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Infinite dimensional sequential
compactness: Sequential compactness
based on barriers
C. Corral , O. Guzmán, C. López-Callejas , P. Memarpanahi,
P. Szeptycki , and S. Todorčević
Abstract. We introduce a generalization of sequential compactness using barriers on ω extending
naturally the notion introduced in [W. Kubiś and P. Szeptycki, On a topological Ramsey theorem,
Canad. Math. Bull., 66 (2023), 156–165]. We improve results from [C. Corral and O. Guzmán and
C. López-Callejas, High dimensional sequential compactness, Fund. Math.] by building spaces that
are B-sequentially compact but not C-sequentially compact when the barriers B and C satisfy
certain rank assumption which turns out to be equivalent to a Katětov-order assumption. Such
examples are constructed under the assumption b = c. We also exhibit some classes of spaces that
are B-sequentially compact for every barrier B, including some classical classes of compact spaces
from functional analysis, and as a byproduct, we obtain some results on angelic spaces. Finally, we
introduce and compute some cardinal invariants naturally associated to barriers.

1 Introduction

A 2-dimensional version of sequential compactness was first considered by
M. Bojańczyk, E. Kopczyński, and S. Toruńczyk in [3] where they showed that if
f ∶ [ω]2 → K and K is a compact metric space, then there is an infinite set B ∈ [ω]ω

and x ∈ K such that for every open U ∋ x, there exists m ∈ ω such that f ′′[B/m]2 ⊆ U .
In this case, x is said to be the limit of f ↾ [B]2. Using this result, they show that
every compact metric semigroup has an idempotent that can be defined as the limit
of naturally defined f ∶ [ω]2 → K. It is natural to call this property 2-dimensional
sequential compactness and look for higher-dimensional versions. In fact, the notion
of n-sequential compactness was introduced and studied in [19] (called n-Ramsey
in their paper) as a natural generalization from the case n = 2 to all other positive
integers n. A space X is said to be n-sequentially compact if for every function
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2 C. Corral et al.

f ∶ [ω]n → X, there is an infinite set M ∈ [ω]ω and x ∈ X such that for every open
U ∋ x, there exists k ∈ ω such that f ′′[M/k]n ⊆ U . It was shown in [19] that every
n-sequentially compact space is also m-sequentially compact as long as m ≤ n, and
since 1-sequential compactness coincides with the classical notion of sequential com-
pactness, every n-sequentially compact space is also sequentially compact. However,
they gave examples of n-sequentially compact spaces that are not (n + 1)-sequentially
compact (assuming CH for n > 1) and proved that sequentially compact spaces of
character less than b are n-sequentially compact for all n ∈ ω, among other results.
Many of these results were further improved in [7], where the study of n-sequentially
compact spaces was carried on.

It should be mentioned that a related notion of Ramsey convergence was introduced
and studied by H. Knaust in [15]. Given an array {x i , j ∶ 0 ≤ i < j < ω} in a space
X, it is said that it converges Ramsey-uniformly to a point x in X if there is an
infinite set M ∈ [ω]ω such that for every open neighborhood U of x, there is k ∈ ω
such that x i , j ∈ U for every i , j ∈ M with k ≤ i < j. Knaust also defines a space X to
have the Ramsey property if given an array {xn ,m ∶ n < m < ω} and a point x in the
space X such that limn→∞ limm→∞ xn ,m = x, the array {xn ,m ∶ n < m < ω} converges
Ramsey uniformly to x. He then showed that every Rosenthal compact has the Ramsey
property. In the subsequent paper [16], Knaust showed that some classes of angelic
spaces have the Ramsey property, including function spaces Cp(X) over quasi-Suslin
spaces X.

The purpose of this paper is to extend the notion of sequential compactness to
infinite dimensions. This is done using barriers of Nash-Williams [22], where the
notion of “dimension” is captured by the rank of the barrier which can be any
countable ordinal. Since the simplest examples of barriers are the families [ω]n , the
notion of “Barrier-sequential compactness” is a natural one.

We start in Section 2 by studying the general theory of barriers and stating many
results that are the main tools used in our proofs in later sections.

In Section 3, we study the classes of α-sequentially compact spaces and prove some
basic results. For this definition to make sense, we will show that this property depends
mostly on the rank of a given barrier and not on the particular recursive structure of it.

In Section 4, we show that sequentially compact spaces of small character and com-
pact bisequential spaces are α-sequentially compact for every α < ω1. As a corollary,
we obtain that many classical classes of compact spaces are α-sequentially compact for
every α. We close the section with some comments on angelic spaces, and we point
out that a space constructed in [19] and improved in [7] is an angelic space that fails
to satisfy the Ramsey property, answering a question of Knaust [15].

In Section 5, we present the constructions of spaces that are β-sequentially compact
but not α-sequentially compact for β < α, under the assumption of b = c. We also ana-
lyze further the properties mentioned in Section 3 and their relation to α-sequential
compactness.

Finally, in Section 6, we define and discuss a number of cardinal invariants
associated to these classes of spaces and give some topological applications.

Our terminology and notation is mostly standard. In particular, N(x) stands for
the collection of open neighborhoods of x and for a finite set {b0 , . . . , bn} ∈ [ω]<ω , we
will always assume that it is written in increasing order.
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Infinite dimensional sequential compactness 3

We will be using a number of classical cardinal invariants of the continuum
including par, pb, s, d, r, rσ . We refer the reader to [2] for the background on these
cardinals.

Given an almost disjoint family A on a countable set N, we define its Franklin space
as then the one-point compactification of Ψ(A) (i.e., F(A) = Ψ(A) ∪ {∞}). Our
counterexamples are almost exclusively Franklin spaces. For more on almost disjoint
families and Ψ-spaces, see [14].

Any other set-theoretic notion and terminology is standard and can be found
in [20], and we refer the reader to [12] for topological terminology.

2 Barriers and fronts

We now introduce the basic concepts of barriers and fronts on [ω]<ω . This section is
mainly based on [1] and [26], although some results are new or adapted and will be
applied in subsequent sections where we will extend the theory of n-sequentially com-
pact spaces by defining the notion of barrier sequential compactness and ultimately
α-sequential compactness for all α < ω1.

For F ⊆ [ω]<ω and M ∈ [ω]ω , let

F∣M = {s ∈ F ∶ s ⊆ M}.

Recall that s ⊑ t means that t is an end extension of s and s ⊏ t means s ⊑ t and s ≠ t.

Definition 2.1 A family F ⊆ [ω]<ω is
• Ramsey: if for every partition F = F0 ⊔ ⋅ ⋅ ⋅ ⊔ Fn and for every N ∈ [ω]ω , there is

M ∈ [N]ω such that all but at most one of the restrictions Fi ∣M are empty.
• Nash-Williams: if s ⊑ t implies s = t for s, t ∈ F.
• Sperner: if s ⊆ t implies s = t for s, t ∈ F.

Given a Ramsey family F, applying the Ramsey property to the partition F = F0 ∪
(F/F0) where F0 is the set of ⊆-minimal elements in F, we get the following:

Proposition 2.2 If F is Ramsey, there exists M ∈ [ω]ω such that F∣M is Sperner.

Theorem 2.3 [22] Every Nash-Williams family is Ramsey.

The previous two results show that (at least if one is willing to pass to an infi-
nite subset) the three concepts of being Ramsey, Nash-Williams, and Sperner are
equivalent:

Ramsey ⇒ (some restriction is) Sperner ⇒ Nash-Williams ⇒ Ramsey.

Definition 2.4 A Nash-Williams family F such that for every M ∈ [ω]ω there is an
initial segment s ⊑ M with s ∈ F is called a front. If, moreover, F is Sperner, we say that
F is a barrier on ω.

The same argument for Proposition 2.2 can be used to show the following facts:

Fact 2.5 If F is a front on a countable set M, there exists N ∈ [M]ω such that F∣N is a
barrier.
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4 C. Corral et al.

Fact 2.6 For every barrier B on M, if we partition B = B0 ⊔ ⋅ ⋅ ⋅ ⊔Bn , there are
N ∈ [M]ω and i ≤ n such that Bi ∣N is a barrier.

Given a barrier B, let

T(B) = {s ∈ [ω]<ω ∶ ∃t ∈ B (s ⊑ t)}
and ρT(B) ∶ T(B) → ω1 be given by

ρT(B)(s) = sup{ρT(B)(t) + 1 ∶ t ∈ T(B) ∧ s ⊏ t},

where sup∅ = 0. We will omit the subindex T(B) or replace it byBwhen no confusion
arises, and we will often think of T(B) as a subtree of ω<ω .

Definition 2.7 For a barrier B on a countable set M, its rank is defined by ρ(B) ∶=
ρT(B)(∅).

It is worth pointing out that in the definition of T(B), we can replace the condition
of being an initial segment of an element t ∈ B to being a subset of some t′ ∈ B due to
the following fact.

Lemma 2.8 IfB is a barrier on ω, then for every s ∈ [ω]<ω , there exists b ∈ B such that
s ⊆ b if and only if there exists b ∈ B such that s ⊑ b. In particular, T(B) = {s ∈ [ω]<ω ∶
∃b ∈ B (s ⊆ b)}.

Proof Let s ∈ [ω]<ω and b ∈ B such that s ⊆ b. Define M = s ∪ (ω/max(b) + 1). We
can find b′ ∈ B such that b′ ⊑ M, and hence, s ⊑ b′ since otherwise, b′ ⊏ s ⊆ b would
contradict that B is a ⊆-antichain. ∎

Given a = {a0 , . . . , an} and b = {b0 , . . . , bk} with k < n, denote by a ∗ b the end
replacement of a with b, defined as follows:

a ∗ b = {a0 , . . . , an−k−1 , b0 , . . . , bk}.

Lemma 2.9 Let B be a barrier and a ∈ B enumerated as a = {a0 , . . . , an−1}. Then, for
every b ∈ [ω/(an−1)]<n , there exists s ∈ B such that a ∗ b ⊑ s. In particular, b ∉ B.

Proof Fix a = {a0 , . . . , an−1} and b = {b0 , . . . , bk−1} as in the lemma with k < n. We
will prove the Lemma by induction on k.

If k = 1, then b = {b0} for some b0 ≥ an−1. Let M ∈ [ω]ω with a ∗ b ⊑ M. There is
an s ∈ B such that s ⊑ M. Notice that ∣s∣ ≥ n since otherwise, s ⊏ a would contradict
that B is Sperner. Thus, a ∗ b ⊑ s ∈ B.

Now let k > 1 and assume the result is true for k − 1. Pick any M ∈ [ω]ωsuch
that a ∗ b ⊑ M and let s ∈ B be an initial segment of M. If ∣s∣ < n, then
s ⊑ {a0 , . . . , an−k−1 , b0 , . . . , bk−2} ⊆ {a0 , . . . , an−k , b0 , . . . , bk−2} = a ∗ b′, where b′ =
{b0 , . . . , bk−2}. Since ∣b′∣ = k − 1, by the inductive hypothesis, we get that s ⊊
a ∗ b′ ⊑ s′ for some s′ ∈ B, contradicting that B is Sperner. Therefore, ∣s∣ ≥ n, and
hence, a ∗ b ⊑ s ∈ B. ∎
Corollary 2.10 If B is a barrier on ω of rank k ∈ N, there exists m ∈ ω such that
B∣(ω/m) = [ω/m]k .

