (1−α) th quantile q1−α from the empirical distribution of{

J∗
T,(i)

}B

i=1
as the cutoff value. Reject the null hypothesis at the level α if JT > q1−α .

In the above procedure, we do not have to re-estimate the VAR model with the
bootstrapped samples, and the OLS residuals are directly employed to generate the
bootstrap residuals. This is motivated by the fact that the null is tested on the error
covariance structure, so that we only consider the residuals in the test statistic.
The wild bootstrap method is mainly designed to replicate the pattern of potential
nonconstant covariance of the residuals. Alternative bootstrap methods could be
considered but at the price of more computational burden.

Let
d∗→ denote the convergence in distribution under the bootstrap law—

conditional on the data and for almost all sample paths. The following theorem
justifies asymptotic validity of the proposed bootstrap method.

Theorem 4. Suppose that Assumptions 1-5 hold, then under the null and the
alternatives, as T → ∞, we have

J∗
T

d∗→ N(0,1).

Remark 6. Theorem 4 shows that the bootstrapped test statistic J∗
T converges

in distribution to N(0,1), thus providing an asymptotically valid procedure. By
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14 JILIN WU ET AL.

comparing JT with the quantile q1−α of J∗
T , we can judge whether the null is

rejected or not. Monte Carlo experiments are conducted to evaluate the finite
sample performance of the proposed bootstrap procedure, and to compare it with
the asymptotic test using critical values from a standard normal. The readers are
referred to an earlier version of this paper (in particular, Table 1 on page 15) for
more simulation results, see Wu, Wu, and Xiao (2022). The Monte Carlo results
show that the asymptotic test using normal critical values tends to over-reject
the null, and the bootstrap-based test has a much-improved size property—thus
improving the finite sample performance of the test.

4. MONTE CARLO SIMULATION

In this section, we conduct Monte Carlo experiments to investigate the finite-
sample performance of the nonparametric test JT , and compare it with three other
tests Sst,Sw, and Sb considered by Gianetto and Raïssi (2015)2. For JT , we use
the Epanechnikov kernel k(u) = 3

4

(
1−u2

)
I (|u| ≤ 1) and choose the bandwidth h

based on the data-driven method given by (24). In addition, we also specify three
different bandwidths h = γ T−1/5, where γ = 0.5,0.75, and 1.0, to demonstrate
that our bootstrapped test seems to be less sensitive to bandwidth selection.
The corresponding tests are denoted as JB

T,cv,J
B
T1,J

B
T2, and JB

T3, respectively. The
first experiment design follows Gianetto and Raïssi (2015), and we consider the
following bivariate VAR(2) model(

Y1t

Y2t

)
=

(
0.2 0.2
0.3 −0.3

)(
Y1t−1

Y2t−1

)
+

(
0.1 0.3
0.1 0.4

)(
Y1t−2

Y2t−2

)
+

(
u1t

u2t

)
,

where the innovations are Gaussian with the variance-covariance structure �(·)
fulfilling Assumption 3. To investigate the size performance of the new test under
the null, we consider no instantaneous causality relation between Y1t and Y2t by
the following null

DGPS.1 : �(r) =
(

�11 (r) 0
0 �22 (r)

)
,∀ r ∈ [0,1],

where �11 (r) = 1.1 − cos (11r), and �22 (r) = 1.1 + sin(11r) correspond to the
nonconstant smooth variances of the innovations.

We generate 1000 data sets of {Yt}T
t=1 for each T = 100,200, 500, and 800. For

the tests JB
T1,J

B
T2, JB

T3, and JB
T,cv, their testing results are obtained from the wild

bootstrap method presented in Section 3.4. Similarly, the critical values of Sb are
also obtained by the wild bootstrap method of Gianetto and Raïssi (2015). In all
our experiments we use B = 299 bootstrap iterations for each simulated data set.

