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Abstract. We define the topological multiplicity of an invertible topological system
(X, T ) as the minimal number k of real continuous functions f1, . . . , fk such that the
functions fi ◦ T n, n ∈ Z, 1 ≤ i ≤ k, span a dense linear vector space in the space of real
continuous functions on X endowed with the supremum norm. We study some properties
of topological systems with finite multiplicity. After giving some examples, we investigate
the multiplicity of subshifts with linear growth complexity.
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1. Introduction
The multiplicity of an invertible bounded operator U : E � on a normed vector space E
is the minimal cardinality of subsets F ⊂ E, whose cyclic space (that is, the vector space
spanned by Ukx, k ∈ Z, x ∈ F ) is dense in E.

For an ergodic measure-preserving system (X, f , B, μ), the multiplicity Mult(μ) of the
Koopman operator, which is the operator of composition by f on the Hilbert space L2(μ),
is a dynamical invariant, which has been investigated in many works (see e.g. [Dan13] and
the references therein).
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Cyclicity, which corresponds to simple multiplicity (that is, there is an element whose
cyclic space is dense in the whole vector space), has been also established for operators
of composition on the Hardy space H 2(D) [BS97]. In this context, a pioneering work of
Birkhoff [Bir29] states that there is an entire function φ in the complex plane such that the
set {φ(· + n), n ∈ N} is dense itself in the set of entire functions endowed with the uniform
topology on compact subsets, that is, the operator of translation by 1 is hypercyclic.

Quite surprisingly, the corresponding topological invariant has not been studied in full
generality. More precisely, we consider here topological dynamical systems (X, T ), where
X is a compact metrizable space and T : X � is a homeomorphism, and we study the
operator of composition by T on the Banach space C(X) of real continuous functions
endowed with the uniform topology. We call the topological multiplicity of (X, T ) the
associated multiplicity and we denote it by Mult(T ). We remark that our definitions and
results can be extended to the non-invertible continuous map T : X �. However, for sake
of simplicity, we focus on homeomorphisms T : X �.

In this paper, we mostly focus on topological systems with finite multiplicity. We first
show the following properties for such systems.

THEOREM. Let (X, T ) be a topological system with finite multiplicity. Then the following
properties are satisfied:
(1) (X, T ) has zero topological entropy;
(2) (X, T ) has finitely many ergodic measures.

These properties are the main content of §2. Property (1) is proven in Proposition 3.5
in two ways: one uses the variational principal of topological entropy; the other is purely
topological. Property (2) is proven in Lemma 2.6 and Corollary 2.8. In fact, we show more
precisely that the number of ergodic measures is equal to the multiplicity of the operator
induced on the quotient of C(X) by the closure of coboundaries.

In §3, we relate the topological multiplicity with the dimension of cubical shifts, in
which the action T∗ : M(X) � induced by T on the set M(X) of Borel probability
measures on X may be affinely embedded. In Theorem 3.3, we show a necessary and
sufficient condition for the existence of the affinely embedding of (M(X), T∗) to the
shift on ([0, 1]d)Z. Furthermore, we compare our result to the Lindenstrauss–Tsukamoto
conjecture for dynamical embedding (Corollary 3.4).

In §4, we state a generalized Banach version of a lemma due to Baxter [Bax71] which
is a classical criterion of simplicity for ergodic transformations. The generalized Baxter
lemma (Lemma 4.1) will play an important role in estimating the topological multiplicity
in the next sections.

For minimal Cantor systems, a topological analogue of the rank of a measure-preserving
system has been defined and studied (see [DP22]). In §5, under this setting, we compare
the topological multiplicity with the topological rank (Theorem 5.1).

In §6, we study some examples and estimate their topological multiplicity: minimal
rotations on compact groups, Sturmian and Thue–Morse subshifts, homeomorphisms of
the interval, etc. Among them, we show in Theorem 6.7 that even though the Thue–Morse
subshift is a minimal uniquely ergodic system with simple mixed spectrum, its topological
multiplicity is one.
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THEOREM. The Thue–Morse subshift has simple topological spectrum.

In §6, we estimate the topological multiplicity of subshifts with linear growth
complexity, that is, subshifts X such that the cardinality pX(n) of n-words in X satisfies
lim infn→∞(pX(n)/n) < +∞. Such subshifts have aroused a great deal of interest,
especially recently [Bos92, CK19, CP23, DDMP21]. In [Bos92], it is proved that an
aperiodic subshift X has at most k ergodic measures if lim infn(pX(n)/n) ≤ k ∈ N. Our
main related result is stated as follows (Theorems 7.1 and 7.6).

THEOREM. Let X be an aperiodic subshift with lim infn→∞(pX(n)/n) ≤ k ∈ N. Then

Mult(T ) ≤ 2k and
∑

μ ergodic

Mult(μ) ≤ 2k.

As well as the results on multiplicity that we investigate, we propose several questions
in the current paper.

2. Topological multiplicity, definition, and first properties
2.1. Multiplicity of a linear operator. Let (E, ‖ · ‖) be a normed vector space over R.
We consider a linear invertible bounded operator U : E �. A subset F of E is called a
generating family of U when the vector space spanned by Ukx, k ∈ Z, x ∈ F , is dense in
E. In the following, we denote by span(G) (respectively span(G)) the vector space spanned
by a subset G of E (respectively its closure) and we then let V UF := span{Ukx : k ∈ Z,
x ∈ F }. Sometimes, we write VF instead of V UF whenever the operator is fixed. The
multiplicity Mult(U) ∈ N ∪ {∞} of U is then the smallest cardinality of generating
families of U. By convention, we let Mult(U) = 0 when E is reduced to {0}. A linear
operator with multiplicity one is called cyclic.

We first study the equivariant map between two normed vector spaces with linear
invertible bounded operators.

LEMMA 2.1. Let Ui : Ei �, i = 1, 2 be two linear invertible bounded operators. Assume
that there is a linear bounded operator W : E1 → E2 satisfying W ◦ U1 = U2 ◦W , then

Mult(U2|Im(W)) ≤ Mult(U1).

Proof. One checks easily that if F is a generating family for U1, then W(F) is a
generating family for the restriction of U2 to the closure of the image of W. Therefore,
Mult(U2|Im(W)) ≤ Mult(U1).

A direct consequence of Lemma 2.1 is that the multiplicity is a spectral invariant:
if Ui are linear invertible operators on Ei , i = 1, 2, satisfying W ◦ U1 = U2 ◦W for
some invertible bounded linear operator W : E1 → E2, then U1 and U2 have the same
multiplicities.

When E′ is a closed subspace of E, we endow the quotient E/E′ space with the norm
‖u‖′ = inf{‖u+ v‖, v ∈ E′}. If E′ is invariant by U, we let UE/E

′
be the action induced

by U on the quotient normed space E/E′. In this context, by applying Lemma 2.1 with
W : E → E/E′ being the natural projection, we get

Mult(UE/E
′
) ≤ Mult(U). (2.1)
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2.2. Operator of composition: topological and ergodic multiplicities. Ergodic theory
focuses on the study of invertible measure-preserving systems (X, f , B, μ). In particular,
the spectral properties of the unitary operator Uf : L2(μ) �, φ �→ φ ◦ f , are investigated.
We let ‖f ‖2 := (

∫
X

|f (x)|2 dμ)1/2 be the L2-norm of f ∈ L2(μ).

Definition 2.2. The ergodic multiplicity Mult(μ) of an ergodic system (X, f , B, μ) is
the multiplicity of the restriction of Uf to the Hilbert space L2

0(μ) := {f ∈ L2(μ),∫
f dμ = 0}, that is to say, Mult(μ) = Mult(Uf ).

This quantity has been intensely studied in ergodic theory (see Danilenko’s survey
[Dan13]).

Next we consider here an invertible topological dynamical system (X, T ), that is, T :
X � is a homeomorphism of a compact metric space X. We denote by C(X) the Banach
space of real continuous functions endowed with the topology of uniform convergence. We
let ‖f ‖∞ := supx∈X |f (x)| be the supremum norm of f ∈ C(X).
Definition 2.3. The topological multiplicity Mult(T ) of (X, T ) is the multiplicity of the
operator of composition UT : C(X) �, φ �→ φ ◦ T .

Quite surprisingly, this last notion seems to be new (note however that cyclicity of
UT has already been investigated in some cases). Let us first observe that the topological
multiplicity bounds from above the ergodic multiplicity of ergodic T-invariant measures.

LEMMA 2.4. Let (X, T ) be an invertible topological dynamical system. For any ergodic
T-invariant measure μ, we have

Mult(μ) ≤ Mult(T ).

Proof. Let F be a generating family with minimal cardinality of UT : C(X) �. Then the
vector space spanned by F is dense in (C(X), ‖ · ‖∞), therefore in (L2(μ), ‖ · ‖2). As
p : L2(μ) → L2

0(μ), f �→ f − ∫
f dμ is continuous and p ◦ UT = UT ◦ p, the vector

space spanned by p(F) is dense in L2
0(μ).