Proof Let B be a barrier of rank k. If there is a ∈ B of size l, then ρ(B) ≥ l . Thus,
B ⊆ [ω]≤k . It is also easy to see that B ∩ [ω]k ≠ ∅ since otherwise, ρ(B) < k.
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Infinite dimensional sequential compactness 5

Take any a ∈ B ∩ [ω]k and let m = max(a) + 1. By Lemma 2.9, if b ∈ B∣(ω/m) has
size less than k, we can find s ∈ B such that b′ = a ∗ b ⊑ s. As ∣b∣ < k, we have that
b ⊊ b′ ⊑ s, which contradicts that B is Sperner. Hence, B∣(ω/m) ⊆ [ω/m]k .

However, for every b ∈ [ω/m]k , we can take an infinite set M such that b ⊏ M. Thus,
there is an initial segment of M in B, and from the previous inclusion, it must be the
case that b ∈ B. Therefore, B∣(ω/m) = [ω/m]k . ∎
Notation 2.11 Given a family B ⊆ [ω]<ω , s ∈ [ω]<ω , and n ∈ ω, set
• B(s) = {t ∈ B ∶ s ⊑ t},
• B[s] = {t/s ∶ t ∈ B(s)},
• s⌢B = {s ∪ t ∶ t ∈ B ∧ min(t) > max(s)},
• B + n = {s + n ∶ s ∈ B}, where s + n = {m + n ∶ m ∈ s}.

We write B(n), B[n], and n⌢B instead of B({n}), B[{n}], and {n}⌢B, respec-
tively. Notice that some confusion may arise as n = {0, . . . , n − 1}, but this notation
will not lead to any confusion, as B(n) will always be interpreted as B({n}), and the
same for B[n] and n⌢B. We see that if B is a barrier on M, then B[n] is a barrier
on M/(n + 1). Conversely, if Bn is a barrier on M/(n + 1) for every n ∈ M, then
⋃n∈M n⌢Bn is a front on M, and there is an infinite set on which its restriction is a
barrier. We can now describe a canonical barrier of rank ω: The Schreier barrier S is
the barrier of rank ω such that {0} ∈ S and S[n] = [ω/(n + 1)]n for every n > 0. In
other words, s ∈ S if and only if ∣s∣ = min(s) + 1.

Definition 2.12 We define the notion of a uniform barrier by induction on the rank.
For α = 1, we declare the unique barrier B = [ω]1 as a uniform barrier. Let B be a
barrier on M ∈ [ω]ω with ρ(B) = α. If α > 1, we say that B is a uniform barrier if each
B[n] is a uniform barrier (on M/(n + 1)) and
• ρT(B)({n}) = β for every n ∈ ω if α = β + 1 or
• {ρT(B)({n}) ∶ n ∈ ω} is an increasing sequence with limit α if α is limit.

The following result together with Corollary 2.10 shows that all barriers of rank ω
are somewhere uniform and preserve its rank in such restriction.

Proposition 2.13 If B is a barrier of rank ω, there exists M ∈ [ω]ω such that B∣M is
uniform and has rank ω.

Proof By definition, we can find m i such that ρ({m i}) ≥ i for every i ∈ ω. By
Corollary 2.10, we can also find k i for every i ∈ ω, such that B[m i] = [ω/k i]n i ,
where n i = ρ({m i}). Notice that we can pick {m i ∶ i ∈ ω} increasing and such that
m i+1 > k i . It is now easy to see that M = {m i ∶ i ∈ ω} works. ∎

A partial analogue for Proposition 2.13 for any barrier independently of its rank is
also true.

Proposition 2.14 [1] For every barrier B on ω, there exists an infinite set M ∈ [ω]ω

such that B∣M is uniform.

By Corollary 2.10, the only uniform barrier of rank k ∈ ω is [ω]k . Thus, Lemma 2.9
states that the sequence of ranks {ρ({n}) ∶ n ∈ ω} is nondecreasing, and the sequence
{m i ∶ i ∈ ω} can be taken to be the identity in the previous theorem. This shows that
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6 C. Corral et al.

the only way to get a nonuniform barrier of rank ω is by embedding a nonuniform
barrier B[n] on top of {n}; hence, essentially, every barrier of rank ω is uniform. This
is as far as we can go since there is a nonuniform barrier B of rank ω + 1 such that
B[n] is uniform for every n ∈ ω.

Example 2.15 There is a nonuniform barrier of rank ω + 1.
We define a barrier B by describing B(n) for every n ∈ ω. For every k ∈ ω, let

Sk = {s ∈ [ω]<ω ∶ ∣s∣ = min(s) + k}, (hence, the Schreier barrier is S1). If n is even,
define B(n) = n⌢(Sn + n + 1). For n odd, let B(n) = n⌢[ω/(n + 1)]n .

Notice that for n even, ρT(B)({n}) = ω, while for n odd, ρT(B)({n}) = n + 1. So B

is not uniform. Moreover, ρ(B∣E) = ω + 1, but ρ(B∣O) = ω, where E is the set of even
numbers and O is the set of odd numbers.

It is clear that every infinite subset of ω has an initial segment in B and that
each B(n) is a ⊆-antichain. It remains to show that if s = {s0 , . . . , s i} ∈ B(n),
t = {t0 , . . . , t j} ∈ B(m), and n < m, then t ⊈ s (the other contention is impossible as
n ∈ s/t).

Let us first compute the size of an element b ∈ B. Let b = {b0 , . . . , bk}. If b0 is
odd, then b ∈ B(b0), and it has size b0 + 1. Otherwise, b ∈ b⌢0(Sb0 + b0 + 1). Let b′ =
b/{b0} ∈ Sb0 + b0 + 1. It is clear that ∣b′∣ = ∣b′ − b0 − 1∣, and since (b′ − b0 − 1) ∈ Sb0

and min(b′ − b0 − 1) = b1 − b0 − 1, we conclude that ∣b′∣ = ∣b′ − b0 − 1∣ = (b1 − b0 −
1) + b0 = b1 − 1. Therefore, ∣b∣ = b1.

We are now ready to show that s and t are ⊆-incomparable. If both n and m are
odd, we have that ∣t∣ = m + 1 > n + 1 = ∣s∣, and we are done. If both n and m are even,
then ∣s∣ = s1 and ∣t∣ = t1, but s0 = n /∈ t implies that if t ⊆ s, hence ∣s∣ = s1 ≤ t0 < t1 = ∣t∣,
which is a contradiction.

Similarly, if n is odd and m is even, we assume that t ⊆ s yields that ∣t∣ = t1 > t0 ≥
s1 ≥ s0 + 1 = ∣s∣, a contradiction. Finally, if n is even and m is odd, and if we assume
that t ⊆ s, we reach a contradiction as ∣t∣ = t0 + 1 > t0 ≥ s1 = ∣s∣.

The persistence of the rank under restriction for a uniform barrier is the key
property of the notion of uniformity. We can imitate this behavior by considering a
lower bound for the ranks of uniform restrictions of a given barrier B.

Definition 2.16 Given a barrier B, let

spec(B) = {α < ω1 ∶ ∃M ∈ [ω]ω (B∣M is uniform with rank α)}.

We define the uniform rank of B as ρu(B) = min(spec(B)).

In [19], it is inductively proved that sequentially compact spaces of character
less than b are n-sequentially compact for every n. To perform the induction on
[ω]n+1, it is enough to notice that any element of [ω]n+1 has a unique initial segment
in [ω]n . It is also true that any element in [ω]n is end-extended by at least one
element in [ω]n+1. This fact is used to analyze a splitting-like cardinal invariant in
[7] that helps with the construction of n-sequentially compact spaces that fail to be
(n + 1)-sequentially compact under some assumptions involving this cardinal. Other
examples of results that use this fact are Ramsey’s theorem itself and the proof that
parn = par2 = max{b, s} in [2]. In order to obtain analogous results in our framework,
we will need a generalization of this fact for barriers of any rank. The statement of
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Infinite dimensional sequential compactness 7

Lemma 2.18 below and its proof appear in [1] in a slightly different way. We add here
a proof for completeness.

Notation 2.17 Given two families B,C ⊆ [ω]<ω , we denote by B ⊑ C if
• ∀s ∈ B ∃t ∈ C (s ⊑ t),
• ∀t ∈ C ∃s ∈ B (s ⊑ t).

Lemma 2.18 Given two barriers B and C on a countable set N ∈ [ω]ω , there is
an infinite set M ∈ [N]ω such that either B∣M ⊑ C∣M or C∣M ⊑ B∣M. Moreover, if
ρ(B) < ρ(C) and C is uniform, then B∣M ⊑ C∣M necessarily holds.

Proof Define B0 = {b ∈ B ∶ ∃c ∈ C(b ⊆ c)}. Since B = B0 ∪ (B/B0), we can find,
by Nash-Williams theorem, an infinite set M ∈ [N]ω such that either (B/B0)∣M = ∅
or B0∣M = ∅. If (B/B0)∣M = ∅, then we are done, as this implies that B∣M ⊑ C∣M. To
see this, notice that for every b ∈ B∣M ( and hence b ∈ B0), there is c ∈ C such that
b ⊆ c, but if we define X = b ∪ (M/max(b)), there is also c′ ∈ C such that c′ ⊑ X. As
b ⊆ c ∈ C, it happens that b ⊑ c′ and c′ ∈ C∣M. For c ∈ C∣M, we can also find b ∈ B∣M
such that b ⊑ c ∪ (M/(max(c) + 1)). The case where c ⊏ b is not possible since b ∈ B0,
and thus, there is another c′ ∈ C∣M such that b ⊆ c′.

Assume otherwiseB0∣M = ∅ and defineC0 = {c ∈ C∣M ∶ ∃b ∈ B∣M(c ⊆ b)}. Again,
by Nash-Williams theorem, we can find M′ ∈ [M]ω such that either C0∣M′ = ∅ or
(C/C0)∣M′ = ∅. The case C0∣M′ = ∅ is impossible since we can find b ∈ B∣M′ ⊆ B∣M
and c ∈ C∣M′ such that b, c ⊑ M′ and then either b ⊆ c or c ⊆ b contradicting the
choices of M and M′. Thus, (C/C0)∣M′ = ∅, and as in the previous case, we get that
C∣M′ ⊑ B∣M′.

For the last assertion of the statement, notice that if C∣M ⊑ B∣M, then T(C∣M) ⊆
T(B∣M). In particular,

ρ(C) = ρ(C∣M) = ρT(C∣M)(∅) ≤ ρT(B∣M)(∅) = ρ(B∣M) ≤ ρ(B),

which finishes the proof. ∎

The previous lemma tells us that we can define a preorder on the family of all
barriers on ω by defining B ≤ C if there is an infinite set M such that B∣M ⊑ C∣M. One
may be tempted to say that the partial order defined by identifying B and C if B ≤ C

and C ≤ B collapses to ω1 when restricted to the family of uniform barriers; that is,
B ≤ C if and only if ρ(B) ≤ ρ(C). However, the unpleasant fact about this is that for
two barriers B and C of the same rank, it is not always true that B ≤ C and C ≤ B.
For example, if B is the Schreier barrier and C is any uniform barrier defined such
that ρT(C)({n}) = f (n) for an increasing function f ∈ ωω that is strictly bigger that
the identity, then C ≰ B. Notice that any uniform barrier B of rank ω is completely
determined by a function f ∈ ωω that encodes the ranks of the first level on T(B).
A more complex but naturally defined coding of the ranks of the successors of any
element s ∈ T(B) also determines completely the structure of any barrier B.