2Sst is the standard test statistic given by Sst = δ′
1�̂

−1
s,t δ1 with δ1 = T−1/2 ∑T

t=p+1 û2t ⊗ û1t and �̂s,t =(
T−1 ∑T

t=p+1 û2t û′
2t

)
⊗

(
T−1 ∑T

t=p+1 û1t û′
1t

)
, Sw is the White corrected test given by Sw = δ′

1�̂
−1
w δ1 with �̂w =

T−1 ∑T
t=p+1 û2t û′

2t ⊗ û1t û′
1t , and Sb = supr∈[0,1] ‖δr‖2 with δr = T−1/2 ∑Tr�

t=p+1 û2t ⊗ û1t , r ∈ [0,1], where
(
û′

1t,û
′
2t

)′ =
Yt −

(
X′

t−1 ⊗ Id
)
�̂ is the OLS residual.
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A NONPARAMETRIC TEST FOR INSTANTANEOUS CAUSALITY 15

Table 1. Empirical sizes of the tests under DGPS.1

JB
T1 JB

T2 JB
T3 JB

T,cv Sb Sw Sst

1% asymptotic nominal level

T = 100 0.019 0.018 0.018 0.017 0.016 0.010 0.014

T = 200 0.008 0.008 0.009 0.008 0.006 0.008 0.007

T = 500 0.012 0.008 0.008 0.007 0.007 0.010 0.006

T = 800 0.007 0.006 0.007 0.009 0.002 0.005 0.003

5% asymptotic nominal level

T = 100 0.059 0.057 0.058 0.056 0.057 0.064 0.069

T = 200 0.057 0.052 0.043 0.049 0.038 0.039 0.037

T = 500 0.043 0.044 0.045 0.044 0.043 0.045 0.043

T = 800 0.056 0.052 0.047 0.046 0.046 0.046 0.039

10% asymptotic nominal level

T = 100 0.105 0.103 0.103 0.111 0.126 0.118 0.121

T = 200 0.096 0.092 0.091 0.091 0.079 0.086 0.078

T = 500 0.101 0.088 0.086 0.089 0.099 0.099 0.099

T = 800 0.096 0.099 0.096 0.102 0.094 0.096 0.091

Lastly, the testing results of Sst and Sw are based on the asymptotic chi-square
critical values. Here the lag length in the VAR(p) model is selected by using the
corrected portmanteau statistic Q̃OLS

m at the 5% significance level with m = 6, and
we specify the maximum lag pmax = 6. In the Supplementary Material, we also
provide the simulation results for p = 2, where the true lag length is assumed to be
known.

Table 1 reports the rejection rates of all tests at the 1%, 5%, and 10% significance
levels. We observe that the tests Sb,Sst, and Sw have empirical sizes close to the
nominal ones in all cases. In addition, the new tests JB

T1,J
B
T2, JB

T3, and JB
T,cv are

insensitive to bandwidth selection, and their estimated sizes are also quite close to
their nominal ones. Thus, our wild bootstrap indeed approximates the finite sample
null distribution of the test statistic very accurately.

In order to explore the testing power of the proposed test, we still follow Gianetto
and Raïssi (2015) and consider the following alternative

DGPP.1 : �(r) =
(

�11 (r) �12 (r)
�12 (r) �22 (r)

)
,∀ r ∈ [0,1],

where �11 (r) and �22 (r) are still defined under the null, and �12 (r) = csin(2πr)
is such that

∫ 1
0 �12 (r)dr = 0 with �12 (r) �= 0 almost everywhere for r ∈ [0,1].

For the time being, we let c = 0.5. Later, we shall treat the testing power of JT as a
function of c, and try to investigate whether JT enjoys monotonic power when the
deviation from the null is increased.
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16 JILIN WU ET AL.

Table 2. Empirical power of the tests under DGPP.1

JB
T1 JB

T2 JB
T3 JB

T,cv Sb Sw Sst

1% asymptotic nominal level

T = 100 0.311 0.333 0.305 0.304 0.017 0.010 0.016

T = 200 0.659 0.718 0.711 0.708 0.072 0.005 0.010

T = 500 0.989 0.994 0.994 0.992 0.488 0.008 0.024

T = 800 1.000 1.000 1.000 1.000 0.892 0.012 0.017

5% asymptotic nominal level

T = 100 0.538 0.579 0.567 0.564 0.127 0.048 0.061

T = 200 0.849 0.872 0.874 0.871 0.312 0.062 0.076

T = 500 0.999 1.000 1.000 1.000 0.841 0.055 0.085

T = 800 1.000 1.000 1.000 1.000 0.994 0.051 0.059

10% asymptotic nominal level

T = 100 0.662 0.690 0.699 0.679 0.260 0.081 0.108

T = 200 0.909 0.924 0.926 0.925 0.499 0.096 0.128

T = 500 1.000 1.000 1.000 1.000 0.947 0.100 0.117

T = 800 1.000 1.000 1.000 1.000 0.999 0.090 0.115

We still generate 1000 data sets of {Yt}T
t=1 for each T = 100,200, 500, and 800.