Let M(X) be the set of Borel probability measures endowed with the weak-∗ topology.
It is standard that M(X) is a compact metrizable space. The compact subset M(X, T ) ⊂
M(X) of Borel T-invariant probability measures of (X, T ) is a simplex, whose extreme set
is given by the subset Me(X, T ) of ergodic measures. A topological system with a unique
(ergodic) invariant measure is said to be uniquely ergodic. The Jewett–Krieger theorem
states that every ergodic system has a uniquely ergodic model. Several proofs have been
given of this theorem, see, e.g., [DGS06, §29]. One may wonder if the multiplicity may be
preserved.

Question 2.5. Given an ergodic system with measure μ, is there a uniquely ergodic model
(X, T ) of it such that Mult(T ) = Mult(μ)?

2.3. The number of ergodic measures as a multiplicity. Let (X, T ) be an invertible topo-
logical dynamical system. A function ψ ∈ C(X) is a called a continuous T-coboundary, if
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ψ is equal to φ ◦ T − φ for some φ ∈ C(X). In other terms, the set BT (X) of continuous
T-coboundaries is the image of UT − Id, in particular, it is a vector space. Observe that
UT (BT (X)) = BT (X). To simplify the notation, we write ŨT for the action induced by
UT on the quotient Banach space C(X)/BT (X) and UT for the restriction of UT to the
closureBT (X) of continuous coboundaries. By a standard application of the Hahn–Banach
theorem (see e.g. [Kat01, Proposition 2.13]), a function ψ belongs to BT (X) if and only
if

∫
ψ dμ = 0 for any μ ∈ M(X, T ) (respectively μ ∈ Me(X, T )). It is well known

that unique ergodicity is equivalent to the decomposition C(X) = R1 ⊕ BT (X) (see e.g.
[LV97, Lemma 1]), where 1 denotes the constant function equal to 1. In particular, in the
case of unique ergodicity, we have C(X)/BT (X) � R1 and therefore Mult(ŨT ) = 1. It
may be generalized as follows.

LEMMA 2.6. Let (X, T ) be an invertible topological dynamical system. We have

Mult(ŨT ) = �Me(X, T ).

Proof. We first show that Mult(ŨT ) ≥ �Me(X, T ). Assume that:
• ν1, . . . , νp are distinct ergodic measures;
• F = {f1, . . . , fq} ∈ C(X)/BT (X) is a generating family of ŨT .
For 1 ≤ l ≤ q, let fl ∈ C(X) be a function (a priori not unique) such that fl = fl

mod BT (X). If q < p, then the p vectors

Xi =
( ∫

fl dνi

)
l=1,2,...,q

, i = 1, 2, . . . , p,

are linearly dependent in Rq , that is, there is (ci)1≤i≤p ∈ Rp \ (0, 0, . . . , 0) such that∑
1≤i≤p

ciXi = 0. (2.2)

Let ν be the signed measure ν = ∑
1≤i≤p ciνi . Then equation (2.2) may be rewritten as

for all 1 ≤ l ≤ q,
∫
fl dν = 0.

The measures νi are invariant for 1 ≤ i ≤ p, so is ν. Therefore, we get

for all 1 ≤ l ≤ q, for all k ∈ Z,
∫
fl ◦ T k dν = 0. (2.3)

However, V ŨT
F

= C(X)/BT (X), so that for any ε > 0 and for any g ∈ C(X), we may
find h ∈ span(fl ◦ T k , 1 ≤ l ≤ q, k ∈ Z) and u ∈ BT (X) with ‖g − (h+ u)‖∞ < ε. By
equation (2.3), we have

∫
h dν = 0. As u is a coboundary, we have also

∫
u dν = 0.

Therefore, ∣∣∣∣
∫
g dν

∣∣∣∣ ≤
∣∣∣∣
∫
(h+ u) dν

∣∣∣∣ + ‖g − (h+ u)‖∞ < ε.

Since ε > 0 and g ∈ C(X) are chosen arbitrarily, we obtain
∫
g dν = 0, for any g ∈ C(X),

therefore, ν = 0. This contradicts the ergodicity of the measures νi for 1 ≤ i ≤ p.
Consequently, we have q ≥ p and, therefore, Mult(ŨT ) ≥ �Me(X, T ).

https://doi.org/10.1017/etds.2023.118 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.118


Multiplicity of topological systems 2837

Let us show now the converse inequality. Without loss of generality, we may assume
that p = �Me(X, T ) < Mult(ŨT ) = q < ∞. We let again:
• Me(X, T ) = {ν1, . . . , νp};
• F = f1, . . . , fq ∈ C(X)/BT (X) a generating family of ŨT with minimal cardinality.
Then the q vectors

Yl =
( ∫

fl dνi

)
i=1,...,p

, l = 1, . . . , q,

are linearly dependent in Rp, that is, there is (cl)1≤l≤q ∈ Rq \ (0, 0 . . . , 0) such that∑
1≤l≤q

clYl = 0.

Let g be the function g = ∑
1≤l≤q clfl . Then we have∫
g dνi = 0 for all 1 ≤ i ≤ p,

As previously mentioned, it implies that g lies in BT (X). This contradicts the minimality
of the generating family F .

Remark 2.7. It follows from the proof of Lemma 2.6 that if Me(X, T ) = {ν1, . . . , νp},
then f1, . . . , fp is a generating family of ŨT if and only if the matrix A =
(
∫
fj dνi)1≤i,j≤p ∈ Mp(R) is invertible.

By equation (2.1) and Lemma 2.6, we get the following corollary.

COROLLARY 2.8.

�Me(X, T ) ≤ Mult(T ).

2.4. Relating Mult(T ) and Mult(UT ). It follows from the definition of BT (X) that
the map

W : C(X) → BT (X), f �→ f ◦ T − f

has dense image and commutes with UT . By applying Lemma 2.1 with U1 = U2 = U and
E1 = C(X), E2 = BT (X), we obtain Mult(UT ) ≤ Mult(T ).

We show then in this subsection the following inequality.

PROPOSITION 2.9.

Mult(T ) ≤ Mult(ŨT )+ Mult(UT )− 1.

In particular, if (X, T ) is uniquely ergodic, Mult(T ) = Mult(UT ) by Lemma 2.6. Let us
now prove Proposition 2.9. For a family F of C(X), we write F the subset of C(X)/BT (X)
consisting of f = fmod BT (X) for f ∈ F . We start with a technical lemma.

LEMMA 2.10. Let (X, T ) be an invertible dynamical system with �Me(X, T ) < ∞. If F
is a family of C(X) such that F is generating for ŨT , then the constant function 1 belongs
to VF .
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Proof. Let Me(X, T ) = {ν1, . . . , νp}. By Remark 2.7, the matrix (
∫
fi dνj )1≤i,j≤p is

invertible. Then by replacing F = {f1, . . . , fp} by some invertible linear combinations,
we can assume

for all 1 ≤ i, j ≤ p,
∫
fi dνj = δi,j ,

where δi,j is equal to 1 if i = j and 0 otherwise. Let f = ∑p

i=1 fi . We have

for all 1 ≤ j ≤ p,
∫
f dνj =

∑
i

δi,j = 1,

and, therefore, for all ν ∈ M(X, T ),
∫
f dν = 1. (2.4)

We claim that (1/N)
∑N−1
n=0 f ◦ T n is converging uniformly to 1 as N goes to infinity. If

not, there would exist a positive number ε, a sequence (xk)k≥1, and an increasing sequence
(Nk)k≥1 of positive integers such that

∣∣∣∣ 1
Nk

Nk−1∑
n=0

f (T n(xk))− 1
∣∣∣∣ > ε for all k ≥ 1. (2.5)

After passing to a subsequence of (Nk)k≥1, we might assume that (1/Nk)
∑Nk−1
n=0 δT n(xk)

is converging to a T-invariant measure μ in the weak-∗ topology. It follows from
equation (2.5) that ∣∣∣∣

∫
f dμ− 1

∣∣∣∣ > ε > 0.

It is a contradiction to equation (2.4). Therefore, (1/N)
∑N−1
n=0 f ◦ T n is converging

uniformly to 1 as N goes to infinity, in particular, 1 ∈ VF .

Proof of Proposition 2.9. Let F = {f1, . . . , fp} and G = {g1, . . . , gq} be generating
families of ŨT and UT with p = Mult(ŨT ) and q = Mult(UT ). For 1 ≤ l ≤ p, take
fl ∈ C(X) to be a function such that fl = flmod BT (X), then let F = {f1, . . . , fl}. One
easily checks that F ∪ G is a generating family of UT . By Lemma 2.6, we may write
Me(X, T ) = {ν1, . . . , νp}. As in the proof of Lemma 2.10, we may assume without loss
of generality

∫
fi dνj = δi,j for any 1 ≤ i, j ≤ p. Let g′

1 = g1 + 1, and hence( ∫
g′

1 dνi

)
1≤i≤p

= (1, . . . , 1).