We will see now that this function is the only obstruction and that, if one is willing
to compress some finite intervals of ω into points, we can define a weaker relation
between barriers that depends only on their ranks and extends ≤. This will allow us to
prove, in some cases, that a property of barriers holds for all barriers of a given rank α
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8 C. Corral et al.

(in particular, a space being “B-sequentially compact”) if and only if it holds for some
single uniform barrier of the same rank (e.g., Corollary 3.5).

Definition 2.19 Given two barriers B and C on a countable set M, we write C ⪯ B

if there is a finite-to-one, nondecreasing function f ∈ ωω such that for every infinite
subset M′ ∈ [M]ω , there exists N ∈ [M′]ω so that f ↾ N is one-to-one and

• ∀b ∈ (B∣N) ∃c ∈ C (c ⊑ f [b]).

Notice that if B is uniform and ρ(C) < ρ(B), then C ⪯ B with f being the identity
map, sinceC∣M ≤ B∣M for every restriction to an infinite set M. The condition that f ↾
N is one-to-one is superfluous, as we can always shrink N in order to get this property,
but it will be convenient to add this to the definition to avoid saying it explicitly each
time we use the preorder ⪯.

Having said this, it is clear that the relation ⪯ is transitive; that is, ifC ⪯ B andD ⪯ C

is witnessed by f and g, respectively, then D ⪯ B, and it is witnessed by g ○ f .

Proposition 2.20 If B and C are two barriers in ω, B is uniform, and ρ(B) ≥ ρ(C),
then C ⪯ B.

Proof Let us alternately define two sequences {a i ∶ i ∈ ω} and {b i ∶ i ∈ ω} such
that a i < b i < a i+1 for every i ∈ ω. We will also denote by {k i ∶ i ∈ ω} the increasing
sequence defined by these two sequences; that is, k2i = a i and k2i+1 = b i . We will
also simultaneously define f ∈ ωω which is completely determined by the sequence
{k i ∶ i ∈ ω} as follows: f ↾ [0, k0) = 0 and f (n) = i if and only if n ∈ [k i , k i+1). We
shall show that f satisfies the definition of C ⪯ B. To save notation, let us write ρB and
ρC instead of ρT(B) and ρT(C), respectively. Also, given s ∈ [ω]ω/T(C), we will define
ρC(s) = −1 so that we can talk about the rank of s even if s is not in T(C).

Step 0:
Since ρB(∅) ≥ ρC(∅), there are a0 < b0 < ω such that ρB({a0}) ≥ ρC({0}) and

ρB({b0}) ≥ ρC({1}).
Now assume we have defined {a i ∶ i ≤ n} and {b i ∶ i ≤ n}.
Step a:
Inductive hypothesis at n:
Let us call

Sa(n) = {s ∈ T(B) ∶ s ⊆ ⋃
i<n

[a i , b i) ∧ ∀i < n(∣s ∩ [a i , b i)∣ ≤ 1)}.

We will ensure that the following inductive hypothesis will hold throughout the
construction: Given s ∈ Sa(n),

ϕa (n, s) ≡ ρB(s) ≥ ρC( f [s])
ψa (n, s) ≡ if j ≥ an , then ρB(s ∪ { j}) ≥ ρC( f [s ∪ {2n}]).

We will also write ϕa(n) as a shorthand for ∀s ∈ Sa(n)ϕa(n, s) and ψa(n) as a
shorthand for ∀s ∈ Sa(n)ψa(n, s). It is worth pointing out that Sa(n), ϕa(n, s) and
ψa(n, s) do not mention bn . Note that if j ≥ a0, we have that ρB({ j}) ≥ ρB({a0}) ≥
ρC({0}) as B is uniform. Thus, ψa(0) is satisfied, and ϕa(0) is vacuously satisfied too
(here, Sa(0) = {∅}).
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Construction of an+1:
We need to take care of all s ∈ Sa(n + 1) (note that this set is well-defined since it

only depends on {a i , b i ∶ i ≤ n}).
First, consider s ∈ Sa(n). By ϕa(n, s), we have that ρB(s) ≥ ρC( f [s]), and thus, we

can find ma
s such that

(⋆1
a) ρB(s ∪ {m}) ≥ ρC( f [s] ∪ {2n + 2}) for every m ≥ ma

s .
Otherwise, s ∈ Sa(n + 1)/Sa(n), and we can write s′ = s/{ j}, where j = max(s) ≥

an and s′ ∈ Sa(n). Then, we know that ρB(s′ ∪ { j}) ≥ ρC( f [s′] ∪ {2n}) by ψa(n, s).
Since j ∈ [an , bn), we have that f ( j) = 2n. Thus,
(*a) ρB(s) = ρB(s′ ∪ { j}) ≥ ρC( f [s′] ∪ { f ( j)}) = ρC( f [s′ ∪ { j}]) = ρC( f [s]).

Then, there is ma
s ∈ ω such that ρB(s ∪ {ma

s }) ≥ ρC( f [s] ∪ {2n + 2}). Since B is
uniform,
(⋆2

a) ρB(s ∪ {m}) ≥ ρC( f [s] ∪ {2n + 2}) for every m ≥ ma
s .

Finally, define

an+1 = max{ma
s ∣ s ∈ Sa(n + 1)}.

Inductive hypothesis for n + 1:
We want to see that ϕa(n + 1) and ψa(n + 1) hold. Let s ∈ Sa(n + 1). If s ∈ Sa(n),

then ϕa(n + 1, s) follows from ϕa(n, s). In consequence, we can assume that
s ∈ Sa(n + 1)/Sa(n) and let s′ = s/{ j}, where j = max(s). Hence, by (∗a), we have that
ρB(s) ≥ ρC( f [s]), which means that ϕn(n + 1, s) holds and, consequently, ϕa(n + 1)
does.

Now let us see that ψa(n + 1) is also true. Let s ∈ Sa(n + 1) and j ≥ an+1. If
s ∈ Sa(n), then ms

a satisfies (⋆a
1 ), and if s ∈ Sa(n + 1)/Sa(n), we have that ms

a satisfies
(⋆a

2). In either case, as an + 1 ≥ ms
a , we have that ψa(n + 1, s) holds, and so does

ψa(n + 1).
Step b:
Inductive hypothesis at n:
The construction is dual to that of part a. Let us start by calling

Sb(n) = {s ∈ T(B) ∶ s ⊆ ⋃
i<n

[b i , a i+1) ∧ ∀i < n(∣s ∩ [b i , a i+1)∣ ≤ 1)}.

The corresponding inductive formulas for s ∈ Sb(n) are now
ϕb (n, s) ≡ ρB(s) ≥ ρC( f [s])
ψb (n, s) ≡ if j ≥ bn , then ρB(s ∪ { j}) ≥ ρC( f [s ∪ {2n + 1}]).

We will write again ϕb(n) and ψb(n) as shorthands for ∀s ∈ Sb(n)ϕa(n, s) and
∀s ∈ Sb(n)ψa(n, s), respectively. In the particular case of ϕb , we have that it is the
same formula as ϕa with different domain. Since an+1 has already been defined, the
interval [bn , an+1) considered in Sb(n + 1) makes complete sense.

Construction of bn+1:
Given s ∈ Sb(n), it follows from ϕb(n, s) that ρB(s) ≥ ρC( f [s]), and thus, we can

find mb
s such that

(⋆1
b) ρB(s ∪ {m}) ≥ ρC( f [s] ∪ {2n + 3}) for every m ≥ mb

s .
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Otherwise, s ∈ Sb(n + 1)/Sb(n), and we can write s′ = s/{ j}, where j = max(s) ≥
bn and s′ ∈ Sb(n). Thus, ρB(s′ ∪ { j}) ≥ ρC( f [s′] ∪ {2n + 1}) by ψb(n, s). Since j ∈
[bn , an+1), we have that f ( j) = 2n + 1. Then,
(*b ) ρB(s) = ρB(s′ ∪ { j}) ≥ ρC( f [s′] ∪ { f ( j)}) = ρC( f [s′ ∪ { j}]) = ρC( f [s]).

We can again find mb
s ∈ ω such that ρB(s ∪ {mb

s }) ≥ ρC( f [s] ∪ {2n + 3}), and
moreover,
(⋆2

b) ρB(s ∪ {m}) ≥ ρC( f [s] ∪ {2n + 3}) for every m ≥ mb
s .

We then define

bn+1 = max{mb
s ∣ s ∈ Sb(n + 1)}.

Inductive hypothesis for n + 1:
If s ∈ Sb(n), then ϕb(n + 1, s) follows from ϕb(n, s), and otherwise, s ∈ Sb(n +

1)/Sb(n) can be written as s′ = s/{ j}, where j = max(s). By (∗b), we have that
ρB(s) ≥ ρC( f [s]), and then ϕb(n + 1) holds.

To see that ψb(n + 1) is true, let s ∈ Sb(n + 1) and j ≥ bn+1. Then, bn+1 ≥ mb
s , and

either by (⋆b
1 ) or (⋆b

2), we have that ϕb(n + 1, s) holds.
This finishes the construction, and it remains to prove that f works.
Clearly, f is finite-to-one and nondecreasing. Given M ∈ [ω]ω , we can find an

infinite subset N ∈ [M]ω such that ∣N ∩ [k i , k i+1]∣ ≤ 1 for every i ∈ ω, and either N ∩
⋃i∈ω[k2i , k2i+1) = ∅ or N ∩⋃i∈ω[k2i+1 , k2i+2) = ∅. Without loss of generality, assume
that N ⊆ ⋃i∈ω[k2i , k2i+1) = ⋃i∈ω[a i , b i).

Let now b ∈ B∣N . It follows from the choice of N that there is an n ∈ ω such that
b ∈ Sa(n). By ϕa(n, b), we know that 0 = ρB(b) ≥ ρC( f [b]). Necessarily, ρC( f [b]) ∈
{0,−1}, but in either case, we can conclude that there is c ∈ C such that c ⊑ f [b]. This
finishes the proof. ∎

The previous lemma is new, and it is the last piece of the theory of barriers that
we need in order to prove that the general notion of barrier sequential compactness
extending n-sequentially compact spaces depends only on the rank of the associated
uniform barrier. In the case that B has rank ω, we can drop the requirement that the
barrier is uniform.

Corollary 2.21 LetB andC be barriers on ω such that ρ(C) ≤ ρ(B) = ω. Then,C ⪯ B.

Proof By the fact that the preorder ⪯ is transitive and the previous proposition, it
suffices to show that S ⪯ B, where S is the Schreier barrier.

Since B has rank ω, it follows from Lemma 2.9 that for every i ∈ ω, we can find
m i such that ρB(m) ≥ i + 1 for every m ≥ m i . Let f ∈ ωω be given by f (n) = i if and
only if n ∈ [m i , m i+1) (and we define f ↾ m0 arbitrarily). We claim that f witnesses
that S ⪯ B.