Table 2 reports the rejection rates of all the tests at the 1%, 5%, and 10% levels, and
shows that the bootstrapped tests JB

T1,J
B
T2, JB

T3, and JB
T,cv are much more powerful

than the three tests Sb,Sst, and Sw considered by Gianetto and Raïssi (2015) for all
cases. Although the choice of bandwidth has almost no impact on the estimated
sizes of the proposed test, it does on its testing power to some extent, which seems
to ameliorate by increasing the sample size T. In addition, we also note that the tests
Sw and Sst have almost no power even though the sample size T is increased to 800,
and the test Sb exhibits some power but is always inferior to our four bootstrapped
tests.

In order to illustrate the ability of the proposed test to detect the alternative with
monotonic power, we assume the empirical power of all tests to be functions of c.
When c = 0, we are back to the null hypothesis. Here we keep all specifications
unchanged as in the power experiment, except that we let T = 200 and choose
the 5% nominal level. Since the bootstrapped tests JB

T1,J
B
T2, JB

T3, and JB
T,cv display

similar power performance, here we only compare JB
T,cv with the tests Sb,Sst, and

Sw. We clearly observe from Figure 1 that the tests Sw and Sst have almost no power
as we gradually increase c values, while the other two tests JB

T,cv and Sb exhibit
monotonic power. Comparatively speaking, the test JB

T,cv is much more powerful
than the test Sb, and it has a much faster climbing rate. When the deviation c is
increased to a larger extent, the power function of JB

T,cv approaches unity.
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Figure 1. The testing power curves of the tests under DGPP.1.

The above Monte Carlo simulation only considers smooth structural change in
�(·). Next, we study two cases of abrupt structural breaks in �(·). The entire
designs of the Monte Carlo experiment are the same as before, except that we
replace the smooth change with the structural breaks. First, to investigate the
testing sizes under the null, we consider the following specifications for �(·):

�(r) =
(

�11 (r) 0
0 �22 (r)

)
,∀ r ∈ [0,1], (25)

where the first case is given by

DGPS.2 : �11 (r) =
{

1
5

r ≤ 0.25
r > 0.25

, and �22 (r) =
{

3
1

r ≤ 0.75
r > 0.75

, (26)

which corresponds to a single structural break in the unconditional variances, and
the second case is given by

DGPS.3 : �11 (r) =
⎧⎨
⎩

2
5
2

r < 0.2
0.2 ≤ r ≤ 0.8
r > 0.8

, and �22 (r) =
⎧⎨
⎩

3
4
2

r < 0.4
0.4 ≤ r ≤ 0.6
r > 0.6

,

(27)

which contains two structural breaks in the unconditional variances.
The results for DGPS.2 and DGPS.3 are reported in Tables 3 and 4. We find that

the size performance of all the tests in both cases is similar to that of the smoothly
changing case in Table 1, and their estimated sizes are close to the nominal ones
at the three different significance levels.

In order to explore the testing power of our proposed test under structural breaks,
we also consider the following specifications for �(·):

�(r) =
(

�11 (r) �12 (r)
�12 (r) �22 (r)

)
,∀ r ∈ [0,1], (28)
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Table 3. Empirical sizes of the tests under DGPS.2