By Remark 2.7, the family {g′
1, fj : 1 < j ≤ p} is generating for ŨT . By Lemma

2.10, the constant functions, therefore also g1, belong to V{g′
1,fj : 1<j≤p}. Then

V{g′
1,fj ,gi : 1<j≤p, 1<i≤q} = V{g′

1,fj ,gi : 1<j≤p, 1≤i≤q} and f1 ∈ V{g′
1,fj ,gi : 1<j≤p, 1≤i≤q}.

Consequently, we get

V{g′
1,fj ,gi : 1<j≤p, 1<i≤q} ⊃ VF∪G = C(X).

We conclude that Mult(T ) ≤ p + q − 1 = Mult(ŨT )+ Mult(UT )− 1.
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3. Affine embedding of (M(X), T∗) in cubical shifts
For a topological system (X, T ), we denote by T∗ the action induced by T on the compact
set M(X), that is, T∗μ(·) = μ(T −1·) for all μ ∈ M(X). Then (M(X), T∗) is also a
topological system, which is called the induced system of (X, T ).

For d ∈ N, we let σd be the shift on the simplex ([0, 1]d)Z. An embedding of (X, T )
in ([0, 1]d)Z is a continuous injective map φ : X → ([0, 1]d)Z satisfying φ ◦ T = σd ◦ φ.
Existence of such an embedding is related to the mean dimension theory (we refer to
[Coo15] for an introduction). Such an embedding implies that the mean dimension of
(X, T ) is less than or equal to d. Moreover, the topological dimension (that is, Lebesgue
covering dimension) dTn of the set of n-periodic points then also satisfy (dTn /n) ≤ d .
Conversely, it has been shown that minimal systems with mean dimension less than d/2
can be embedded in the cubical shift σd [GT20, Lin99].

In this section, we consider affine embedding of the induced system (M(X), T∗) in
cubical shift σd , that is, the embedding φ : M(X) → ([0, 1]d)Z is affine. In particular, we
will relate the embedding dimension d to the multiplicity of (X, T ).

3.1. Case of finite sets. We first deal with the case of a finite set X. Then T is just a
permutation of X and M(X) is a finite dimensional simplex. We classify the possible
affine embedding of (M(X), T∗) in the following proposition.

PROPOSITION 3.1. Suppose X is a finite set and T is a permutation of X. Let τ1 · · · τk be
the decomposition of T into disjoint cycles τi of length ri for 1 ≤ i ≤ k.
(1) If there is a non-trivial common factor of ri for 1 ≤ i ≤ k, then there is an affine

embedding of (M(X), T∗) in (([0, 1]k)Z, σk). Such k is sharp.
(2) If there is no non-trivial common factor of ri for 1 ≤ i ≤ k, then there is an affine

embedding of (M(X), T∗) in (([0, 1]k−1)Z, σk−1). Such k − 1 is sharp.

Proof. For each 1 ≤ i ≤ k, we fix a point ei ∈ X in each cycle τi , that is, {T j ei : 0 ≤
j ≤ ri} = X. Notice that there are continuous maps ae : M(X) → [0, 1], e ∈ X, with∑
e∈X ae = 1 satisfying μ = ∑

e∈X ae(μ)δe for all μ ∈ M(X). (1) Assume there is a
non-trivial common factor p of ri for 1 ≤ i ≤ k. Then

dim(Fix(T p∗ )) = kp − 1,

where Fix(T p∗ ) = {μ ∈ M(X) : T p∗ μ = μ}. Since p > 1 and dim(Fix(σpk−1)) = kp − p,
the dynamical system (M(X), T∗) cannot embed in (([0, 1]k−1)Z, σk−1).

Now we construct the embedding of (M(X), T∗) in (([0, 1]k)Z, σk). We define first a
dynamical embedding 
 of the set of extreme points in M(X), which is identified with X
through the map x �→ δx , into ([0, 1]k)Z by letting

for all i = 1, . . . , k, for all l ∈ Z, (
(T lei))i = σ l((10ri−1)∞);

the other components (
(T lei))j , j �= i, being chosen to be equal to the 0∞ sequence.
Then we may extend 
 affinely from the set of extreme points on M(X) by letting


(μ) =
∑
e∈X

ae(μ)
(δe).
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It is easy to check that 
 is injective, which deduces a dynamical embedding (M(X), T∗)
in (([0, 1]k)Z, σk).

(2) Assume there is no non-trivial common factor of ri for 1 ≤ i ≤ k. We have that
k − 1 numbers qi := (rk , ri), 1 ≤ i ≤ k − 1 are co-prime, where (a, b) is the highest
common factor of a and b. We define first a continuous map 
 of the set of extreme
points in M(X) into ([0, 1]k−1)Z by letting

for all l ∈ Z, (
(T lek))j = σ l((10ri−1)∞) for all 1 ≤ j ≤ k − 1,

and

for all 1 ≤ i ≤ k − 1, for all l ∈ Z, (
(T lei))i = σ l((10ri−1)∞);
for all j �= i, for all l ∈ Z, (
(T lei))j = 0∞.

Then we may extend 
 affinely from the set of extreme points on M(X) by letting


(μ) =
∑
e∈X

ae(μ)
(δe).

It remains to show that 
 is injective. Let μ = ∑
e∈X beδe and μ′ = ∑

e∈X b′
eδe. Suppose


(μ) = 
(μ′) =
∑
e∈X

ae
(δe) = (ci,j )1≤i≤k−1,j∈Z.

Since qi := (rk , ri), then there are integers si and ti such that siri − tirk = qi . Let

ui,l = siri + l = tirk + qi + l.

It implies that

b′
T lek

− b′
T l+qi ek

= bT lek − bT l+qi ek = ci,l − ci,ui,l .

Since qi , 1 ≤ i ≤ k − 1 are co-prime, there are integers wi , 1 ≤ i ≤ k − 1 such that∑k−1
i=1 wiqi = 1. Since

(bek − bT w1q1ek )+ (bT w1q1ek − bT w1q1+w2q2ek
)

+ · · · + (bT w1q1+w2q2+···+wk−2qk−2ek
− bT w1q1+w2q2+···+wk−1qk−1ek

) = bek − bT ek ,

we have

bek − bT lek = b′
ek

− b′
T lek

for all l ∈ Z.

Since
∑
e∈X be = ∑

e∈X b′
e = 1, we conclude that bek = be′k and consequently bei =

be′i by bek + bei = b′
ek

+ b′
ei

= ci,0 for 1 ≤ i ≤ k − 1. It means that μ = μ′ and 
 is
injective.

Remark 3.2. For such a permutation T, we have Mult(T ) = �Me(X, T ) = k, with k being
the number of cycles in the decomposition of T.

3.1.1. General case. We consider now a general topological system and relate the
dimension of the cubical shift in an affine embedding with the multiplicity of (X, T ).
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THEOREM 3.3. Let (X, T ) be a topological system. If Mult(T ) is equal to d, then there is
an affine embedding of (M(X), T∗) in (([0, 1]d)Z, σd). Conversely, if (M(X), T∗) embeds
into (([0, 1]d)Z, σd), then:
• either �Me(X, T ) ≤ d and Mult(T ) ≤ d;
• or �Me(X, T ) = d + 1 and Mult(T ) = d + 1.

Proof. First, notice that any affine equivariant map 
 : (M(X), T∗) → (([0, 1]d)Z, σd)
is of the form


f : μ �→
( ∫

f ◦ T k dμ
)
k∈Z

for some continuous function f = (f1, . . . , fd) : X → [0, 1]d .
Assume the topological multiplicity Mult(X, T ) is equal to d, that is, there is a

family F = {f1, . . . , fd} of continuous functions such that VF = C(X). Let us show
the associated map 
f is injective. Let μ1, μ2 ∈ M(X) with 
f (μ1) = 
f (μ1), that
is,

∫
fi ◦ T k dμ1 = ∫

fi ◦ T k dμ1 for any i = 1, . . . , d and any k ∈ Z. Then by density
of span(fi ◦ T k , i, k) in C(X), we have∫

g dμ1 =
∫
g dμ1 for all g ∈ C(X),

which implies μ1 = μ2. Therefore, we get the injectivity of 
f .
Conversely, assume 
f is injective for f = (f1, . . . , fd) : X → [0, 1]d . Let F =

{1, f1, . . . , fd}. We claim that VF = C(X). Then if �Me(X, T ) ≤ d , we get by injectiv-
ity of 
f that there exists A ⊂ {1, 2, . . . , d} with �A = �Me(X, T ) such that the matrix
(
∫
fi dν)i∈A,ν∈Me(X,T ) is invertible. Then by Remark 2.7, the family F \ {1} is generating

for ŨT and consequently VF = VF\{1} by Lemma 2.10. If �Me(X, T ) = d + 1, then we
only get Mult(T ) = d + 1.