Indeed, given M ∈ [ω]ω , we can find N0 ∈ [M]ω such that N0 ∩ [0, m0) = ∅ and
∣N0 ∩ [m i , m i+1)∣ ≤ 1 for every i ∈ ω. Let n0 = min(N0), and for every i ∈ ω, define
n i+1 as follows: for each j < i + 1, we can apply Corollary 2.10 and find k j such that
B[n j] = [ω/k j]r for some r ≥ l , where l is the unique natural number such that
n j ∈ [m l , m l+1). Pick n i+1 > k j for every j < i + 1. Thus, N = {n i ∶ i ∈ ω} ∈ [M]ω .

Fix b ∈ (B∣N) and let n i = min(b). It follows from the definitions that b/{n i} ∈
[ω/k j]r for some r ≥ l , where n i ∈ [m l , m l+1). Then, ∣ f [b]∣ ≥ l + 1 as f is one to one
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on N, but f (n i) = l and S(l) = {s ∈ [ω]<ω ∶ min(s) = l ∧ ∣s∣ = l + 1}. Thus, we can
conclude that c ⊑ f [b] defined as the first l + 1 elements of f [b] is an element of S. ∎

3 Infinite dimensional sequential compactness

We now define the notion of B-sequential compactness for barriers B and prove
necessary results to formulate the natural notion of α-sequential compactness, where
α ∈ ω1 corresponds to the rank of the barrier. All the results of this section are natural
generalizations of results presented in [19] for finite n.

Definition 3.1 Let B be a barrier on M ∈ [ω]ω , let X be a topological space,
f ∶ B→ X, and x ∈ X. We say that f converges to x if for all U ∈ N(x), there is n ∈ ω
such that f [(B∣(M/n))] ⊆ U .

The word “converges” might give rise to misunderstanding, as f has countable
domain; however, the meaning of this word will be understood by the context. The
function f should be thought as aB-dimensional sequence or α-dimensional sequence
for α = ρ(B) rather than a classical 1-dimensional sequence indexed by the countable
set B.

Definition 3.2 Let B be a barrier on ω and let X be a topological space. We say that X
is B-sequentially compact if for all f ∶ B→ X, there is M ∈ [ω]ω such that f ↾ (B∣M)
converges.

The natural stratification of barriers given by their ranks will give us a natural
classification of B-sequentially compact spaces grouping them and associating them
to a countable ordinal attending the following definition:

Definition 3.3 Let α < ω1. We say that X is α-sequentially compact if X is
B-sequentially compact for all barriers B of rank α.

The first application of the theory developed in Section 2 and the main reason for
the introduction of the order ⪯ is due to the next theorem:

Theorem 3.4 If C ⪯ B and X is B-sequentially compact, then X is also C-sequentially
compact.

Proof Assume X is B sequentially compact and let f ∈ ωω as in the definition
of C ⪯ B. Let h ∶ C→ X and define ĥ ∶ B→ X by ĥ(b) = h(c) for any c ∈ C that is
⊑-compatible with f [b]. Notice that since C is a barrier, there is at least one of such c,
and then ĥ is well-defined.

Since X is B-sequentially compact, there is M ∈ [ω]ω such that ĥ ↾ (B∣M) con-
verges to some x ∈ X. Take N ∈ [M]ω such that

∀b ∈ (B∣N) ∃c ∈ C (c ⊑ f [b])

given by the definition of C ⪯ B, and define M0 = f [N]. It turns out that ĥ ↾ (B∣N)
also converges to x. We shall prove that h ↾ (C∣M0) converges to the same x ∈ X.

To see this, fix an open neighborhood U ∈ N(x). We can find n ∈ ω
such that ĥ(b) ∈ U whenever b ∈ B∣(N/n). Take c ∈ C∣(M0/ f (n)). Thus,
c = { f (m0), . . . , f (m j)} for some set a = {m i ∶ i ≤ j} ⊆ N/n. Take any infinite
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set N ′ ⊆ N such that a ⊑ N ′. We can find b ∈ B∣N such that b ⊑ N ′. It follows that
a ⊑ b since otherwise, f [b] ⊏ f [a] = c would contradict that b ⊆ N . Therefore,
h(c) = ĥ(b) ∈ U , as desired. ∎
Corollary 3.5 Let X be a topological space and α ∈ ω1; the following are equivalent:
(1) X is α-sequentially compact,
(2) X is B-sequentially compact for every uniform barrier of rank α,
(3) X is B-sequentially compact for some uniform barrier B of rank α.
Proof That (3) implies (1) follows directly from Proposition 2.20 and Theorem 3.4.
The other implications are clear from the definitions. ∎

From Lemma 2.20 and Theorem 3.4, we can easily get the following result.

Corollary 3.6 If X is α-sequentially compact and β < α, then X is β-sequentially
compact. In particular, if α is infinite, X is n-sequentially compact for every n ∈ ω.

The stronger result for barriers of rank ω given in Corollary 2.21 yields the following
result:

Corollary 3.7 If X isB-sequentially compact for some barrier of rank ω (not necessarily
uniform), then X is ω-sequentially compact.

In general, this is not true for every countable ordinal. A trivial example is a barrier
with a single node in T(B) of rank ω (let us say {0}) and such that B∣(ω/1) is
isomorphic toS2. In this case, every infinite restriction has rank ω, but the barrier itself
has rank ω + 1. It is not hard to modify our constructions in Section 5 to show that,
consistently, there is a B sequentially compact space that is not (ω + 1)-sequentially
compact. We do not know if the requirement that B has an infinite restriction of
rank α suffices in order to show thatB-sequentially compact spaces are α-sequentially
compact. We believe that the answer is “no,” but we conjecture that a weaker result is
true.

Conjecture 3.8 If X is B-sequentially compact, then it is ρu(B)-sequentially compact.
The following easy fact is a partial answer to Conjecture 3.8.

Proposition 3.9 LetB be a barrier on ω and X aB-sequentially compact space. If there
is M ∈ [ω]ω such that B∣M is uniform and either X is not (B∣(ω/M))–sequentially
compact or ω/M is finite, then X is ρ(B∣M)-sequentially compact. In particular, X is
ρu(B)-sequentially compact.
Proof By Corollary 3.5, it is enough to prove that X is (B∣M)-sequentially compact.
Let F ∶= ω/M. Regardless of whether F is finite or X is not (B∣F)-sequentially
compact, there exists a function g ∶ B∣F → X without infinite convergence subse-
quences (here, convergence means convergence with respect to barriers). Now let
f ∶ B∣M → X. We want to prove that f admits an infinite convergent subsequence
f ↾ (B∣M′) for some M′ ∈ [ω]ω . For this, let f̂ ∶ B→ X be any common extension
of both f and g. As X is B-sequentially compact, there is N ∈ [ω]ω such that f̂ ↾ N
is convergent. Now N ∩ F should be finite, since otherwise, f̂ ↾ (N ∩ F) would also
be an infinite convergent subsequence for g. This way, N ′ ∶= N/F is infinite, and thus,
f̂ ↾ N ′ = f ↾ N ′ is an infinite convergent subsequence for f. ∎
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4 Some classes of ω1-sequentially compact spaces

In [19], it is proved that compact metric spaces are n-sequentially compact for every
n ∈ ω. This result extends to any α < ω1. We will start this section by giving two classes
of spaces, each containing the class of compact metric spaces, that sit at the top of the
hierarchy of α-sequentially compact spaces.

Definition 4.1 We say that X is ω1-sequentially compact if it is α-sequentially compact
for every α < ω1.

The first class of spaces that we want to show to be ω1-sequentially compact is the
class of sequentially compact spaces of character less than b. The fact that sequentially
compact spaces of character less than b are n-sequentially compact for every n ∈ ω
was proved in [19].

Theorem 4.2 Suppose X is a sequentially compact space. If χ(X) < b then X is
ω1-sequentially compact.

Proof We will show by induction that X is α-sequentially compact for every α < ω1.
If α = 1, then X being sequentially compact is equivalent to X being 1-sequentially
compact, as the only uniform barrier of rank 1 is [ω]1.

We proceed to prove the inductive step at β, regardless of it being a successor
ordinal, and hence of the form β = α + 1, or a limit ordinal, which would then be the
sup αn , where αn form an increasing sequence. Now let f ∶ B→ X be any function
where B is uniform of rank β. For all n ∈ ω, B[n] is either an α-uniform barrier on
ω/(n + 1) or an αn-uniform barrier if β were a limit ordinal.

For all n ∈ ω, let fn ∶ B[n] → X be the function mapping s ↦ f ({n} ∪ s). By our
inductive hypothesis, there is an infinite subset N0 and a point x0 ∈ X such that
f0 ↾ (B[0]∣N0) → x0. Let n0 = 0 and n1 = min N0/{0}.

Note that for any infinite subset A of ω and any n ∈ ω, B[n]∣A is also uniform
of rank α if β = α + 1 or of rank αn if β were a limit ordinal. Now suppose that
we have defined a decreasing sequence of infinite subsets N0 ⊇ N1 ⊇ ⋅ ⋅ ⋅ ⊇ N i−1 and
an increasing sequence n0 < n1 < ⋅ ⋅ ⋅ < n i in addition to a subset {x0 , . . . , x i−1} of
X. Consider the function fn i ∶ (B[n i]∣N i−1) → X. Applying our inductive hypothesis
yields an infinite subset N i ⊆ N i−1 such that fn i ↾ (B[n i]∣N i) → x i , for some point
x i ∈ X. We also define n i+1 = min(N i/{n0 , . . . , n i}). Thereby, we obtain a decreasing
sequence of infinite subsets N0 ⊇ N1 ⊇ N2 ⊇ . . . , a subset {x i ∶ i ∈ ω} of the space X,
and a strictly increasing sequence ⟨n i ∶ i ∈ ω⟩ such that fn i ↾ (B[n i]∣N i) → x i , where
n i+1 = min N i/{n0 , . . . , n i} for all i ∈ ω.

Since {x i ∶ i ∈ ω} ⊆ X and X is sequentially compact, there is a convergent subse-
quence, Y = {x i j ∶ j ∈ ω}, with limit point x . Re-numerating the indices, we can view
Y = {x i ∶ i ∈ ω} as the convergent subsequence. Also, let N = {n i ∶ i ∈ ω}.

Take any open set U in X containing the point x. As x i → x, there is an integer
mU ∈ ω such that for all i > mU , we have that x i ∈ U . Also, for all such i, there is
another integer ϕU(n i) such that

fn i [B[n i]∣(N i/ϕU(n i))] ⊆ U .(*)
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For any j ≤ mU and any j ∉ {n i ∶ i ∈ ω}, let ϕU( j) = 0. Thus, any open subset U of
X containing x induces a function ϕU ∶ ω → ω.

Let η(x) be a local neighborhood base of x of minimum size. Since χ(X) < b, the
set of functions {ϕU ∶ U ∈ η(x)} is bounded by some increasing function ψ ∶ ω → ω;
that is, ϕU <∗ ψ for every U ∈ η(x).

We can find an increasing subsequence ⟨m i ∶ i ∈ ω⟩ of ⟨n i ∶ i ∈ ω⟩ such that m i+1 >
ψ(m i) for every i ∈ ω. We claim that f ↾ (B∣M) → x, where M = {m i ∶ i ∈ ω}.

