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Exceptional Covers of Surfaces

Jeffrey D. Achter

Abstract. Consider a finite morphism f : X → Y of smooth, projective varieties over a finite field F.

Suppose X is the vanishing locus in PN of r forms of degree at most d. We show that there is a constant

C depending only on (N, r, d) and deg( f ) such that if |F| > C , then f (F) : X(F) → Y (F) is injective if

and only if it is surjective.

1 Introduction

Consider a finite, generically étale morphism f : X → Y between smooth, projective

varieties over a finite field F of characteristic p. The cover f is called exceptional if

the only geometrically irreducible component of X ×Y X which is defined over F is

the diagonal. Exceptional covers have the following intriguing property: the induced

map f (F) : X(F) → Y (F) on F-points is bijective. This theorem, due to Lenstra, is

proved in [6]; we defer to that article for the history of this circle of ideas.

In [6], Guralnick, Tucker, and Zieve prove a partial converse for projective curves.

Specifically, they show that for fixed genus g = g(X) and degree deg( f ), there exists

an effective constant C such that the following holds: if Fq/F is an extension with

q > C , and if f (Fq) is injective, then f is exceptional. (Note that this implies that f is

bijective.) They prove something like this in higher dimensions (see Remark 2.6 be-

low), except that the constant C is allowed to depend on X, Y , and f . They conjecture

[6, 5.5] that C need only depend on deg( f ) and the topology of X.

The calculation of C relies on understanding the topology of the cover f . Indeed, if

Z is a nondiagonal component of X×Y X, and if f (Fq) is injective, then every point of

Z(Fq) is actually a ramification point. The dimension of Z is greater than that of the

ramification locus ram( f ). Weil-type estimates show that if
∣∣Z(Fq)

∣∣ ≤
∣∣ram( f )(Fq)

∣∣,
then q must be small relative to the Betti numbers of Z and ram( f ). In the special

case of curves, Guralnick, Tucker, and Zieve obtain effective bounds for these Betti

numbers, and thus a bound for the constant C .

Consider the following condition on a triple (X/F,C, n) consisting of a smooth,

projective, geometrically irreducible variety X, a constant C , and a natural number

n ≥ 2.

Condition 1.1 Let Y /F be a smooth projective geometrically irreducible variety, and

let f : X → Y be a finite, tamely ramified, generically étale morphism of degree n. Then

( f : X → Y /F,C) satisfies (∗)below.
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If Fq/F is a finite extension with q > C, then the following are equivalent.

(∗) (a) f (Fq) : X(Fq) → Y (Fq) is injective;

(b) f (Fq) : X(Fq) → Y (Fq) is surjective;

(c) fFq
: XFq

→ YFq
is exceptional.

The main purpose of this note is to explain the following result. Say that a projec-

tive variety X is of type (N, r, d) if X is isomorphic to the vanishing in PN of at most

r homogeneous forms, each of which has degree at most d.

Theorem 2.5 Given data (N, r, d) and n, there exists a constant C so that the following

holds. Let X/F be a smooth, geometrically irreducible, projective variety of type (N, r, d).

Then (X/F,C, n) satisfies (1.1).

The type (N, r, d) is not intrinsic to X, but is rather an attribute of X along with

a chosen embedding. In fact, [6, Conjecture 5.5] asks for a result similar to Theo-

rem 2.5, but which depends only on the ℓ-adic Betti numbers of the source variety.

Here is a partial answer for surfaces:

Corollary 3.2 Given nonnegative integers b1, b2, and b3 and a natural number n,

there exists an effective constant C so that the following holds. Let X be a smooth, pro-

jective, geometrically irreducible surface over a finite field F. Suppose that X is of general

type and admits a flat lifting to W (F)/p2, and that dim Hi(X, Qℓ) = bi for 1 ≤ i ≤ 3.

Then (X/F,C, n) satisfies (1.1).