It remains to show our claim. Assume to the contrary that VF �= C(X). Then by the
Riesz theorem, there is a signed finite measure μ vanishing on each function in F. Let
μ = μ+ − μ− be the Jordan decomposition of μ (that is, the measures μ+ and μ− are two
finite positive measures which are mutually singular). Evaluating on the constant function
1, we get μ+(X) = μ−(X). Then by rescaling, we may assume both μ− and μ+ belong to
M(X). Finally, we get 
f (μ+) = 
f (μ

−), and therefore μ+ = μ− by injectivity of 
f
contradicting the mutual singularity of μ+ and μ−.

3.2. Affine embeddings and Lindenstrauss–Tsukamoto conjecture. Lindenstrauss and
Tsukamoto [LT14] have conjectured that any topological system with mean dimension
mdim(X, T ) less than d/2 and such that the dimension dTn of the set of n-periodic points
satisfies (dTn /n) < d/2 for any n ∈ N may be embedded in the shift over ([0, 1]d)Z. As
mentioned above, it is known for minimal systems. We consider here affine systems, that
is, affine maps of a simplex. Such maps are never minimal, as they always admit at least
one fixed point.

The example below shows that the Lindenstrauss–Tsukamoto conjecture does not hold
true in the affine category. Recall that an ergodic system (X, f , B, μ) has a countable
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Lebesgue spectrum when there is a countable family (ψn)n∈N in L2
0(μ) such that ψn ◦ f k ,

k ∈ Z, n ∈ N form a Hilbert basis of L2
0(μ).

COROLLARY 3.4. There is an affine system with a unique periodic (fixed) point and
zero-topological entropy (in particular, mdim(T ) = 0 and dTn = 0 for all n ≥ 1) which
does not embed affinely in (([0, 1]k)Z, σ) for any k ≥ 1.

Proof. There exists an ergodic measure-preserving system (Y , A, f , μ) with zero entropy
and countable Lebesgue spectrum [NP66, Par53] (in particular, totally ergodic, that is,
f n is ergodic for any n ∈ Z). Then by the Jewett–Krieger theorem, there is a uniquely
ergodic topological system (X, T ) with measure ν realizing such a measure-preserving
system. All powers of T are uniquely ergodic as μ was chosen totally ergodic. Moreover,
the topological entropy of T, thus that of T∗ is zero by Glasner and Weiss [GW95]. As the
unique invariant measure ν has countable Lebesgue spectrum, the topological multiplicity
of (X, T ) is infinite by Lemma 2.4. We conclude with Theorem 3.3.

3.3. Application: zero topological entropy. A classical result in ergodic theory states
that any ergodic system (X, f , B, μ) with positive entropy has a countable Lebesgue
spectrum. In particular, [h(μ) > 0] ⇒ [Mult(μ) = ∞]. Then a proposition follows from
the variational principle for the topological entropy.

PROPOSITION 3.5. Any topological system (X, T ) with Mult(T ) < ∞ has zero topologi-
cal entropy.

We may also give a purely topological proof of Proposition 3.5 based on mean
dimension theory. More precisely, we use the main result of [BS22], which states the
following.

THEOREM 3.6. [BS22] For any topological system (X, T ) with positive topological
entropy, the induced system (M(X), T∗) has infinite topological mean dimension.
Therefore,

htop(T ) > 0 ⇔ mdim(T∗) > 0 ⇔ mdim(T∗) = ∞.

Topological proof of Proposition 3.5. Assume Mult(T ) = d is finite. Then by
Theorem 3.3, the induced system (M(X), T∗) embeds in the cubical shift (([0, 1]d)Z, σ).
In particular, the mean dimension of T∗ is less than or equal to the mean dimension of
the shift (([0, 1]d)Z, σ), which is equal to d. By Theorem 3.6, it implies that T has zero
topological entropy.

4. Baxter’s lemma in Banach spaces
In [Bax71], Baxter gave a useful criterion to show a simple spectrum of ergodic
transformations. It may be extended more generally to bound the multiplicity of the
spectrum (see, e.g., [Que10, Proposition 2.12]). We generalize this criterion for operators
defined on a Banach space. It will be used in the next section to estimate the topological
multiplicity in some examples.
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LEMMA 4.1. Let B be a separable Banach space and L(B) be the set of bounded linear
operators on B. We consider an invertible isometry U ∈ L(B). If (Fn)n is a sequence of
finite subsets in H satisfying for all f ∈ B

inf
Fn∈VFn

‖Fn − f ‖ n→∞−−−→ 0, (4.1)

then there exists a family F ⊂ B with �F ≤ supn �Fn and B = VF .

Classical proofs of Baxter’s lemma strongly used the Hilbert structure. Here we use a
Baire argument as in [Fog02, Lemma 5.2.10]. Note also that we do not require the sequence
of vector spaces (VFn)n to be non-decreasing. Observe finally that it is enough to assume
equation (4.1) for f in S, where S spans a dense subset of B.

Proof. Let m = supn �Fn. If m = ∞, it is trivial. Assume m < ∞. By passing to a
subsequence, we assume �Fn = m for all n. Let B(m) be the space of finite subsets of
H whose cardinality is smaller than or equal to m. When endowed with the Hausdorff
distance dHau, the space B(m) is a metric space, which is complete and separable. We
assume the following claim, which we prove later on.

CLAIM 4.2. For any ε > 0 and F ∈ B(m), the set

O(F , ε) =
{
G ∈ B(m) for all f ∈ F inf

G∈VG
‖G− f ‖ < ε

}
is open and dense.

Let (gq)q∈N be a countable dense family in B. Let Gq be the finite family {g1, . . . , gq}.
For any p ∈ N∗ and any q ∈ N, we consider the open and dense set

Op,q := O(Gq , 1/p) =
{
G ∈ B(m) for all g ∈ Gq inf

G∈VG
‖G− g‖ < 1/p

}
.

According to Baire’s theorem, the intersection
⋂
p,q Op,q is not empty. Clearly, any family

F in the intersection satisfies VF = B. It remains to prove Claim 4.2.

Proof of Claim 4.2. The set O(F , ε) is open. We focus on the denseness property.
Pick arbitrary δ > 0 and H ∈ B(m). We will show that there is H′ ∈ O(F , ε) with
dHau(H, H′) < δ. As the elements of B(m) with cardinality m are dense in B(m), we can
assume without loss of generality that �H = m. By assumptions on the sequence Fn, there
exists n such that

for all f ∈ F , inf
Fn∈VFn

‖Fn − f ‖ < ε, (4.2)

for all h ∈ H, inf
Fn∈VFn

‖Fn − h‖ < δ. (4.3)

We write H = {h1, h2, . . . , hm} and Fn = {f1, f2, . . . , fm}. By equation (4.3), there are
polynomials (Pi,j )1≤i,j≤m in R[X] and a non-negative integer p such that

for all i = 1, . . . , m,
∥∥∥∥hi −

m∑
j=1

U−pPi,j (U)fj
∥∥∥∥ < δ. (4.4)
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Let Q ∈ R[X] be the polynomial given by the determinant of the matrix M =
(Pi,j )1≤i,j≤m ∈ Mm(R[X]). The spectrum Sp(U) of U is contained in the unit circle.
In particular, for arbitrarily small λ ∈ R, the polynomial Q(· + λ) does not vanish on
Sp(U). Hence, by replacing Pi,j by Pi,j (· + λ), we may assume that Q does not vanish on
the spectrum of U. Then Q(U) = ∏

λ, Q(λ)=0(U − λId) is invertible and its inverse may
be approximated by polynomials in U and U−1, because for λ with Q(λ) = 0, we have
(U − λId)−1 = −∑

k∈N(Uk/λk+1) for |λ| > 1 and (U − λId)−1 = −∑
k∈N(U−(k+1)/λk)

for |λ| < 1 (these sequences are normally convergent in L(B) as we assume ‖U‖ =
‖U−1‖ = 1). Let H′ = {h′

1, h′
2, . . . , h′

m} with h′
i = ∑m

j=1 U
−pPi,j (U)fj . We have

Fn = M(U)−1UpH′

= tcom M(U)UpQ(U)−1H′.

Then from the above observations, we get

Fn ⊂ VH′ .

In particular, VFn ⊂ VH′ and it follows finally from equation (4.2) that H′ ∈ O(F , ε),
that is,

for all f ∈ F , inf
H ′∈VH′

‖H ′ − f ‖ < ε.

This completes the proof as we have dHau(H, H′) < δ by equation (4.4), where H and
δ have been chosen arbitrarily.