JB
T1 JB

T2 JB
T3 JB

T,cv Sb Sw Sst

1% asymptotic nominal level

T = 100 0.012 0.012 0.014 0.014 0.009 0.009 0.014

T = 200 0.018 0.015 0.014 0.012 0.008 0.009 0.010

T = 500 0.015 0.016 0.012 0.015 0.011 0.006 0.008

T = 800 0.011 0.008 0.007 0.008 0.007 0.005 0.004

5% asymptotic nominal level

T = 100 0.057 0.055 0.058 0.057 0.065 0.060 0.064

T = 200 0.039 0.038 0.036 0.039 0.043 0.039 0.032

T = 500 0.049 0.047 0.044 0.048 0.046 0.052 0.048

T = 800 0.052 0.045 0.044 0.046 0.045 0.042 0.032

10% asymptotic nominal level

T = 100 0.102 0.107 0.104 0.105 0.109 0.110 0.106

T = 200 0.078 0.073 0.075 0.075 0.086 0.085 0.077

T = 500 0.090 0.097 0.104 0.092 0.099 0.113 0.107

T = 800 0.089 0.091 0.099 0.098 0.100 0.101 0.090

Table 4. Empirical sizes of the tests under DGPS.3

JB
T1 JB

T2 JB
T3 JB

T,cv Sb Sw Sst

1% asymptotic nominal level

T = 100 0.012 0.014 0.010 0.012 0.006 0.009 0.015

T = 200 0.015 0.013 0.012 0.012 0.009 0.008 0.010

T = 500 0.012 0.013 0.015 0.016 0.008 0.009 0.011

T = 800 0.008 0.006 0.008 0.007 0.008 0.007 0.007

5% asymptotic nominal level

T = 100 0.056 0.055 0.050 0.054 0.054 0.060 0.066

T = 200 0.045 0.044 0.043 0.044 0.042 0.037 0.045

T = 500 0.040 0.044 0.039 0.040 0.045 0.052 0.053

T = 800 0.043 0.039 0.039 0.041 0.041 0.042 0.049

10% asymptotic nominal level

T = 100 0.094 0.096 0.095 0.096 0.110 0.112 0.119

T = 200 0.079 0.076 0.082 0.078 0.090 0.092 0.095

T = 500 0.089 0.087 0.098 0.096 0.101 0.108 0.117

T = 800 0.084 0.091 0.095 0.098 0.090 0.097 0.099
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where, specifically, �(·) takes the following two data generating processes:
DGPP.2: �11 (·) and �22 (·) are the same as in (26), and �12 (·) is specified as

�12 (r) =
{

0
c

r ≤ 0.5
r > 0.5

,c = 1. (29)

DGPP.3: �11 (·) and �22 (·) are the same as in (27), and �12 (·) is specified as

�12 (r) =
⎧⎨
⎩

−c
0
c

r < 0.3
0.3 ≤ r ≤ 0.7
r > 0.7

,c = 1. (30)

Tables 5 and 6 report the estimated power for DGPP.2 and DGPP.3. When �(·)
exhibits one breakpoint, we find that all the tests exhibit high power. Comparatively
speaking, our bootstrapped tests JB

T1,J
B
T2, JB

T3, and JB
T,cv always enjoy marginal

advantages over the other three tests Sb, Sw, and Sst most of the time, and the test Sb

does not dominate the tests Sst and Sw. In contrast, the latter two ones are always a
little better than the former one. When we turn to the case of two breaks in �(·),
we find that our bootstrapped tests obviously outperform the other three tests. The
test Sb is the second best and enjoys some testing power. However, the tests Sw and
Sst have almost no testing power in this case even though we increase the sample
size T from 100 to 800.

Table 5. Empirical power of the tests under DGPP.2

JB
T1 JB

T2 JB
T3 JB

T,cv Sb Sw Sst

1% asymptotic nominal level

T = 100 0.175 0.205 0.204 0.204 0.127 0.186 0.167

T = 200 0.403 0.442 0.471 0.473 0.285 0.421 0.386

T = 500 0.899 0.925 0.941 0.934 0.755 0.840 0.853

T = 800 0.994 0.994 0.997 1.000 0.951 0.987 0.989

5% asymptotic nominal level

T = 100 0.377 0.408 0.418 0.417 0.329 0.344 0.344

T = 200 0.653 0.699 0.716 0.710 0.550 0.668 0.685

T = 500 0.975 0.982 0.987 0.986 0.910 0.934 0.941

T = 800 1.000 1.000 1.000 1.000 0.991 0.993 0.995

10% asymptotic nominal level

T = 100 0.494 0.530 0.539 0.533 0.433 0.492 0.500

T = 200 0.772 0.796 0.819 0.819 0.683 0.771 0.793

T = 500 0.992 0.995 0.994 0.993 0.951 0.968 0.971

T = 800 1.000 1.000 1.000 1.000 0.992 0.999 0.999
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Table 6. Empirical power of the tests under DGPP.3.