Fix an open set U ∈ η(x) and let k ∈ ω such that x j ∈ U and ψ( j) > ϕU( j) for every
j ≥ k. Let s ∈ B∣(M/ψ(k)) and let us write s = {mk0 , . . . , mkn} and s′ = s/{mk0}. Note
that for every i > 0, we have that

mk i > ψ(mk0) > ϕ(mk0),

as mk0 ≥ ψ(k) ≥ k. In particular, s′ ∩ ϕ(mk0) = ∅.
Now let j ∈ ω such that mk0 = n j . Note that if j′ > j, then n j′ ∈ N j . As any mk i > mk0

for i > 0 and this implies that mk i = n j′ for some j′ > j, we can conclude that s′ ⊆ N j .
Combining the previous arguments, we get that s′ ⊆ N j/ϕU(n j), and we

already know that s = {n j} ∪ s′ ∈ B, which implies that s′ ∈ B[n j]. Therefore,
f (s) = fn j(s′) ∈ U by (∗), as desired. ∎

The second class of spaces that we shall show are ω1-sequentially compact is the
class of compact bisequential spaces. Recall that U ⊆ P(X) clusters at x (often written
as x ∈ U) if x ∈ U for every U ∈ U. Of course, if U is an ultrafilter, then U clusters at x
is equivalent to U converging to x.

Definition 4.3 [21] Let X be a topological space and x ∈ X. We say that X is
bisequential at x if for every ultrafilter U that converges to x, there is a countable
subfamily {An ∶ n ∈ ω} ⊆ U such that for every W ∈ N(x), there is n ∈ ω such that
An ⊆ W . We say that X is bisequential if it bisequential at x for every x ∈ X.

We say that X is (countably) bisequential if for every ultrafilter on a (countable)
subset of X that clusters at x ∈ X, there is a countable subfamily of the ultrafilter
converging to x.

Given a tree T ⊆ ω<ω and s ∈ T , recall that the set of successors of s in T
is succT(s) = {n ∈ ω ∶ s⌢n ∈ T}. Given U ⊆ P(ω), we say that T is U-branching if
succT(s) ∈ U for every s ∈ T . As usual, we will omit the subindex in succT when there
is no risk of confusion. If U is an ultrafilter and B is a barrier on ω, we define an
ultrafilter UB ⊆ P(B) by declaring Y ∈ UB if and only if there is an U-branching
tree S ⊆ T(B) such that Y = S ∩B (here, we are identifying finite subsets with finite
increasing sequences on ω).

Theorem 4.4 Every compact countably bisequential space is ω1-sequentially compact.
Proof Let X be a compact countably bisequential space, let B be a barrier, and let
f ∶ B→ X. Fix an ultrafilter U ⊆ P(ω) and define an ultrafilter V ⊆ P( f [B]) ⊆ P(X)
by V ∈ V if and only if f −1(V) ∈ UB.

As X is compact, we can find x ∈ X such that x ∈ V, and by bisequentiality, there
exists a decreasing family {Vn ∶ n ∈ ω} ⊆ V such that for any open neighborhood
W ∈ N(x), there is n ∈ ω such that Vn ⊆ W . Define Un = f −1(Vn) for every n ∈ ω and
let Tn = {s ∈ T(B) ∶ ∃b ∈ Un(s ⊆ b)}. Then, each Tn is a U-branching tree.
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We now recursively define an infinite set M = {m i ∶ i ∈ ω}. Let
m0 = min(succT0(∅)). If we have already defined {m i ∶ i < n}, define mn such
that for every s ⊆ {m i ∶ i < n} with s ∈ T(B)/B, we have that s⌢mn ∈ Tn . The choice
of mn is possible since every relevant s is an element of T0 and the trees Tn are
U-branching. Moreover, if s ⊆ M, s ∈ T(B)/B and min(s) ≥ mn , then s ∈ Tk for
every k ≥ n.

It remains to show that f ↾ (B∣M) converges to x. Fix an open set W ∈ N(x)
and find n ∈ ω such that Vn ⊆ W . Given s ∈ B∣(M/mn), let mk = max(s) and
s′ = s/{mk}. By the choice of mk , we have that s = s′⌢mk ∈ Tn ∩B = Un as k ≥ n; thus,
f (s) ∈ Vn ⊆ W . Therefore, f [B∣(M/mn)] ⊆ W . ∎

The notion of n-sequential compactness in [19] was motivated by the 2-dimensional
version introduced in [3], where the main application was to show that compact
metric semigroups have idempotents naturally defined as the limit of a 2-dimensional
sequence. From Theorem 4.4 and the results in [3], we can conclude the following:

Corollary 4.5 Every compact countably bisequential semigroup K has an idempotent
naturally representable as the Ramsey limit of a restriction of any given f ∶ [ω]2 → K.

We can also now conclude that some well-known classes of spaces are ω1-
sequentially compact. It is clear that if for a class of spaces G, hereditary under closed
subsets, we have that if every separable space in G is ω1-sequentially compact, then
every space in the class is ω1-sequentially compact.

Roman Pol proved that separable Rosenthal compacta are bisequential [24]; hence,
Rosenthal compacta are countably bisequential. It can also be deduced from argu-
ments of G. Debs in [9] (see [26] and Lemma 6 in [25]). Therefore, we have that every
Rosenthal compact space is ω1-sequentially compact. Since every separable Eberlein
compact has weight at most c, and it is a result of S. Mercourakis that Eberlein compact
spaces of weight at most c are Rosenthal compact, we also have that Eberlein compacta
are ω1-sequentially compact. Similarly, as every separable Corson compactum is
metrizable, every Corson compactum (and hence Gul’ko and Talagrand compacta)
is ω1-sequentially compact. For definitions of these classes and the results just men-
tioned, see [23].

A space X is angelic if relatively countably compact subsets of X are relatively
compact, and for every relatively compact subset A ⊆ X and every x ∈ A, there is
a sequence {xn ∶ n ∈ ω} ⊆ A that converges to x. It is a result of J. Bourgain, D. H.
Fremlin, and M. Talagrand [5] that Rosenthal compacta are angelic spaces.

It was shown by Knaust in [15] that Rosenthal compacta have the Ramsey property.
We recall that a space X has the Ramsey property if for every function f ∶ [ω]2 → X
such that limi→∞ lim j→∞ f ({i , j}) = x, there is M ∈ [ω]ω such that f ↾ [M]2 → x.
As any 2-sequentially compact space has the Ramsey property, the fact that Rosenthal
compact spaces are ω1-sequentially compact is a strengthening of Knaust’s result.

The lists of angelic spaces with the Ramsey property was expanded in [16]; however,
the question of whether every angelic space has the Ramsey property was left open.
We show now that this is not the case by pointing out that the example of a sequen-
tially compact space that is not 2-sequentially compact considered in [7] is such a
counterexample.
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Theorem 4.6 There is an angelic space without the Ramsey property.
Proof Note that a compact space is angelic if and only if it is Fréchet. In [7], an almost
disjoint family A ⊆ [ω × ω]ω , such that F(A) is Fréchet, sequentially compact, but
fails to be 2-sequentially compact, is constructed. Hence, F(A) is an angelic space.

In order to prove that F(A) is not 2-sequentially compact, A was constructed
so that An ∶= {(n, m) ∶ m ∈ ω} ∈ A for every n ∈ ω and so that G ∶ [ω]2 → ω ×
ω, defined by G({n, m}) = (n, m) for n < m, does not converge to any point in
F(A). To avoid confusion, let’s denote by ∗ the point at infinity on F(A). As
limm→∞(n, m) = An and any infinite subset of A converges to ∗ in F(A), we get that
limn→∞ limm→∞(n, m) = ∗. Then, moreover, we have that F(A) does not have the
Ramsey property. ∎

5 Some examples delineating the classes of α-sequentially
compact spaces.

We will construct the counterexamples that show that the classes of α-sequentially
compact spaces and related spaces do not coincide (at least consistently, in some cases),
giving analogous results to those presented in [19] and [7].

We shall start this section by pointing out that neither of the Theorems 4.2 or 4.4
supersedes the other. Given X ⊆ 2ω , defineAX = {{x ↾ n ∶ n ∈ ω} ∶ x ∈ X} and denote
by F(A) the one-point compactifications of the Ψ-space over the almost disjoint
family A. On the one hand, if X ⊆ 2ω has size c, then F(AX) is a compact bisequential
space, but its character is ∣AX ∣ = c ≥ b (so this space satisfies the assumptions of
Theorem 4.2 but does not satisfy the assumptions of Theorem 4.4). On the other
hand, ω1 is a first countable, sequentially compact space that is not compact (so this
space satisfies the assumptions of Theorem 4.4 but does not satisfy the assumptions of
Theorem 4.2). This raises the following question:
Question 5.1 Is there a compact and ω1-sequentially compact space that is not count-
ably bisequential?

We cannot expect to conclude full bisequentiality because ω1 + 1 is a compact and
ω1-sequentially compact space that is not bisequential. There is even an Eberlein
compactum (so Fréchet) with these properties (see [6]).

It is worth noting that for an almost disjoint family A, if its Franklin space F(A)
is 2-sequentially compact, then A is nowhere mad. Otherwise, if A ↾ X is mad with
X ∈ I(A)+, we can find a function f ∶ [ω]2 → X that does not converge in F(A), as
mad families are never 2-sequentially compact (see [19]). Since an ad family is Fréchet
if and only if it is nowhere mad, all counterexamples constructed from ad families that
are at least 2-sequentially compact in [19] and [7] are also Fréchet. It was also shown
in [7] that 2-sequentially compact spaces are α3. This gives more examples of non-
bisequential almost disjoint families that are Fréchet and α3. The existence of these
kind of ad families is not known in ZFC. For more consistent examples and for the
definition of α3, the reader may consult [8].

It was previously shown in [19] that the classes of n-sequentially compact spaces
and (n + 1)-sequentially compact spaces do not coincide (assuming CH for n > 1).
This result was later improved by the authors in [7] by showing that the same holds
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under weaker assumptions (e.g., b = c). We will show that we can also consistently
differentiate between α-sequentially compact and β-sequentially compact spaces for
any α /= β by stepping up the combinatorial analysis done in [7] to barriers.

We will say that T ⊆ ω<ω is a Hechler tree if for every s ∈ T , the set of successors of s
is coinitial on ω (i.e., there exists ks ∈ ω such that succT(s) = {i ∈ ω ∶ s⌢ i ∈ T} = ω/ks).
We can naturally associate a function hT ∶ T → ω to each Hechler tree T by defining
hT(s) = ks .

For s, t ∈ ω<ω , we say that s ≺ t if either s ⊏ t or s = r⌢ l , t = r⌢m for some r ∈ ω<ω ,
and l < m. Here, s ⊏ t means that s is a proper initial segment of t. Enumerate
ω<ω = {s i ∶ i ∈ ω} such that s i ≺ s j implies i < j. We fix this enumeration for the rest
of the paper.

Definition 5.2 Let f ∈ ωω and let T ⊆ ω<ω be a Hechler tree. We define
• Tf ⊆ ω<ω , where ∅ ∈ Tf and succ(s i) = ω/ f (i) for every s i ∈ Tf .
• fT ∈ ωω , where fT(n) = k if and only if sn ∈ T and succT(sn) = ω/k and fT(n) = 0

otherwise.