5. Cantor systems with finite topological rank
Roughly speaking, an ergodic measure-preserving system is of finite rank r when it may
be obtained by cutting and stacking with r Kakutani–Rohlin towers. For ergodic systems,
Baxter’s lemma implies that the ergodic multiplicity is less than or equal to the rank.
Topological rank has been defined and studied for minimal Cantor systems (see e.g.
[DDMP21] and the references therein). For such systems, we show now with Lemma 4.1
that the same inequality holds for the topological quantities: the topological multiplicity is
less than or equal to the topological rank.

First we recall the definition of topological rank. Let (X, T ) be a minimal Cantor
system. A Kakutani–Rohlin partition of X is given by

T = {T −jB(k) : 1 ≤ k ≤ d , 0 ≤ j < h(k)},
where d , h(k), 1 ≤ k ≤ d are positive integers and B(k), 1 ≤ k ≤ d are clopen subsets of
X such that

d⋃
k=1

T −h(k)B(k) =
d⋃
k=1

B(k).

The base of T is the set B(T ) = ⋃d
k=1 B(k). A sequence of Kakutani–Rohlin partitions

Tn = {T −jBn(k) : 1 ≤ k ≤ dn, 0 ≤ j < hn(k)}, n ≥ 1,
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is nested if:
(1) T0 is the trivial partition, that is, d0 = 1, h0 = 1 and B0(1) = X;
(2) B(Tn+1) ⊂ B(Tn);
(3) Tn+1 � Tn;
(4) �(

⋂
n≥0 B(Tn)) = 1;

(5)
⋃
n≥1 Tn spans the topology of X.

Moreover, it is primitive if for all n ≥ 1, there exists N > n such that for all 1 ≤ k ≤ dN

and for each x ∈ T −(hN(k)−1)BN(k),

{T i(x) : 0 ≤ i ≤ hN(k)− 1} ∩ Bn(j) �= ∅ for all 1 ≤ j ≤ dn.

Following [DDMP21], a minimal Cantor system is of topological rank d if it admits a
primitive sequence of nested Kakutani–Rohlin partitions with dn ≤ d for all n ∈ N.

THEOREM 5.1. Let (X, T ) be a minimal Cantor system with topological rank d. Then
Mult(X, T ) ≤ d .

Proof. Let (Tn)n∈N be the primitive sequence of nested Kakutani–Rohlin partitions with
dn ≤ d for all n ∈ N. Let

Fn = {χBn(k) : 1 ≤ k ≤ dn}.
Since

⋃
n≥1 Tn spans the topology of X, we have

for all f ∈ C(X), inf
Fn∈VFn

‖Fn − f ‖ n→∞−−−→ 0.

It follows from Lemma 4.1 and dn ≤ d for all n ∈ N that Mult(X, T ) ≤ d .

Remark 5.2. It was shown in [DDMP21] that the Thue–Morse subshift has topological
rank 3. By Theorem 5.1, the Thue–Morse subshift has therefore topological multiplicity
at most 3. However, we will prove in Proposition 6.7 that the Thue–Morse subshift has
simple topological multiplicity.

Examples of ergodic systems with rank r and multiplicity m have been built for any
1 ≤ m ≤ r in [KL97]. We then propose the following question.

Question 5.3. Can one build for any 1 ≤ m ≤ r a minimal Cantor system with topological
multiplicity m and topological rank r?

6. Examples of finite topological multiplicity
An invertible dynamical system is called topological simple or has a simple topological
spectrum if Mult(T ) = 1.

6.0.1. Minimal rotation on compact groups. Let G be a compact abelian group. Denote
by Ĝ the dual group of G and by λ the Haar measure on G. For f ∈ C(G), we write f̂ the
Fourier transformation of f.
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PROPOSITION 6.1. Any minimal translation τ on a compact abelian group G is
topologically simple.

Proof. We claim that any f ∈ C(G) with f̂ (χ) �= 0 for all χ ∈ Ĝ is cyclic, that is, the
vector space spanned by f ◦ τ k , k ∈ N is dense in C(X). As characters of a compact
abelian group separate points, it is enough to show by the Stone–Weierstrass theorem that
any character belongs to the complex vector space spanned by f ◦ τ k , k ∈ N. However, for
all χ ∈ Ĝ, we have

f̂ (χ)χ = χ ∗ f =
∫
f (· − y)χ(y) dλ(y).

Then with the function f being uniformly continuous, there are functions of the form∑
k f (· − yk)χ(yk) arbitrarily close to f̂ (χ)χ for the supremum norm. By minimality

of τ , there are integers lk ∈ N such that f ◦ τ lk and f (· − yk) are arbitrarily closed. It
concludes the proof.

6.0.2. Sturmian subshift. A word u ∈ {0, 1}Z is called Sturmian if it is recurrent under
the shift σ , and the number of n-words in u equals n+ 1 for each n ≥ 1. Take the shift-orbit
closure Xu = Oσ (u). The corresponding subshift (Xu, σ) is called a Sturmian subshift.
Sturmian sequences are symbolic representation of circle irrational rotations.

We first recall some standard notation in symbolic dynamics. For a subset Y of AZ

with A being a finite alphabet, we let Ln(Y ) be the number of n-words appearing in the
sequences of Y. Then for w ∈ Ln(Y ), we let [w] be the associated cylinder defined as
[w] := {(xn)n∈Z ∈ Y : x0 · · · xn−1 = w}. The indicator function of a subset E of X will
be denoted by χE .

PROPOSITION 6.2. Any Sturmian subshift has simple topological spectrum.

Proof. Let u be a Sturmian sequence. Let

Fn = span{χ[w] : w ∈ Ln(u)}.
It follows that

C(Xu) = V⋃
n Fn

.

Notice dim(Fn) = �Ln(u) = n+ 1. We let f : Xu → R be the continuous function
defined as f : x = (xn)n �→ (−1)x0 . Let

Gn = span{1, f ◦ σk : 0 ≤ k ≤ n− 1}.
Clearly, Gn ⊂ Fn. To prove that (Xu, σ) has simple topological spectrum, it is sufficient
to show dim(Gn) = n+ 1. Thus, it is enough to show the functions {R1, f ◦ σk : 0 ≤
k ≤ n− 1} are linearly independent. If not, for some n, there exists a non-zero vector
(a0, a1, . . . , an) such that

a0(−1)x0 + a1(−1)x1 + · · · + an−1(−1)xn−1 + an = 0 for all x ∈ Xu.

https://doi.org/10.1017/etds.2023.118 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.118


Multiplicity of topological systems 2847

Since �Ln−1(u) > �Ln−2(u), we can find distinct x, x′ ∈ Xu such that x|n−2
0 = x′|n−2

0 but
xn−1 �= x′

n−1. It follows that an−1 = 0. Since for each 0 ≤ k ≤ n− 2 we can always find
y, y′ such that y|k−1

0 = y′|k−1
0 but yk �= y′

k , we obtain that an−2 = an−3 = · · · = a0 = 0.
Finally, we get an = 0. This is a contradiction. Therefore, we conclude that dim(Gn) =
n+ 1, then Fn = Gn. Then by Lemma 4.1, (Xu, σ) has simple topological spectrum.

6.0.3. Homeomorphism of the interval. Estimating the multiplicity of non-zero dimen-
sional systems is difficult in general. Below we focus on homeomorphisms of the interval
(see [Jav19] for related results on the circle). We use the following result due to Atzmon
and Olevskii [AO96]. We denote by C0(R) the set of continuous map on R with zero limits
in ±∞. For f ∈ C0(R) and n ∈ Z, we let fn = f (· + n) be the translation of f by n.

THEOREM 6.3. [AO96] There exists g ∈ C0(R) such that the vector space spanned by gn,
n ∈ N is dense in C0(R).

In particular, the operator V : C0(R) �, f �→ f (· + 1), is cyclic. A Borel set S of R
is called a set of uniqueness if the sets Sn := (S + 2πn) ∩ [−π , π ], n ∈ Z satisfy the
following properties:
(1) Sn, n ∈ Z, are pairwise disjoint;
(2) Leb(Sn ∩ U) > 0 for any n ∈ Z and any open set U of [−π , π ];
(3) Leb(S) < ∞,
where Leb denotes the Lebesgue measure on R.

Atzmon and Olevskii proved for any set of uniqueness S (such sets exist!), the conclusion
of Theorem 6.3 holds true with g being the the Fourier transform of the indicator function
of S. Let us just remark that if S is a set of uniqueness, then

Sl =
⋃
n∈Z
(Snk+l + 2πk), 1 ≤ l ≤ k,

are k disjoints sets of uniqueness. Let C0(R; C) be the set of continuous maps on C with
zero limits in infinity.

LEMMA 6.4. The operator V : C0(R; C)k �, (fi)1≤i≤k �→ (fi(· + 1))1≤i≤k is cyclic. In
particular, the operator U : C0(R)

k �, (fi)1≤i≤k �→ (fi(· + 1))1≤i≤k is cyclic.