Results such as Theorem 2.5 have long been known in the special case where

X = Y = Pn [5]. For arbitrary varieties, [6, Prop. 5.6] shows the existence of a

constant C which depends on f : X → Y such that ( f : X → Y /F,C) satisfies (∗).

The contribution of the present note is to prove a more uniform version of these

results.

The final section gives a new supply of examples (Proposition 4.1) of exceptional

covers, as well as examples of covers which are injective or surjective, but not bijective,

on F-points. In contrast to previously published examples, which tend to focus on

curves, projective spaces or abelian varieties, these covers involve varieties of arbitrary

dimension and arbitrarily intricate topology.

2 Exceptional Covers of Polarized Varieties

Say that a projective variety X admits a polarization of type (N, r, d), or simply that X

has type (N, r, d), if there exists an embedding X →֒ PN such that X can be expressed

as the vanishing locus of at most r homogeneous forms, each of which has degree

at most d. Similarly, say that an affine variety U has type (N, r, d) if there exists an

embedding U →֒ AN such that U is the vanishing locus of at most r polynomials,

each of which has degree at most d.

Suppose X is projective of type (N, r, d), and that X →֒ PN realizes this type. If

H ⊂ PN is a hyperplane, then X∩H is projective of type (N−1, r, d), while X−(X∩H)

is affine of type (N, r, d). For the moment, we work over an arbitrary and suppressed

field k.
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Lemma 2.1 Given data (N, r, d) and n, there exist effective constants (Ñ, r̃, d̃) such

that the following holds. If X is a geometrically irreducible projective variety of type

(N, r, d), and if f : X → Y is a finite map of degree n, then Y is projective of type

(Ñ, r̃, d̃).

Proof Embed Y →֒ PM , where M = 2 dim Y + 1. On an open affine subset U ⊆ X,

f is represented by a map ( f0, . . . , fM), with each f j ∈ k[AN ]. By Bézout’s theorem,

each f j has degree at most n. Elimination theory, either in its classical form or its

Gröbner-theoretic incarnation, yields an effective upper bound on the number and

degree of the equations necessary to define the Zariski closure of f (U ) in AM .

Lemma 2.2 Given data (N, r, d) and n, there are effective constants (Nr, rr, dr) and

(Nb, rb, db) such that the following holds. If X is a geometrically irreducible projective

variety of type (N, r, d) and if f : X → Y is a finite map of projective varieties of degree

n, then the ramification locus ram( f ) ⊂ X is of type (Nr, rr, dr), and the branch locus

branch( f ) ⊂ Y is of type (Nb, rb, db).

Proof As in the proof of Lemma 2.1, represent f locally by the morphism

( f1, . . . , fM) : AN → AM , and let J f =
( ∂ fi

∂x j

)
1≤i≤M,1≤ j≤N

be the Jacobian matrix

of this morphism. The ramification locus ram( f ) is the locus of all P ∈ U where the

restriction of J f to TPU has rank less than n. Therefore, ram( f ) is the intersection

of U and the vanishing locus of minors of a certain matrix, and its type (Nr, rr, dr)

depends only on the type of X and on the degree of f .

Lemma 2.1, applied to the cover ram( f ) → branch( f ), shows that branch( f ) is

of type (Nb, rb, db) for constants which depend only on (N, r, d, n).

Let g : Z → Y be an étale cover of affine varieties. Say that g is tamely ramified

at the boundary if there are compactifications Z →֒ Z and Y →֒ Y , with Z and Y

projective, and a morphism g : Z → Y compatible with g which is at worst tamely

ramified. (This notion is independent of the choice of compactification; moreover,

in the present context, the cover g : Z → Y arises as an open subcover of a known

cover of projective varieties.)

Lemma 2.3 Given data (N, r, d) there exists an effective constant σ such that the fol-

lowing holds. Let Y be a smooth, geometrically irreducible, affine variety of type (N, r, d)

over a field k, and let g : Z → Y be an étale Galois cover tamely ramified at the bound-

ary. If ℓ is any rational prime invertible in k, then the sum of the compact ℓ-adic Betti

numbers of Z satisfies

σc(Z, Qℓ) :=
dim Z∑
i=0

dim Hi
c(Z × k, Qℓ) ≤ deg(g)σ.