JB
T1 JB

T2 JB
T3 JB

T,cv Sb Sw Sst

1% asymptotic nominal level

T = 100 0.124 0.122 0.104 0.108 0.023 0.014 0.014

T = 200 0.355 0.345 0.316 0.315 0.051 0.005 0.007

T = 500 0.934 0.935 0.923 0.928 0.267 0.014 0.018

T = 800 0.999 0.997 0.995 0.995 0.567 0.013 0.018

5% asymptotic nominal level

T = 100 0.312 0.315 0.287 0.262 0.106 0.052 0.061

T = 200 0.648 0.651 0.615 0.629 0.201 0.051 0.060

T = 500 0.988 0.988 0.987 0.983 0.643 0.051 0.064

T = 800 1.000 1.000 1.000 1.000 0.891 0.054 0.064

10% asymptotic nominal level

T = 100 0.447 0.435 0.406 0.398 0.211 0.093 0.119

T = 200 0.773 0.780 0.765 0.763 0.373 0.098 0.117

T = 500 0.995 0.997 0.997 0.996 0.821 0.089 0.111

T = 800 1.000 1.000 1.000 1.000 0.957 0.095 0.122

Similarly, to confirm that our test has monotonic testing power in the presence
of structural breaks in �(·) when the deviation from the null is increased, we
plot the empirical power of all the tests as functions of c (see Figures 2 and 3).
The Monte Carlo experiment designs are the same as the smoothly changing case
except that we let �(·) take the forms as generated by (28)–(30). We notice that
all the tests exhibit monotonic power when �(·) contains a single structural break.

Figure 2. The testing power curves of the tests under DGPP.2.
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Figure 3. The testing power curves of the tests under DGPP.3.

Comparatively speaking, the test Sb always exhibits lower testing power than our
test JB

T,cv as well as the tests Sw and Sst for all values that the deviation c takes.
For two structural breaks in �(·), it is shown that the tests Sw and Sst have almost
no power even though the deviation c is gradually increased to a large value. In
contrast, our test JB

T,cv and the test Sb still exhibit monotonic power. Of course,
JB

T,cv is climbing much faster than Sb.
To sum up, our new bootstrapped tests exhibit reasonable testing sizes at

different given significance levels. Moreover, they are also more powerful than
other popular tests in detecting various forms of instantaneous causality in the
presence of time-varying variances.

5. EMPIRICAL APPLICATION TO MONEY SUPPLY AND INFLATION

The link between money supply and inflation is always an important issue in
macroeconomics, and has been investigated by many economists in the United
States. For example, Turnovsky and Wohar (1984) found that over the period 1923–
1960, the inflation rate was independent of the money supply. In contrast, Benderly
and Zwick (1985) provided some evidence of a relationship over the period 1955–
1988. Gianetto and Raïssi (2015) also tested the relationship from 1979 to 1995 by
proposing the test Sb that is robust to time-varying unconditional variances. They
rejected no instantaneous causality at the 10% significance level but did not reject
it at the 5% level.

In this section, we investigate the relationship between money supply and
inflation in the United States by considering a longer period and including
more proxy variables for both money supply and inflation, and compare the
performance of the proposed test JT with that of the three tests Sst,Sw, and Sb.
The data series we employed are monthly frequencies taken from the OECD
database (https://data.oecd.org/), covering the period of 01/1959-12/2019. For
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Figure 4. The time series of the money growth rates and inflation rates.