Proof. Let S, Sl , 1 ≤ l ≤ k, be sets of uniqueness as above. By following [AO96], we
show that the vector space generated by the translates of g := (χ̂Sl )1≤l≤k is dense in
C0(R; C)k with χ̂Sl the Fourier transform of the indicator function χSl of Sl . It follows
that the translates ofRe(g) are dense in C0(R)

k . Let μ = (μl)1≤l≤k be a complex bounded
measure with

〈V n(g), μ〉 =
∑

1≤l≤k

∫
(χ̂Sl )n dμl = 0

for all n ∈ Z. It is enough to prove μl = 0 for all 1 ≤ l ≤ k. By the Plancherel–Parseval
formula, we have
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∫
(χ̂Sl )n dμl =

∫
(̂χ̂Sl )n(t)μ̂l(−t) dt = −

∫
χSl (t)e

−int μ̂l(t) dt .

Therefore, we have ∑
1≤l≤k

∫
χSl (t)μ̂l(t)e

−int dt = 0

for all n. However, this term is just the nth coefficient of the function of L1([−π , π ])
given by

∑
m∈Z(

∑
1≤l≤k χSl μ̂l)(· + 2πm), which should therefore be 0. As the sets

(Sl + 2πm) ∩ [−π , π ], m ∈ Z, are pairwise disjoint, each term of the previous sum
should be zero; that is, (χSl μ̂l)(x + 2πk) = 0 for all m, l and for Lebesgue almost every
x ∈ [−π , π ]. By Property (2) in the definition of a set of uniqueness, we conclude μ̂l = 0.
Therefore, μl = 0 for each 1 ≤ l ≤ k and consequently the translates of g are dense in
C0(R; C)k .

PROPOSITION 6.5. Let f : [0, 1] � be a homeomorphism of the interval. Then

Mult(f ) = �Me([0, 1], f ).

Proof. We first deal with the case of an increasing homeomorphism. The ergodic measures
of f are the Dirac measures at these fixed points. Notice that f has at least two fixed points, 0
and 1. If it has infinitely many fixed points, then Mult(Uf ) ≥ �Me([0, 1], f ) = ∞. Now
assume it has finitely many fixed points. Let 2 ≤ k + 1 < +∞ be the number of fixed
points. Since ϕ(x)− ϕ ◦ f (x) = 0 for any continuous function ϕ ∈ C(X) and any fixed
point x, the space Bf ([0, 1]) is the set of real continuous maps on the interval which
vanishes at the fixed points. It follows that the operator Uf is spectrally conjugate to
V : C0(R)

k �, (fi)1≤i≤k �→ (fi(· + 1))1≤i≤k . By Lemma 6.4, we have Mult(Uf ) = 1.
It follows then from Propositions 2.9 and 2.6 that

�Me([0, 1], f ) ≤ Mult(Uf ) ≤ �Me([0, 1], f )+ Mult(Uf )− 1 = �Me([0, 1], f ).

(6.1)

It remains to consider the case of a decreasing homeomorphism f. Let 0 < a < 1 be
the unique fixed point of f. Then f 2 : [0, a] � is an increasing homeomorphism. Let
0 = x1 < x2 < · · · < xk = a be the fixed points of f 2|[0,a]. Then the ergodic measures
of f are the atomic periodic measures δa and 1

2 (δxi + δf (xi )) for i = 1, . . . , k − 1. In
particular, we have k = �Me([0, 1], f ). From the previous case, there is a generating
family G = {g1, . . . , gk} for f 2 : [0, a] �. Let h ∈ C([0, 1]). For any ε > 0, there are
N ∈ N, al,n and bl,n, for l = 1, . . . , k and |n| ≤ N , (depending on ε), such that∥∥∥∥h−

∑
l,n

al,ngl ◦ f 2n
∥∥∥∥

[0,a],∞
< ε (6.2)

and ∥∥∥∥h ◦ f−1 −
∑
l,n

bl,ngl ◦ f 2n − h(a)

∥∥∥∥
[0,a],∞

< ε, (6.3)
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where ‖g‖[0,a],∞ = supx∈[0,a] |g(x)|. We consider the extension g̃l of gl to [0, 1] with
g̃l = gl(a) on [a, 1]. We check now that G̃ = {g̃1, . . . , g̃k} is generating for f. It follows
from equations (6.2) and (6.3) at x = a that∣∣∣∣h(a)−

∑
l,n

al,ngl(a)

∣∣∣∣ < ε and
∣∣∣∣ ∑
l,n

bl,ngl(a)

∣∣∣∣ < ε. (6.4)

Observe that

h = h|[0,a] + (h ◦ f−1|[0,a]) ◦ f |[a,1].

Combining equation (6.4) with equation (6.2), we obtain that∥∥∥∥h−
∑
l,n

al,ng̃l ◦ f 2n −
∑
l,n

bl,ng̃l ◦ f 2n+1
∥∥∥∥

[0,a],∞

=
∥∥∥∥h−

∑
l,n

al,ngl ◦ f 2n −
∑
l,n

bl,ngl(a)

∥∥∥∥
[0,a]∞

< 2ε.

Similarly, combining equation (6.4) with equation (6.3), we get∥∥∥∥h−
∑
l,n

al,ng̃l ◦ f 2n −
∑
l,n

bl,ng̃l ◦ f 2n+1
∥∥∥∥

[a,1],∞

=
∥∥∥∥h−

∑
l,n

al,ngl(a)−
∑
l,n

bl,ngl ◦ f 2n+1
∥∥∥∥

[a,1]∞

≤
∣∣∣∣h(a)−

∑
l,n

al,ngl(a)

∣∣∣∣ +
∥∥∥∥h−

∑
l,n

bl,ngl ◦ f 2n+1 − h(a)

∥∥∥∥
[a,1]∞

< 2ε.

Therefore, we have∥∥∥∥h−
∑
l,n

al,ng̃l ◦ f 2n −
∑
l,n

bl,ng̃l ◦ f 2n+1
∥∥∥∥∞

< 2ε.

We conclude that G̃ is generating for f as ε > 0 and h ∈ C([0, 1]) have been chosen
arbitrarily.

Question 6.6. What is the topological multiplicity of a Morse–Smale diffeomorphism?

6.0.4. Thue–Morse subshift. We give now an example of a uniquely ergodic system with
mixed spectrum and simple topological multiplicity. The Thue–Morse subshift Xζ is the
bilateral subshift associated to the substitution ζ(0) = 01 and ζ(1) = 10, that is, Xζ = Xu

with u being the infinite word of {0, 1}Z given by · · · u2u1u0u0u1u2 · · · with u0u1u2 · · ·
being the unique fixed point of the substitution v0v1v2 · · · �→ ζ(v0)ζ(v1)ζ(v2) · · · . This
subshift is known to be a minimal uniquely ergodic system with simple mixed spectrum
(for the Koopman operator Uσ on L2

0(ν) with ν being the unique invariant probability
measure) [Kwi81, Mic76]. The continuous part of its spectrum is singular with respect to
the Lebesgue measure [Kak72]. The map τ : Xζ → Xζ , (xn)n∈Z �→ (1 − xn)n∈Z defines
an involution of Xζ . As τ commutes with σ , the measure ν is also τ -invariant.
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THEOREM 6.7. The Thue–Morse subshift is topologically simple.

For any n ∈ N, we let Fn = {χ[ζ n(i)] : i ∈ {0, 1}} and fn = χ[ζ n(0)]. To prove
Theorem 6.7, we first show the following lemma which states that the space VFn is
cyclic.

LEMMA 6.8.

VFn = V{fn}.

Proof. Fix n ∈ N. Notice that the (simple) point spectrum of Uσ consists in the powers
of 2. In particular, the system (ζ n(X), σ 2n , B, ν) is ergodic, then the restriction of
σ to ζ n(X) is uniquely ergodic. Consequently, the Birkhoff sum 1

p

∑
0≤k<p fn ◦ σk2n

is converging uniformly to
∫
fn dν = ν([ζ n(0)]) on ζ n(X), when p goes to infinity.

However, ν([ζ n(0)]) = ν([ζ n(1)]) �= 0. It follows that χ[ζ n(X)] ∈ V{fn}. Since χζn(X) =
fn + χ[ζ n(1)], we conclude that the continuous function χ[ζ n(1)] belongs to V{fn}.

We are now in a position to prove Theorem 6.7. We make use of the following notation.
For a point x = (xn)n∈Z, we write it as

x = · · · x−2x−1.x0x1 · · · .

Proof of Theorem 6.7. According to Lemma 6.8, it is enough to check the assumptions of
Lemma 4.1 with (Fn)n. As the sequence of vectors spaces (VFn)n∈N is non-decreasing,
one only needs to show

⋃
n VFn = C(Xζ ). If not, there would be distinct probability

measures μ± with

μ+(σ k[ζ n(i)]) = μ−(σ k[ζ n(i)]) for all k, n for all i = 0, 1.