Proof This is [7, Prop. 4.5]; the effective constant of loc. cit. depends only on the

type of Y .

Lemma 2.4 Given data (N, r, d) and n there exist effective constants (Nu, ru, du) such

that the following holds. Let X be a smooth, geometrically irreducible, projective variety

of type (N, r, d), and let f : X → Y be a finite morphism of degree n which is generically

étale. Then there is an open subvariety U ⊂ Y , affine of type (Nu, ru, du), such that

f | f −1(U ) is étale.
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Proof By Lemmas 2.1 and 2.2, there is a collection of homogeneous forms

{G1, . . . , Gs} of bounded degree on Y such that f is unramified outside the van-

ishing locus of these forms. Let U be the complement of the vanishing locus of the

product
∏

Gi . Then f | f −1(U ) is étale, and U has known type (Nu, ru, du).

Theorem 2.5 Given data (N, r, d) and n there exists an effective constant C so that

the following holds. Let X/F be a smooth, geometrically irreducible, projective variety of

type (N, r, d). Then (X/F,C, n) satisfies (1.1).

Proof We adopt the notation, ideas, and results of [6]. Say that a variety is of known

type if its type can be effectively bounded purely in terms of the data (N, r, d, n). Let

Y /F be a smooth, geometrically irreducible, projective variety, and let f : X → Y be

a finite, tamely ramified, generically étale morphism of degree n. By Lemma 2.1, Y is

of known type.

Let X̃ → Y be the Galois closure of X → Y . Then X̃ is a variety over some

finite extension F̃ of F, and there is a finite map of schemes f̃ : X̃ → Y of degree

ñ ≤ n! which is tamely ramified and generically étale. Let A = Aut(X̃/Y ), and let

G = Aut(X̃/Y × F̃q) be the geometric part of the extension; then A/G ∼= Gal(F̃/F).

Let H = Aut(X̃/X), let S be the set of left cosets of H in A, and let B = {a ∈ A :

〈aG〉 = A/G}. By [6, Lemmas 4.2 and 4.3], to prove that f is exceptional it suffices

to show that each a ∈ B has at least one fixed point in S.

Using Lemma 2.4, we may construct an affine subvariety U ⊂ Y of known type

such that f | f −1(U ) is unramified. Let Ṽ = X̃×U ; then f̃ |eV : Ṽ → U is an étale Galois

cover of affine varieties. Let ℓ be any rational prime invertible in F. Lemma 2.3 gives

an effective upper bound for the sum of the compact Betti numbers σc(Ṽ , Qℓ).

Let W̃ be any twist of Ṽ . Then σc(W̃ , Qℓ) = σc(Ṽ , Qℓ). By the Lefschetz trace

formula [2, II.3.2] and Deligne’s bound for the weights of Frobenius on the compact

cohomology groups of a smooth variety [3, Thm. 1], we find that there is an effective

constant C , depending only on (N, r, d, n), such that if Fq/F is a finite field, and if

q > C , then W̃ (Fq) is nonempty.

The result now follows from the techniques of [6]. Fix any a ∈ B. Restricting

the construction of [6, paragraph after 3.2] to Ṽ , construct a certain twist Ṽ ea of Ṽ . If

q > C , then there exists some Q̃a ∈ Ṽ ea(Fq). Let Pa = f (Q̃a). Combining the defining

property of Ṽ ea with the fact that f̃ |eV is unramified, we have Q̃a/Pa is unramified,

with decomposition group 〈a〉. Moreover, for this point Pa, the number of points of

X(Fq) lying over Pa is exactly the number of points of S fixed by a [6, Lemma 3.2].

Henceforth, suppose q > C .

If f is surjective on Fq points, then for each a ∈ B there is at least one point of

X(Fq) lying over Pa, so that at least one point of S is fixed by a. Then f is exceptional

[6, Lemma 4.3].