money supply, we choose the two money indices M1 and M3, representing the
narrow money supply and the broad money supply, respectively. For inflation,
we employ both the consumer price index (CPI) and the producer price index
(PPI). Specifically, the CPI is the total one including food and energy, while
the PPI is the one of manufacturing for the total market. For all four indices,
the base year is specified as 2015 = 100. In order to obtain money growth rates
and inflation rates, we first make seasonal adjustments for the original four series
via the X-12 method executed by the software OX. By taking log differences
in the seasonally adjusted M1, M3, CPI, and PPI series, we then obtain 731
observations in total for each series, which are plotted in Figure 4(a) and 4(b).
Visual inspection of plots reveals that the money growth rate � logM3 is stable, and
the rate � logM1 is much more volatile, especially after the year 2000. In addition,
the two inflation rates, � logCPI and � logPPI, suffer great variations around the
year 1974 and after the year 2000. Next, we apply the test of Wu and Xiao (2018b)
to check whether the unconditional variances of the macroeconomic variables
exhibit time-varying features. The testing procedure is implemented by using the
estimated residuals of the AR(p) models for � logM1, � logM3, � logCPI and
� logPPI with p = 0,1,2,33. As the by-products of Wu and Xiao’s (2018b) testing
procedure, the nonparametric estimates of the unconditional variances are also
plotted in Figure 5. From Table 7, we find that the testing results are robust to
the different specifications for the conditional means, consistently rejecting the

3The MATLAB codes are provided by Wu and Xiao (2018b) with the “leave-q-out” bandwidth q = T1/2�.
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Figure 5. The estimated unconditional variances of the four macroeconomic variables.

Table 7. The p-values of testing for constant unconditional variances for the
money growth rates and inflation rates

AR(0) AR(1) AR(2) AR(3)

� logM1 0.000 0.000 0.000 0.000

� logM3 0.994 0.389 0.510 0.523

� logCPI 0.000 0.018 0.003 0.004

� logPPI 0.000 0.000 0.000 0.000

nulls for � logM1, � logCPI, and � logPPI at least at the 2% significance level,
and accepting the null for � logM3 at very large p-values. So we conclude that
the unconditional variances of � logM1, � logCPI and � logPPI are statistically
time-varying, while that of � logM3 is constant over time for the given period,
which can also be clearly seen from Figure 5.

Now we apply the VAR models to fit the bivariate series of the money growth
rate and inflation rate, and the autoregressive lag order is chosen using the corrected
portmanteau test Q̃OLS

m . The testing results are given in Table 8, where m = 3,6,12
are considered for the test. We find that all the bivariate series are well captured
by the VAR(1) model since all the p-values of the corrected portmanteau test are
close to or equal to one.

Once the linear dynamics of the four bivariate series seem well fitted, we
now turn to the analysis of instantaneous causality in the estimated residuals by
employing the proposed test JT and the three other tests Sst,Sw, and Sb. The testing
procedure is the same as that in the Monte Carlo simulation part. Table 9 shows that
no matter what the proxy variables for the money supply and inflation we choose,
all the p-values of the bootstrapped tests JB

T1,J
B
T2, JB

T3, and JB
T,cv are very small, and

most of them are equal to zero. Hence, the null of no instantaneous causality is

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466624000409
Downloaded from https://www.cambridge.org/core. IP address: 3.137.198.25, on 29 Apr 2025 at 02:49:08, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466624000409
https://www.cambridge.org/core


24 JILIN WU ET AL.

Table 8. The p-values of the corrected portmanteau test for checking adequacy
of the VAR(1) model with time-varying variances

Number of lags

02/1959−12/2019 m = 3 m = 6 m = 12

(� logM1,� logCPI) 0.997 1.000 1.000

(� logM1,� logPPI) 0.989 0.992 0.999

(� logM3,� logCPI) 0.998 1.000 1.000

(� logM3,� logPPI) 0.974 0.983 0.995

Table 9. The p-values of the tests for instantaneous causality between the money
supply and inflation

02/1959−12/2019 JB
T1 JB

T2 JB
T3 JB

T,cv Sb Sw Sst

(� logM1,� logCPI) 0.000 0.000 0.000 0.000 0.674 0.599 0.528

(� logM1,� logPPI) 0.013 0.008 0.005 0.005 0.549 0.999 0.998

(� logM3,� logCPI) 0.000 0.000 0.000 0.000 0.404 0.347 0.339

(� logM3,� logPPI) 0.000 0.000 0.000 0.000 0.822 0.506 0.349

rejected consistently by the new test. On the contrary, all the p-values of Sst,Sw

and Sb are very large, and the null cannot be rejected even at the 10% significance
level. Considering the reliability of the new test JT , we conclude that there exists
instantaneous causality between money supply and inflation in the USA.