Let E = {ζ∞(i).ζ∞(j) : i, j ∈ {0, 1}}. Then for every n,

Pn := {σk[ζ n(i)], i = 0, 1, 0 ≤ k < 2n}
is a partition of Xζ \Oσ (E) where Oσ (E) is the orbit of E under σ , that is, Oσ (E) =
{σk(x) : x ∈ E, k ∈ Z}. For any open set U ⊃ Oσ (E), we will show that μ+|Xζ \U =
μ−|Xζ \U . Obviously, we have

diam(Pn(x))
n→∞−−−→ 0 for all x ∈ Xζ \ U .

Thus, {Pn ∩ (Xζ \ U)}n∈N generates Borel σ -algebra on Xζ \ U . Therefore, we have
μ+|Xζ \U = μ−|Xζ \U . Since U is chosen arbitrarily, we obtain that

μ+|Xζ \Oσ (E) = μ−|Xζ \Oσ (E). (6.5)

Let

Ei = {ζ∞(j).ζ∞(i) : j = 0, 1} and Ej = {ζ∞(j).ζ∞(i) : i = 0, 1},
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which form a partition of E. Then by μ+([ζ n(i)]) = μ−([ζ n(i)]) for all n, we have
μ+(Ei) = μ−(Ei). Similarly, we have μ+(Ej ) = μ−(Ej ). Observe that

ζ∞(0).ζ∞(1) =
⋂
n

[ζ 2n(0).ζ 2n(1)].

It follows that μ+(ζ∞(0).ζ∞(1)) = μ−(ζ∞(0).ζ∞(1)). Thus, we get

μ+|E = μ−|E .

Similarly, we obtain μ+|σk(E) = μ−|σk(E) for all k ∈ Z. It implies that μ+|Oσ (E) =
μ−|Oσ (E). Combining this with equation (6.5), we conclude that μ+ = μ−, which is a
contradi- ction.

7. Subshifts with linear growth complexity
We consider a subshift X ⊂ AZ with letters in a finite alphabet A. For x ∈ AZ, we denote
by x = (xn)n∈Z for xn ∈ A. Let Ln(X) ⊂ An be the finite words of X of length n, that is,
Ln(X) = {xkxk+1 . . . xk+n−1 : x ∈ X, k ∈ Z}. The word complexity of X is given by

for all n ∈ N, pX(n) = �Ln(X).

We suppose that X is aperiodic and has linear growth, that is, for some k ∈ N∗,

lim inf
n

pX(n)

n
≤ k. (7.1)

Boshernitzan [Bos92] showed that such a subshift admits at most k ergodic measures.
By [DDMP21, Theorem 5.5], such subshifts, when assumed to be moreover minimal,
have topological rank less than or equal to (1 + k�A2)2(k+2). We show in this section
the following upper bound on the topological multiplicity.

THEOREM 7.1. Any aperiodic subshift X with lim infn→∞(pX(n)/n) ≤ k has topological
multiplicity less than or equal to 2k.

One may wonder if the upper bound in Theorem 7.1 is sharp.

Question 7.2. Is an aperiodic subshift X with lim infn→∞(pX(n)/n) = 1 topologically
simple?

To prove Theorem 7.1, we define some notation. Let Qn be the subset of Ln(X) given
by words w such that there are several letters a ∈ A withwa ∈ Ln+1(X). We also letQ′

n+1
be the (n+ 1)-words wa as above. Clearly, we have

�Qn ≤ pX(n+ 1)− pX(n) and �Q′
n+1 = �Qn + pX(n+ 1)− pX(n). (7.2)

Through this section, we always assume the subshift is aperiodic and satisfies the linear
growth equation (7.1).

LEMMA 7.3. The subset of integers

N = {n ∈ N : pX(n+ 1) < (k + 1)(n+ 1) and pX(n+ 1)− pX(n) ≤ k}
is infinite.
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For the sake of completeness, we reproduce the proof, which is contained in [Bos84,
Theorem 2.2].

Proof. By equation (7.1), we have

lim inf
n

(pX(n)− (k + 1)n) = −∞.

It follows that

M =
{
n∈N :pX(n+ 1)− (k + 1)(n+ 1)≤ min

{
0, min

1≤m≤n{pX(m)− (k + 1)m}
}

− 1
}

is an infinite set. For any n ∈ M, we have

pX(n+ 1)− pX(n) ≤ (k + 1)(n+ 1)− (k + 1)n− 1 = k.

However, for any n ∈ M, we get

pX(n+ 1) ≤ (k + 1)(n+ 1)− 1.

This implies that M ⊂ N . Therefore, the set N is infinite.

LEMMA 7.4. [Bos84, Lemma 4.1] For any n ∈ N and m ≥ (k + 2)(n+ 1), any word
w ∈ Lm contains a subword in Qn.

For the sake of completeness, we provide a proof here.

Proof. We prove it by contradiction. Assume in contrast that all (m− n+ 1) n-subwords
of w do not belong to Qn. That means that each of these n-blocks determines uniquely the
next letter. Sincem− n+ 1 ≥ 2(k + 1)n > pX(n), at least one n-word appears more than
one time as a subword of w. Therefore, X contains a periodic point, which contradicts our
assumption.

Now we show that any cylinder of length less than n can be decomposed as the cylinders
of elements in Q′

n+1 after translations.

LEMMA 7.5. Let n ∈ N . Any cylinder [w] with length of w less than n may be written
uniquely as a finite disjoint union of sets of the form σp[q ′

n+1] with p ∈ N, q ′
n+1 ∈ Q′

n+1,
such that σ t [q ′

n+1] ∩ [qn] = ∅ for any 0 < t < p and any qn ∈ Qn.

Remark that by Lemma 7.4, the integer p belongs to [0, (k + 2)(n+ 1)].

Proof. Let [w] be a cylinder associated to a word w ∈ Ll (X) with l < n. For x ∈ [w], we
let Kx ∈ Z be the largest integer j less than l such that xj−n+1 · · · xj belongs to Qn. Then
the word wxn+1 = xKx−n+1 · · · xKx+1 belongs to Q′

n+1. Observe also that by Lemma 7.4,
we have n− 1 −Kx ≤ (k + 2)(n+ 1). Let Wn+1 be the collection of these words wxn+1
over x ∈ [w]. By definition of Kx and Qn, the word wxn+1 completely determines the
l − 1 −Kx next letters, that is to say,

[wxn+1] = [xKx−n+1 · · · xl−1].
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As x belongs to [w], we have in particular σn−1−Kx [wxn+1] ⊂ [w] and finally

[w] =
∐

wx
n+1∈Wn+1

σn−1−Kxwxn+1.

We complete the proof.

Proof of Theorem 7.1. By equation (7.2) and the definition of N , we have for n ∈ N ,

�Q′
n+1 = �Qn + pX(n+ 1)− pX(n)

≤ 2(pX(n+ 1)− pX(n))

≤ 2k.

For n ∈ N , we let Fn = {χ[q ′
n+1], q ′

n+1 ∈ Q′
n+1}. By Lemma 7.5, any cylinder [w] with

length less than n is a finite disjoint union of σp[q ′
n+1]. In particular, χ[w] lies in VFn . We

may therefore apply Lemma 4.1 to (Fn)n∈N and we get

Mult(X, σ) ≤ sup
n∈N

�Q′
n+1 ≤ 2k.

7.1. Multiplicity of invariant measures. It follows from Theorem 7.1 and Lemma 2.4 that
any ergodic measure has (ergodic) multiplicity bounded by 2k. In fact, we may refine this
result as follows.

THEOREM 7.6. Let X be an aperiodic subshift with lim infn→∞(pX(n)/n) ≤ k. Then∑
μ∈Me(X,σ)

Mult(μ) ≤ 2k.

To prove Theorem 7.6, we first recall some notation and then show two lemmas for
general aperiodic subshifts. We have learned from the referee that some parts of our proofs
overlap with results in [Cre23, Esp23]. Let (Y , σ) be an aperiodic subshift. For two finite
words w and v, we denote by N(w|v) the number of times that w appears as a subword of
v. Also, we define d(w|v) = N(w|v)/|v|. For a generic point x of a measure μ, we have

lim
n→∞ d(w|xn1 ) = μ([w]),

where xn1 = x1x2 . . . xn. For a finite word v, we denote by v⊗m = vv . . . v︸ ︷︷ ︸
m times

. For a finite

word w, we denote by

νw = 1
|w|

|w|−1∑
k=0

δσk(w̄),

where |w| is the length of w and w̄ ∈ AZ is the periodization of w, that is, w⊗∞.
Letwn be a word of length n. Foy any n, we put �n = �(wn) := min{1 ≤ � < n : [wn] ∩

σ�([wn]) �= ∅} and Ln := 1 + �{1 ≤ � < n : [wn] ∩ σ�([wn]) �= ∅}, with the convention
min ∅ = n. Let vn = v(wn) be the first �n-subword of wn. It follows that wn = v

⊗Kn
n v̂n
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with v̂n �= vn being a prefix of vn. Then Kn = �n/�n� ≥ Ln. Observe that for any x ∈ X,
p ≥ �n, and any word u of length less than �n, we have

N(u|xp1 ) ≥ N(u|wn)N(wn|x
p

1 )

Ln

≥ N(u|vn)KnN(wn|x
p

1 )

Ln

≥ N(u|vn)N(wn|xp1 ). (7.3)

In the next two lemmas, we assume that:
• the subshift (Y , σ) is aperiodic;
• wn ∈ Ln(Y ) for n ∈ N;
• νwn

n→+∞−−−−→
n∈N

ν ∈ Me(Y , σ), that is, νwn is weakly converging to an ergodic measure

ν when n goes to infinity along a subsequence N .