Recall that FIN ⊆ P(ω) is the ideal of finite sets of ω.

Definition 5.3 Given a barrier B, we define the ideal FINB by recursion on its rank
as the set of all X ⊆ [ω]<ω such that

{n ∈ ω ∶ {s/{n} ∶ s ∈ X ∩B(n)} ∉ FINB[n]} ∈ FIN,

where FIN[ω]
1
= {{n} ∶ n ∈ ω} works as the base case.

Notice that in the case of the barrier B = [ω]n , the ideal FINB coincides with
the well-known Fubini product FINn . In general, the Fubini product FINα for a
countable limit ordinal α is not uniquely determined and depends on the choice of an
increasing sequence {αn ∶ n ∈ ω} converging to α, the corresponding previous choices
for each αn , and so on. For a barrier B of rank α such that αn = ρ(B[n]) forms an
increasing sequence, the ideal FINB also coincides with a Fubini product FINα , where
the sequence {αn ∶ n ∈ ω} is precisely the sequence converging to α used in the Fubini
product. For more on these ideals and their presentations, the reader may consult [10].

It follows directly from the definition that we can characterize the ideals FINB via
Hechler trees.

Lemma 5.4 Let B be a barrier and X ∈ FINB. Then, there exists a Hechler tree
H ⊆ ω<ω such that X ∩ H ∩B = ∅.

Proof We prove it by induction on ρ(B). If B = [ω]1 and X ∈ FINB = FIN, define
H ⊆ ω<ω such that ∅ ∈ H, succH(∅) = ω/k, where X ⊆ k and succH(s) = ω for any s ∈
H/{∅}. This H clearly works.

Let now B be an arbitrary barrier with ρ(B) > 1. We may assume that {k} ∉ B for
every k ∈ ω. Fix X ∈ FINB. Thus, {n ∈ ω ∶ X ∩B(n) ∉ FINB[n]} is finite, and we can
find k ∈ ω that contains this set. Hence, for every n ∈ ω/k, there is a Hechler tree Hn
with root {n} such that X ∩ Hn ∩B(n) = ∅. Define H = {∅} ∪⋃n≥k Hn . It is clear that
H is a Hechler tree and X ∩ H ∩B = ∅. ∎
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Lemma 5.5 For every X ⊆ FINB with ∣X∣ < b, there is a Hechler tree H ⊆ ω<ω such
that for every X ∈ X, there exists n ∈ ω such that

X ∩ H ∩B ⊆ ⋃
i≤n

B(i).

Proof Let X ⊆ FINB with ∣X∣ < b. By Lemma 5.4, for every X ∈ X, there is a Hechler
tree HX such that X ∩ HX ∩B = ∅. Let fX = fHX for every X ∈ X. Since ∣X∣ < b, we can
find f ∈ ωω such that f >∗ fX for every X ∈ X. It follows from our enumeration of ω<ω

that if f >∗ fX , then there exists nX ∈ ω such that if fX(s) > f (s) for some s ≠ ∅, then
s ∈ B(i) for some i ≤ nX . Thus, letting H = H f , we have that H/HX ⊆ ⋃i≤nX B(i), and
this implies that

X ∩ H ∩B ⊆ ⋃
i≤nX

B(i). ∎

The following proposition appears in [19] for the particular case of barriers of the
form [ω]n . The same argument shows that this is true for every barrier, so we have the
following:

Proposition 5.6 Let A be an almost disjoint family on a countable set N and let B be
a barrier. If for every function f ∶ B→ N, there is an infinite set X ∈ [ω]ω such that

∣{A ∈ A ∶ ∣ f [B∣X] ∩ A∣ = ω}∣ < b,

then F(A) is B-sequentially compact.

The following Lemma will also be helpful for proving that a space is not
B-sequentially compact for some barrier B. We say that a barrier C is nontrivial if
C ≠ [ω]1.

Lemma 5.7 Let A be an almost disjoint family on a nontrivial barrier C such that
∣A∩ C(n)∣ ≤ 1 for every A ∈ A and every n ∈ ω. If for every E ∈ [ω]ω , there exists A ∈ A
such that A ⊆ C∣E, then F(A) is not C-sequentially compact.

Proof AsC is nontrivial, we may assume without loss of generality that every element
of the C has size at least 2; in particular, C(m) is infinite for every m ∈ ω.

Consider i ∶ C→ C to be the identity map and E ∈ [ω]ω . We shall show that
i ↾ (C∣E) does not converge in F(A). Since i[C∣E] is infinite, it does not converge
to any isolated point in C.

However, if A ∈ A and n ∈ ω, we have that ∣C(m) ∩ i[C∣E/n]∣ = ω for every
m ∈ E/n, but ∣A∩ C(m)∣ ≤ 1 implies that i[C∣(E/n)] ⊈ A, and hence, it does not
converge to A. It remains to show that it does not converge to ∞.

Fix the neighborhood U = F(A)/({A} ∪ A) of ∞ for some A ⊆ C∣E and let n ∈ ω.
As ∣A∩ C(i)∣ ≤ 1 for every i ∈ ω, we can find c ∈ A ⊆ C∣E such that min(c) > n. Thus,
c ∈ C∣(E/n)/U , and in consequence, i[C∣(E/n)] ⊈ U . Since this is true for any n ∈ ω,
we get that i ↾ (C∣E) does not converge to ∞. ∎

The previous lemmas allow us to show that there are spaces that are B-sequentially
compact but fail to be C-sequentially compact whenever their ideals associated satisfy
a suitable relation. For this reason, it is useful to introduce the terminology of the
Katětov order.
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Definition 5.8 [18] Let X and Y be countable sets, I and J ideals on X and Y,
respectively, and f ∶ Y → X.

(1) f is a Katětov function from (Y , J) to (X , I) if f −1(A) ∈ J for all A ∈ I.
(2) I ≤K J (I is Katětov below J) if there exists a Katětov function from (Y , J) to

(X , I).

An easy consequence of the definition is the following:

Lemma 5.9 Let I and J be ideals on countable sets X and Y, respectively. Then, the
following are equivalent:
(1) I /≤K J.
(2) For every f ∶ Y → X, there is B ∈ J+ such that f [B] ∈ I.

Proof To see that (1) implies (2), let f ∶ Y → X. As I /≤K J, f is not a Katětov
function, so there is A ∈ I such that B ∶= f −1(A) ∈ J+. Now f [B] ∈ I since f [B] ⊆
A ∈ I. Conversely, to see that I /≤K J, let f ∶ Y → X; we want to prove that f is not
a Katětov function. So let B ∈ J+ such that A ∶= f [B] ∈ I. Now f −1(A) ∈ J+ since
B ⊆ f −1(A). ∎

Besides the ideal FINB, another ideal that will be useful in the constructions of
counterexamples is the following:

Definition 5.10 If B is a barrier on ω, then Gc(B) is the ideal on B such that
(Gc(B))+ = ⟨{B∣X ∶ X ∈ [ω]ω}⟩ (i.e., S ⊆ B is an element ofGc(B) if and only if there
is no X ∈ [ω]ω such that B∣X ⊆ S).

Note that (Gc([ω]2))+ is the collection of all subsets of [ω]2 that contain an infinite
complete subgraph; that is the reason for the notation Gc . Also note that the fact that
Gc(B) is closed under finite unions follows from Nash-Williams Theorem.

Theorem 5.11 (b = c) Let B and C be two barriers such that FINC /≤K Gc(B). Then,
there is an almost disjoint family A such that F(A) is B-sequentially compact but not
C-sequentially compact.

Proof Enumerate CB = { fα ∶ α < c} and [ω]ω = {Eα ∶ α < c}. For E ∈ [ω]ω , let E↑ =
T(C∣E). Notice that for any such E, the tree E↑ is everywhere ω-splitting, and hence,
it has infinite intersection with any Hechler tree H inside C; that is, ∣E↑ ∩ H ∩ C∣ = ω.
Moreover, for any n ∈ E, we have that

∣E↑ ∩ H ∩ C(n)∣ = ω.

Recursively construct {Aα ∶ α < c} ⊆ [C]ω and {Xα ∶ α < c} ⊆ [ω]ω such that for
all β < α < c,

(1) fα[B∣Xα] ∈ FINC,
(2) ∣Aα ∩ Aβ ∣ < ω,
(3) ∣Aα ∩ fβ[B∣Xβ]∣ < ω,
(4) ∣Aα ∩ C(n)∣ ≤ 1 for all n ∈ ω,
(5) Aα ⊆ E↑α .
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At step α < c, let Xα ∈ [ω]ω such that fα[B∣Xα] ∈ FINC (this set exists by Lemma 5.9).
Note that also every Aβ with β < α is an element of FINC. Then, we can find a Hechler
tree H as in Lemma 5.5 such that

X ∩ H ∩ C ⊆ ⋃
i≤nX

C(i)

for either X = fβ[B∣Xβ] or X = Aβ for some β < α. Let Aα ∈ [C]ω be such that Aα ⊆
H ∩ C ∩ E↑α and ∣Aα ∩ C(i)∣ ≤ 1 for every i ∈ ω. It follows that Aα ∩ X ⊆ ⋃i≤nX C(i) for
some nX ∈ ω, and as ∣Aα ∩ C(i)∣ ≤ 1 for every i ≤ nX , this intersection is finite, and (2)
and (3) hold. The remaining three properties follow from the construction.

Since {A ∈ A ∶ ∣ fα[B∣Xα] ∩ A∣ = ω} ⊆ {Aβ ∶ β ≤ α}, and this set has size less than
b, by Proposition 5.6, we get that F(A) is B-sequentially compact.

However, item (5) implies that F(A) is not C-sequentially compact by Lemma 5.7,
as C has rank greater than 1. ∎

The natural question now is when do the barriers B and C satisfy that FINC /≤K
Gc(B)? We will see below that this only depends on the rank of the barriers, assuming
that at least the one with larger rank is uniform. See Theorem 5.12 and Corollary 5.14
below.

The relevance of the Katětov order in the study of subclasses of sequentially
compact spaces is also demonstrated in the work of R. Filipów, K. Kowitz, and A.
Kwela [13], where the authors study many subclasses of sequentially compact spaces,
prove some inclusions among them, and find counterexamples by using the Katětov
order relationship between some ideals naturally associated to these classes.

Recall that for B being a barrier, B[s] is a barrier on ω/(max(s) + 1). For the ease
of notation, we will do some abuse of notation: for a function g ∶ B(s) → C(t), we can
naturally associate a function g′ ∶ B[s] → C[t]. We use g for both functions. Also, for
a Hechler tree H, we will denote by H[n] its copy above {n} – that is, a tree T with
root {n} and such that succT(s) = succH(s/{n}). In particular, ω<ω[n] = {s ∈ ω<ω ∶
n = min(s)}.

Theorem 5.12 Let B,C be barriers with C uniform and ρ(B) < ρ(C). Then, FINC /≤K
Gc(B).