6. EXTENSION TO TIME-VARYING COEFFICIENT VAR MODELS

As pointed out by one of the reviewers, it is more interesting to consider the
following VAR(p) model with time-varying coefficients,

{
Yt = ∑p

j=1 Aj (rt)Yt−j +ut,

ut = G(rt)εt,t = 1,2, . . . ,T,
(31)

where rt = t/T , the eigenvalues of the matrix Id − ∑p
j=1 Aj(r)zj all lie outside

the unit circle uniformly in r ∈ [0,1] and each element Aj(r) is second
order continuously differentiable on [0,1] for j = 1, . . . ,p. Denote �t =(
vec(A1(rt))

′, . . . ,vec(Ap(rt))
′)′

and Xt−1 = (
Y ′

t−1,Y
′
t−2, . . . ,Y

′
t−p

)′
. Then the

VAR(p) model in (31) can be rewritten as

Yt = (
X′

t−1 ⊗ Id
)
�t +ut. (32)
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Following Gao, Peng, and Yan (2024), the local linear estimator for �t is given by

�̂t = [Id2p,0d2p]

⎛
⎝ T∑

s=p+1

Lb(rs − rt)Zs−1Z′
s−1

⎞
⎠

−1
T∑

s=p+1

Lb(rs − rt)Zs−1Ys, (33)

where Zs−1 = (
X′

s−1 ⊗ Id,
rs−rt

b Xs−1 ⊗ Id
)′

, 0d2p is a d2p×d2p zero matrix, Lb(·) =
L(·/b)/b, b is the bandwidth parameter, and L(·) is a classic kernel function.
Under some regularity conditions, Gao et al. (2024) have established a set of
asymptotic properties for the estimator �̂t, an information criterion to select the
optimal lag, and a Wald-type test to determine the constant coefficients. Denote
ǔt = Yt −

(
X′

t−1 ⊗ Id
)
�̂t, then we can construct the following U-statistic

λ̌T = 1

T2h

T∑
t=p+1

∑
s�=t

ks,tm̌
′
tm̌s, (34)

where m̌t = vec(ǔ1tǔ′
2t). In order to obtain a valid test, we standardize λ̃T by Th1/2

and the variance estimator σ̌ 2
T = 2

Th2

∑T
t=p+1

∑
s�=t k2

s,t(m̌
′
tm̌s)

2. Now, we have the
following test statistic:

J̌T = Th1/2λ̌T

σ̌T
. (35)

To ensure Theorems 1–4 still hold for the test statistic J̌T , which implies that
the nonparametric residuals

{
ǔt

}
and the errors {ut} are asymptotically equivalent

for our purpose, we need to impose some additional assumptions, especially the
relationship of the second bandwidth b with the first one h. We do not provide
theoretical justification here, but our additional Monte Carlo simulations show
that J̌T also works well for the time-varying VAR models, as shown in the
Supplementary Material.

7. CONCLUSION

In this paper, we propose a nonparametric test for instantaneous causality in
the presence of time-varying variances. Compared with the existing tests, our
proposed test is intuitively appealing and straightforward to compute. It has
a simple asymptotically standard normal distribution under the null. The only
inputs required in the test are the OLS residuals from VAR(p) models. The test
is consistent against various forms of alternatives that deviate from the null,
and allows for smooth structural change and structural breaks with known or
unknown breakdates in unconditional variances. To reduce the size distortion of the
proposed test in finite sample applications, we also propose using a wild bootstrap
method to improve its size performance. Monte Carlo simulations indicate that
our new test implemented with the bootstrap p-values has both reasonable sizes
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and all-around monotonic power in finite samples. The new test is then applied
to check the relationship between money supply and inflation rates in the USA,
and significantly rejects the null of no instantaneous causality. Finally, we also
consider one possible extension to test for instantaneous causality in the context
of time-varying coefficient VAR models, which is left for future research.

SUPPLEMENTARY MATERIAL

Jilin Wu, Ruike Wu and Zhijie Xiao (February 23, 2024): Supplement to
“A Nonparametric Test for Instantaneous Causality with Time-Varying Vari-
ances,” Econometric Theory Supplementary Material. To view, please visit
https://doi.org/10.1017/S0266466624000409.
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