LEMMA 7.7. Under the above assumption, we have

�n = |vn| n→+∞−−−−→
n∈N

+∞

and

νvn
n→+∞−−−−→
n∈N

ν.

Proof. We argue by contradiction. Assume (�n)n∈N has a bounded infinite subsequence
N ′ of N . Then there are finite words v and v̂n with |v̂n| < |v| such that wn = v⊗Knv̂n
for n ∈ N ′′, where N ′′ is some infinite subsequence of N ′. Observe first that the length
of wn goes to infinity. As a consequence, Kn goes also to infinity as n goes to infinity
along N ′′. However, then X should contain the periodic point v associated to v which is a
contradiction to the aperiodicity of (Y , σ). Therefore, �n

n→+∞−−−−→
n∈N

+∞.

Let us check now that νvn
n→+∞−−−−→
n∈N

ν. Let ν′ = limk→∞ νvnk be a weak limit of (νvn)n∈N
with a subsequence (nk)k∈N of N . For any word u with |u| < �n, by equation (7.3), we have

N(u|wn) ≥ N(u|vn)Kn,

and consequently,

d(u|wn) ≥ d(u|vn) Kn|vn|
(Kn + 1)|vn|

≥ 1
2d(u|vn).

For any cylinder [u], by letting n go to infinity, we get that

ν([u]) ≥ 1
2ν

′([u]).

It implies that ν − 1
2ν

′ is a σ -invariant measure. It follows from the ergodicity of ν that
ν = ν′.
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LEMMA 7.8. For any ergodic measure μ �= ν, we have

lim
n∈N ,n→∞

|vn|μ([wn]) = 0.

Proof. Assume lim supn∈N ,n→∞ |vn|μ([wn]) > 0. By passing to an infinite subsequence
N ′ of N , we have limn∈N ′,n→∞ |vn|μ([wn]) = b > 0. By Lemma 7.7, the sequence νvn ,
n ∈ N ′, is converging to the measure ν.

Let x be a generic point of μ. Then we have for any n,

lim
p→∞

1
p

p−1∑
�=0

χ[wn](σ
�(x)) = lim

p→∞
N(wn|xp1 )

p
= μ([wn]). (7.4)

In particular, for any n, we can choose Pn ∈ N such that for p ≥ Pn,

N(wn|xp1 )
p

≥ μ([wn])
2

. (7.5)

Pick an arbitrary cylinder [u]. By Lemma 7.7, there exists an integer N such that for
n > N , we have

N(u|vn) ≥ 1
2ν([u])|vn|. (7.6)

It follows from equation (7.3) that

d(u|xp1 ) ≥ 1
4ν([u])|vn|μ(wn).

By letting p then n ∈ N ′ go to infinity, we get for any cylinder [u],

μ([u]) ≥ b

4
ν([u]).

It implies that μ− (b/4)ν is a σ -invariant measure, which is a contradiction to the
ergodicity of μ.

We recall now briefly the proof of Boshernitzan that an aperiodic subshift of linear
growth has finite many ergodic measures. Let N be the infinite set as in Lemma 7.3.
For any n ∈ N , one can choose (not uniquely) an ordered k-tuple of n-words Kn :=
{qn,1, . . . , qn,k} which coincides with Qn. By passing to a subsequence N ′ of N , we can
make each of the sequences of νqn,i weakly converge to some measures μi ∈ M(X, T ).
Boshernitzan showed that

Me(X, T ) ⊂ {μ1, μ2, . . . , μk}.
Since μi may coincide with the other μj for j �= i, we define Ii = {1 ≤ j ≤ k : μj = μi}.

We will use the following complement of Lemma 7.5.

LEMMA 7.9. In the decomposition of a cylinder [w] given by Lemma 7.5, for any term
σp[q ′

n+1] with |v(q ′
n+1)| < n+ 1, we have p ≤ |v(q ′

n+1)|.
Proof. We argue by contradiction. To simplify the notation, we write vn = v(q ′

n+1).
Assume |vn| < n+ 1 and p > |vn|. By definition of vn, we have

∅ �= σp[q ′
n+1] ∩ σp−|vn|[q ′

n+1].
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However, it follows from Lemma 7.5 that σp[q ′
n+1] does not intersect σ l(

⋃
qn∈Qn [qn]) for

0 < l < p, therefore, with qn ∈ Qn being the prefix of q ′
n+1, we get the contradiction

σp[q ′
n+1] ∩ σp−|vn|[q ′

n+1] ⊂ σp[q ′
n+1] ∩ σp−|vn|[qn] = ∅.

Thus, we have p ≤ |v(q ′
n+1)|.

For a given i, we let (qln,i )l∈Qn,i be the elements of Q′
n+1 with prefix qn,i , where Qn,i is

a subset of A for each n ∈ N ′, 1 ≤ i ≤ k. Note that νqln,i
is also converging to μi for any l

when n goes to infinity along N ′. Finally, we let vln,i = vn(q
l
n,i ) for each n ∈ N ′, 1 ≤ i ≤

k, and l ∈ Qn,i .

Proof of Theorem 7.6. Pick an arbitrary cylinder [w]. Let

[w] =
∐
j ,l

∐
∈P ln,j

σp[qln,j ]

be the decomposition of [w] given by Lemma 7.5. Recall that Pj ,l is a subset of [0, (k + 2)
(n+ 1)] for any l and by Lemma 7.9, we have also Pj ,l ⊂ [0, |vln,j | − 1] if |vln,j | < n+ 1.
For each n ∈ N ′, we decompose {(j , l) : 1 ≤ j ≤ k, l ∈ Qn,j } into three sets Jn,i , J ′

n,i ,
and J ′′

n,i , where Jn,i := {(j , l) : j ∈ Ii}, J ′
n,i := {(j , l) : j /∈ Ii , |vln,j | = n+ 1} and J ′′

n,i is
the rest. Then for (j , l) ∈ J ′

n,i , we have

μi

( ∐
p∈P ln,j

σp[qln,j ]
)

≤ (k + 2)(n+ 1)μi([qln,j ]) = (k + 2)|vln,j |μi([qln,j ]). (7.7)

However, for (j , l) ∈ J ′′
n,i , we have

μi

( ∐
p∈P ln,j

σp[qln,j ]
)

≤ |vln,j |μi([qln,j ]). (7.8)

By summing up equations (7.7) and (7.8), we have

μi

( ∐
(j ,l)∈J ′

n,i∪J ′′
n,i

∐
p∈P ln,j

σp[qln,j ]
)

≤ 2k(k + 2)
∑

(j ,l)∈J ′
n,i∪J ′′

n,i

|vln,j |μi([qln,j ]). (7.9)

Combining this with Lemma 7.8, we obtain

lim
n→∞ μi

( ∐
(j ,l)∈J ′

n,i∪J ′′
n,i

∐
p∈P ln,j

σp[qln,j ]
)

= 0.

Therefore, we have∥∥∥∥χ[w] −
∑

(n,j)∈Jn,i ,p∈P ln,j

χ[qln,j ] ◦ σ−p
∥∥∥∥2

L2(μi)

= ‖χ[w] − χ∐
(n,j)∈Jn,i ,p∈P l

n,j
σp[qln,j ]‖2

L2(μi)

= μi

( ∐
(j ,l)∈J ′

n,i∪J ′′
n,i

∐
p∈P ln,j

σp[qln,j ]
)

n→+∞−−−−→
n∈N ′ 0.
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Thus, we can apply Lemma 4.1 in L2
0(μi) with Fn = {χ[qln,j ] : (j , l) ∈ Jn,i} to get

Mult(μi) ≤ lim inf
n∈N ′,n→∞

�Jn,i .

By summing it up, we conclude that∑
μ∈Me(X,σ)

Mult(μ) ≤
∑
i

lim inf
n∈N ′,n→∞

�Jn,i

≤ lim inf
n∈N ′,n→∞

�Q′
n+1

≤ 2k.
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