Proof By Lemma 5.9, it is enough to prove that for every f ∶ B→ C, there is X ∈
[ω]ω such that f [B∣X] ∈ FINC. The proof is by induction on ρ(C). If ρ(C) = 1, there
is nothing to do, so we can assume that ρ(C) > 1, and the result is true for C′ whenever
ρ(C′) < ρ(C). We now prove it by induction on ρ(B). If ρ(B) = 1, we can find an
infinite set X ∈ [ω]ω such that either ∣ f [B∣X] ∩ C(i)∣ ≤ 1 for every i ∈ ω or f [B∣X] ⊆
C(n) for some n ∈ ω. Hence, assume that for any barriers B′ and C′ with ρ(B′) <
ρ(B), ρ(C′) ≤ ρ(C), and ρ(B′) < ρ(C′), the result holds. We can also think of {∅} as a
barrier of rank 0. In this case, the result is trivial, but it is worth mentioning since B[s]
is a barrier of rank 0 whenever s ∈ B. We will also consider these kind of barriers as
part of our inductive hypothesis. We can also assume, by possibly passing to a cofinite
set, that ρ(C(n)) ≥ ρ(B) for every n ∈ ω.

Define a function πn ∶ B→ 2 for every n ∈ ω given by πn(s) = 0 if and only if f (s) ∈
⋃i≤n C(i). By Nash-Williams, we can find an infinite set Zn ∈ [ω]ω such that πn ↾
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(B∣Zn) is constant. If πn ↾ (B∣Zn) is constant with value i, we will say that Zn is a
monochromatic set with color i. If for some n ∈ ω we can find a monochromatic set
Zn with color 0, then f maps B∣Zn into the union of the first n + 1-cones of C, which
is an element of FIN(C). Hence, we can assume that there is no monochromatic set
with color 0 for every n ∈ ω.

Let us recursively define {Xn ∶ n ∈ ω}, {m i ∶ i ∈ ω}, {Hn ∶ n ∈ ω} and {g(s, n) ∶ s ⊆
{m i ∶ i < n} ∧ n ∈ ω} such that

(1) m i = min(X i),
(2) πn ↾ (B∣Xn) is constant with value 1,
(3) Xn+1 ⊆ Xn ⊂ ω,
(4) g(s, n) ∶ B[s] → C[n] is given by g(s, n)(t) = f (t)/{n} if and only if f (t) ∈

C(n), and otherwise, let g(s, n)(t) ∈ C[n] be arbitrary.
(5) Hn ⊆ ω<ω[n] is a Hechler tree.
(6) g(s, n)[B[s]∣Xn] ∩ Hn = ∅ for every s ⊆ {m i ∶ i < n} with s ≠ ∅.

Assume X i , m i , H i , and g(s, i) have been defined for i ≤ n and s as above. Since
g(s, n + 1) is defined from {m i ∶ i ≤ n} and mn+1 is defined from Xn+1, we only need
to define Xn+1 and Hn+1. Note that if in point (6) we have that s ∉ T(B), thenB(s) = ∅
and then any choice of Xn and Hn work, so we will assume in the rest of the proof that
s ∈ T(B).

We can find a πn+1 monochromatic set (with color 1) X′ ⊆ Xn . Enumerate as
{s i ∶ i ≤ k} for some k ∈ ω the set {s ⊆ {m i ∶ i ≤ n} ∶ s ∈ T(B)/{∅}}. We can recur-
sively define X0

n+1 ⊆ X′, X i+1
n+1 ⊆ X i

n+1 for i < k and H i
n+1 ⊆ C[n + 1] for i ≤ k such that

(*) g(s, n + 1)[B[s]∣X i
n+1] ∩ H i

n+1 = ∅.

To see that the choices of X i
n+1 and H i

n+1 are possible, note that g(s, n + 1) ∶
B[s] → C[n + 1] and ρ(B[s]) < ρ(B) ≤ ρ(C[n + 1]). Then, we can apply the induc-
tive hypothesis. Without loss of generality, we can assume that min(X i

n+1) > mn for
every i ≤ k. Also, since each H i

n+1 is a Hechler tree for every i ≤ k, we can define Hn+1 =
⋂i≤k H i

n+1, which is a Hechler tree in C[n + 1]. Define Xn+1 = Xk
n+1. This finishes the

construction.
Let X = {x i ∶ i ∈ ω} and H = {∅} ∪⋃n∈ω n⌢Hn . We shall show that

f [B∣X] ∩ H = ∅. Fix s ∈ B∣X; then, s = (x i0 , . . . , x ik) for some k ∈ ω and some
sequence i0 < ⋅ ⋅ ⋅ < ik . As {x i0 , . . . , x ik} ⊆ X i0 and X i0 is π i0 monochromatic with
color 1, we have that f (s) ∈ C(n) for some n > i0. Let s′ = {x i ∈ s ∶ i < n} and notice
that s/s′ ⊆ Xn and s′ ≠ ∅. Hence, g(s′ , n) was considered at step n in (6), and s′
was indexed as s i for some i. Since we have that H ∩ ω<ω[n] ⊆ H i

n , s/s′ ∈ B[s′]∣Xn ,
and Xn ⊆ X i

n , we can conclude, by (∗), that g(s′ , n)(s) = f (s)/{n} ∈ C[n]/Hn , so
f (s) = n⌢g(s′ , n) ∉ H. Therefore, f [B∣X] ∩ H = ∅, so f [B∣X] ∈ FINC. ∎

It is worth noting that the previous result gives us that for two barriers B and C,
the classes of B-sequentially compact spaces and C-sequentially compact spaces only
depend on the ranks of B and C whenever the largest is uniform. If ρ(B) < ρ(C)
and C is uniform, every C-sequentially compact space is B-sequentially compact
by Corollaries 3.5 and 3.6. However, there are (at least consistently) examples of
B-sequentially compact spaces that are not C-sequentially compact by Theorem 5.12.
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If otherwise, ρ(B) = ρ(C) and both of them are uniform, then the classes of B-
sequentially compact and C-sequentially compact spaces coincide by Corollary 3.5.

A more subtle analysis can be done by considering ρu(B) instead of ρ(B), but
what we have done suffices to show that (consistently) the classes of α-sequentially
compact and β-sequentially compact spaces do not coincide if α ≠ β.

Corollary 5.13 (b = c) If {αn ∶ n ∈ ω} ⊆ α, there exists a space that is αn-sequentially
compact for all n ∈ ω but fails to be α-sequentially compact. In particular, for every
α < β < ω1, there exists an α-sequentially compact space that is not β-sequentially
compact.

Proof Fix a uniform barrier Bn of rank αn for every n ∈ ω and a barrier C of rank
α. Repeat the proof of theorem 5.11 by enumerating

⋃
n∈ω

CBn = { fα ∶ α < c}.

The hypothesis of Theorem 5.11 for every barrier Bn holds by Theorem 5.12. Finally,
by Corollary 3.5, we get the result. ∎

If B and C are barriers with the same rank and B is uniform, then FINC ≤K Gc(B).
To see this, note that otherwise, by Theorem 5.11, there is a space X that is B-seq
compact but notC-seq compact under b = c, but this is a contradiction to Corollary 3.5
since the Katětov order is absolute among Borel ideals due to Shoenfield’s absoluteness
Theorem (see [17]). We then get the following corollary:

Corollary 5.14 Let B and C be uniform barriers such that ρ(B) ≤ ρ(C). Then, the
following are equivalent:

(1) FINC /≤K Gc(B).
(2) ρ(B) < ρ(C).

It is worth pointing out that for (1) implies (2) we use that B is uniform while in
(2) implies (1) we use the uniformity of C.

6 Cardinal invariants associated to barriers

In this section, we define and analyze several cardinal invariants associated to barriers
that play an important role in the structure of α-sequentially compact spaces. In
particular, we extend a result in [19] by showing that for every α > 1, the Cantor cube
2κ is α-sequentially compact if and only if κ < min{b, s}. When α = 1, it is known that
2κ is sequentially compact if and only if κ < s (see [11]).

It is also shown in [7] that the cardinals parn are closely related to the con-
structions of examples of spaces that are n-sequentially compact but fail to be
(n + 1)-sequentially compact under s = b. This suggests that if we aim to do similar
constructions for arbitrary barriers, we should start analyzing and computing the
analogous cardinal invariants for parn in arbitrary barriers. IfB is a barrier, π ∶ B→ 2,
and H ∈ [ω]ω , then we say that H is monochromatic for π if π is constant on B∣H.
We say that H is almost monochromatic for π if there is F ∈ [H]<ω such that H/F is
monochromatic for π. If Π is a family of colorings on B, then we say that H is almost
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monochromatic for Π if it is almost monochromatic for every π ∈ Π. We refer to [ω]1

as the trivial barrier.

Definition 6.1 If B is a barrier, then parB is the minimum size of a collection of
colorings on B without an almost monochromatic infinite set.

If t ∈ [ω]<ω/{∅}, recall that we write t as {t0 , . . . , tn−1} in the increasing way, and
if I ⊆ n, then t ↾ I = {t i ∣ i ∈ I}. Also note that t ↾ 2 ⊑ t for n ≥ 2. Given a barrier B
such that each of its elements has size at least 2, if we let B ↾ 2 ∶= {t ↾ 2 ∶ t ∈ B}, then
B ↾ 2 = [ω]2. For n ∈ ω, the cardinal parn mentioned above is exactly par[ω]n , so we
will stick with the classical terminology parn when B = [ω]n .

Theorem 6.2 If B is a nontrivial barrier, then parB ≤ par2.

Proof As B is a nontrivial barrier, there is n ∈ ω such that B∣(ω/n) has all of its
elements of size at least two. Without loss of generality, we may assume that n = 0. Let
Π = {πα ∣ α ∈ par2} be a family of colorings on [ω]2 with no almost monochromatic
infinite sets. Define π̂α ∶ B→ 2 for every α ∈ par2, given by π̂α(t) = πα(t ↾ 2). Note
that if H is a an almost monochromatic infinite set for Π̂ = {π̂α ∣ α ∈ par2}, then H
is also an almost monochromatic infinite set for Π. Hence, Π̂ has no infinite almost
monochromatic sets. ∎

Recall that if B is a barrier, the rank of B[n] is strictly smaller than the rank of
B for every n ∈ ω. This allows us to show that the same idea that proves that parn =
min{b, s} for every n ∈ ω in [2] also works for arbitrary barriers.

Theorem 6.3 If B is a barrier such that each of its elements has size at least 2, then
parB ≥ par2.

Proof By induction on the rank ofB. Suppose thatB has rank γ and the result is true
for every barrier of rank strictly smaller than γ. Let κ < par2 and let {πα ∶ α ∈ κ} be a
set of colorings onB. We are going to show that there exists an almost monochromatic
infinite set for this family.

For every α ∈ κ and every n ∈ ω, let πn
α = B[n] → 2 given by πn

α(s) = πα({n} ∪ s).
We recursively construct a collection {Hn ∶ n ∈ ω} ⊆ [ω]ω such that

(1) Hn+1 ∈ [Hn]ω .
(2) Hn+1 is almost monochromatic for {πn

α ↾ (B[n]∣Hn) ∶ α ∈ κ}
We start by defining H0 = ω/1, and as B[0]has rank smaller than γ, by our inductive

hypothesis, we know that there is H1 ∈ [ω/1]ω such that H1 is almost monochromatic
for {π0

α ∣ α ∈ κ}. Now suppose that we have already defined Hn and consider the
family {πn

α ↾ (B[n]∣Hn) ∶ α ∈ κ}. As B[n]∣Hn has also rank smaller than γ, there is
Hn+1 ∈ [Hn]ω such that Hn+1 is almost monochromatic for this family.

Take H an infinite pseudointersection of {Hn ∶ n ∈ ω}. Note for every n ∈ H and
every α ∈ κ, we have that Hn is almost monochromatic for πn

α with color j(α, n) ∈
{0, 1}. For every α ∈ κ, define an increasing fα ∈ Hω such that Hn/ fα(n) is monochro-
matic for πn

α . Also let g ∈ ωω be increasing such that H/g(n) ⊆ Hn . As F = { fα ∶ α ∈
κ} ∪ {g} ⊆ ωω has size less than par2 ≤ b, there exists f ∈ ωω strictly increasing that
dominates F.
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For every i ∈ 2, let X i
α ∶= {n ∈ H ∶ j(α, n) = i}. Note that {X0

α ∣ α ∈ κ} is a collec-
tion of less than par2 ≤ s subsets of H, so there is X ∈ [H]ω such that for every α ∈ κ,
there is j(α) ∈ {0, 1} such that X ⊆∗ X j(α)

α .
Let us define J ∶= {xn ∣ n ∈ ω} ⊆ X ⊆ H such that xn+1 > f (xn) for every n ∈ ω.
Claim: J is almost monochromatic for {πα ∣ α ∈ κ}.

Proof of the claim Let α ∈ κ. We know that X ⊆∗ X j(α)
α , fα <∗ f , and g <∗ f , so there

exists k ∈ ω such that
(1) X/k ⊆ X j(α)

α ,
(2) fα(n) < f (n) for every n > k, and
(3) g(n) < f (n) for every n > k.

Fix s ∈ B∣(J/(k + 1)) and let n = min(s) and t = s/{n}. Then, we have that n ∈ X j(α)
α

and

t ⊆ J/ f (n) ⊆ X/ f (n) ⊆ H/ f (n) ⊆ H/g(n) ⊆ Hn .

Notice that min(t) > f (n) > fα(n); hence, t ⊆ Hn/ fα(n). But then, πα(s) = πn
α(t) =

j(α, n) and j(α, n) = j(α) since n ∈ X j(α)
α . This proves that πα is constant on

B∣(J/(k + 1)) with color j(α). ∎

The proof of the previous claim finishes the proof of the theorem.

Corollary 6.4 parB = par2 for every nontrivial barrier B on ω and par[ω]1 = s.

Corollary 6.5 If κ < par2 and B is a barrier, then 2κ is B-sequentially compact.
Moreover,

par2 = min{κ ∶ 2κ is not B-sequentially compact}

for every nontrivial barrier B.

Proof If κ < par2 = min{s, b}, then κ < s and so 2κ is sequentially compact. Simi-
larly, it has character less than b since κ < b. Therefore, 2κ is ω1-sequentially compact
by Theorem 4.2. Conversely, 2par2 is not even 2-sequentially compact by a result
in [19]. ∎

The dual cardinal to par is the cardinal hom. The characterization of par in terms
of b and s has also a dual version using d and a variant of r, the dual cardinals of b and
s, respectively (see [2]).

Notation 6.6 Let N be a countable set, I an ideal on N, and X , Y ⊆ N. Then, X ⊆I Y
means that X/Y ∈ I.

Definition 6.7 Given a barrier B let,

homB = min{∣H∣ ∶H ⊆ [ω]ω ∧ ∀S ⊆ B ∃M ∈H ∃i ∈ 2 (B∣M ⊆ S i)}

and

rB = min{∣R∣ ∶ R ⊆ [ω]ω ∀S ⊆ B ∃R ∈ R ∃i ∈ 2 (B∣R ⊆FINB S i)}.
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A family as in the definition of homB is called a homogeneous family for B or a
B-homogeneous family. Analogously, a family as in the definition of rB is called a
reaping family for B or a B-reaping family.

Recall that by the Nash-Williams theorem, for every π ∶ B→ 2, there is M ∈ [ω]ω

such that π ↾ (B∣M) is constant. In this way, homB is well-defined, and rB ≤ homB

since every B-homogeneous family is a B-reaping family. In particular, rB is well-
defined.

Note that if B is the trivial barrier (i.e., B = [ω]1), then rB = homB = r. However,
if B is a nontrivial barrier, then hom2 ≤ homB. To see this, we can suppose that
every element of B has size at least 2, and thus, every coloring π ∶ [ω]2 → 2 induces a
coloring of π̂ ∶ B→ 2 given by π̂(s) = π(s ↾ 2). Now an infinite homogeneous set for π̂
is also homogeneous for π, which in turn gives that any homogeneous family for B is
a homogeneous family for [ω]2, and then, max{d, rσ} = hom2 ≤ homB. In particular,
d ≤ homB. Ramsey ultrafilters will be helpful in our study of the cardinal homB.

Recall that a nonprincipal ultrafilter U on ω is Ramsey if for all π ∶ [ω]2 → 2,
there is U ∈ U such that π ↾ [U]2 is constant. A family F ⊆ [ω]ω is selective if for
every decreasing sequence {Yn ∣ n ∈ ω} ⊆ F, there is f ∶ ω → ω such that f [ω] ∈ F,
f (0) ∈ Y0, and f (n + 1) ∈ Yf (n) for all n ∈ ω. The following result, which according to
D. Booth is mostly due to K. Kunen, relates Ramsey ultrafilters and selective families.

Theorem 6.8 [4] If U is a nonprincipal ultrafilter, then U is Ramsey if and only if it is
selective.

We will show now that a base for a Ramsey ultrafilter is a homogeneous family
for every barrier B. Hence, if we define uR as the minimum character of a Ramsey
ultrafilter,1 we get that homB ≤ uR .

The next theorem is a standard result of Local Ramsey theory (see [26] Chapter 7).
It follows immediately from Theorem 7.42 in [26] in the same way Nash-Williams’
theorem follows from Ellentuck theorem. For the convenience of reader, we sketch
the argument.

Theorem 6.9 IfU is a Ramsey ultrafilter,B is a barrier on ω, and π ∶ B→ 2, then there
is U ∈ U such that π ↾ (B∣U) is constant.

Proof By induction on the rank of the barrier. If B has rank zero (i.e, B = {∅}), then
the result is trivial.

Suppose that B has rank γ and the result is true for every barrier of rank smaller
than γ. As B[n] is a barrier on ω/(n + 1) of rank less than γ, there is Vn ∈ U such that
the coloring πn ∶ B[n] → 2 is constant on B[n]∣Vn , where πn(s) = π({n} ∪ s).

For every n ∈ ω, we know that πn ↾ (B[n]∣Vn) is constant on color j(n) ∈ 2. So
take V ∈ U and i ∈ 2 such that j(n) = i for all n ∈ V .

Now call Un = (⋂m≤n Vn) ∩ V ∩ (ω/n + 1) and note that {Un ∣ n ∈ ω} is a decreas-
ing sequence of elements of U, so applying that U is selective, there is f ∈ ωω such that
f [ω] ∈ U, f (0) ∈ U0, and f (n + 1) ∈ U f (n) for all n ∈ ω. Define U ∶= f [ω].

1Let uR = c in case there is no such ultrafilter.
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It remains to show that π ↾ (B∣U) is constant with value i. Indeed, let
s = {a0 , . . . , ak} ∈ B∣U . Then, a0 ∈ V and

{a1 , . . . , ak} ⊆ U f (a0) ⊆ Ua0 ⊆ Va0 ,

so that {a1 , . . . , ak} ∈ B[a0]∣Va0 ,. Then, π(s) = πa0({a1 , . . . , ak}) = j(a0) = i. ∎

Notation 6.10 If R ∈ [ω]ω , then H(R) is the collection of all nonempty trees T ⊆ R<ω

such that succT(s) is cofinite in R for all s ∈ T.

We will need the following folklore facts.

Proposition 6.11 If R ∈ [ω]ω and T ∈ H(R), then there is A ∈ [R]ω such that
[A]ω ⊆ [T].

Proposition 6.12 cof(FINB) = d for every nontrivial barrier B.

An explicit proof for the previous result about cof(FINB), where B is a barrier of
finite rank, appears in [7]. The same argument works for general barriers.

Theorem 6.13 homB = max{d, rB} for every nontrivial barrier B on ω.

Proof We already noted that max{d, rB} ≤ homB, so it is enough to prove the
other inequality. For this, let R = {Rβ ∣ β ∈ rB} be a reaping family for B, and for
every β ∈ rB, let {Xβ

α ∣ α ∈ d} cofinal in FINB∣Rβ . Now by definition of FINB∣Rβ

and Proposition 6.11, for every β ∈ rB and every α ∈ d, there are T β
α ∈ H(Rβ) and

Aβ
α ∈ [Rβ]ω such that

(1) T β
α ∩ Xβ

α = ∅,
(2) [Aβ

α]ω ⊆ [T β
α ].

Now let H = {Aβ
α ∣ β ∈ rβ ∧ α ∈ d}. We claim that H is a homogeneous family for

B. To see this, let S ⊆ B. As R is a reaping family for B, there is β ∈ rβ and i ∈ 2 such
that B∣Rβ ⊆FINB S i . Now call X ∶= (B∣Rβ)/S i ∈ FINB. Moreover, as X ⊆ B∣Rβ , then
X ∈ FINB∣Rβ . Thus, there is α ∈ d such that X ⊆ Xβ

α , and consequently, X ∩ T β
α = ∅.

Also we know that [Aβ
α]ω ⊆ [T β

α ], so X ∩ (B∣Aβ
α) = ∅. Indeed, if b ∈ X ∩ (B∣Aβ

α), then
there is Z ∈ [Aβ

α]ω such that b ⊑ Z, and, as Z ∈ [T β
α ], then b ∈ T β

α ∩ X, which is a
contradiction. This way, we have that B∣Aβ

α ⊆ B∣Rβ ⊆ S i ∪ X and (B∣Aβ
α) ∩ X = ∅, so

B∣Aβ
α ⊆ S i , and we are done. ∎

Question 6.14 Is homB = hom2 for every nontrivial barrier B?
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[19] W. Kubiś and P. Szeptycki, On a topological Ramsey theorem, Canad. Math. Bull. 66(2023),

156–165. https://doi.org/10.4153/s0008439522000170
[20] K. Kunen, Set theory-An introduction to independence proofs, North-Holland Publishing Co.,

Amsterdam-New York, 1980. https://doi.org/10.1016/s0049-237x(08)x7037-5
[21] E. A. Michael, A quintuple quotient quest, General Topology and Appl. 2(1972), 91–138.

https://doi.org/10.1016/0016-660x(72)90040-2
[22] C. St. J. A. Nash-Williams, On well-quasi-ordering transfinite sequences. Proc. Cambridge Philos.

Soc. 61(1965), 33–39. https://doi.org/10.1017/s0305004100038603
[23] S. Negrepontis, Banach spaces and topology. In Handbook of set-theoretic topology,

North-Holland, Amsterdam, 1984, 1045–1142.
https://doi.org/10.1016/B978-0-444-86580-9.50026-4

[24] R. Pol, Note on pointwise convergence of sequences of analytic sets. Mathematika 36(1989), no. 2,
290–300. https://doi.org/10.1112/s0025579300013140
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