Similarly, if f is injective on Fq points, then for each a ∈ B there is at most one

point of S fixed by a, and f is again exceptional.

Finally, Lenstra’s theorem [6, Prop. 4.4] shows that if f is exceptional, then it is in

fact bijective on Fq-points.

Remark 2.6 Even though this statement depends on a polarization of the variety X,

it is still much more uniform than the best result previously known. For comparison,
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note that [6, Prop. 5.6] states that given f : X → Y a finite separable map between

normal varieties over F, if f (Fqm ) is injective or surjective for infinitely many m, then

f is exceptional. As noted there, this implies the existence of a constant C , depending

on f : X → Y , such that ( f : X → Y,C, F) satisfies (∗). Indeed, the proof of [6, Prop.

5.6] shows the existence of a number M such that if m ≥ M, then the surjectivity or

injectivity of f (Fqm ) implies the exceptionality of fFqm .

Remark 2.7 If X is a member of a known family, then Theorem 2.5 provides a

uniform bound for C , in the following sense.

Suppose S is noetherian and X → S is has geometric fibers which are smooth,

projective, and irreducible. Then there exist (NS, rS, dS) such that for any point t ∈
S(F), the fiber Xt has type (NS, rS, dS). Consequently, for any n there exists an effective

constant C = C(S, n) such that if t ∈ S(F), then (Xt/F,C, n) satisfies (1.1).

Natural examples of such families X → S are the tautological families over (an

open subscheme of) the Hilbert scheme of schemes of PN with specified Hilbert

polynomial; the moduli space of principally polarized abelian varieties of given di-

mension; and the moduli space of K3 surfaces with polarization of specified degree.

In fact, many moduli spaces are constructed by taking the GIT quotient of an open

subscheme S of a Hilbert scheme. While the difficulties typically center around the

construction of the quotient space, the techniques of the present paper apply directly

to S.

3 Surfaces

If the varieties X and Y are curves, then [6, Thm. 4.7] gives an explicit bound for the

constant C of Theorem 2.5 which depends only on n = deg( f ) and the genus of X.

In this section, we show that if X is a surface of general type, then there is a constant

C which depends only on the Hodge numbers of X and on n such that (X/F,C, n)

satisfies (1.1). If X lifts to W (F)/p2, we will deduce that C need only depend on

deg( f ) and on the ℓ-adic Betti numbers of X.

Let k be any field. If X/k is a projective surface, we denote its Hodge numbers by

hi j(X) = dim H j(X,Ωi
X).

Lemma 3.1 If X/k is a smooth projective surface of general type with specified Hodge

numbers hi j(X) = hi j , then there is a bound for the type of X which depends only on

hi j .

Proof First, we prove the result under the additional assumption that X is minimal.

Since the Hodge numbers of X are known, in particular one knows

χ(X,OX) =
∑

i

(−1)ih0,i(X) and K2
X = 12χ(X.OX) −

∑
(−1)i+ jhi j(X).

Since X is of general type, 5KX is very ample. Let N = 10K2
X + χ(OX) − 1. Then

φ5KX
: X → PN is birational onto its image X0. The embedded surface X0 ⊂ PN has

Hilbert polynomial hX0
(T) = (25/2)(K2

X)T2 − (5/2)K2
XT + χ(OX), and thus is of

known type. Moreover, X0 is normal, with at worst Du Val singularities correspond-

ing to the contraction of (−2) curves on X. The number m of such curves may be
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bounded in terms of the Hodge numbers of X [8, p. 614]. Since X is obtained from

X0 by at most m blowups, X has known type.

Finally, we prove the result for arbitrary smooth projective surfaces of general

type. If X is such a surface, and if π : X → X is the blowing-down of a (−1)-curve,

then h1,1(X) = h1,1(X)+1, while hi j(X) = hi j(X) for all other (i, j). Therefore, X dif-

fers from its minimal model Xmin by at most h1,1(X) blow-ups, and the Hodge num-

bers of Xmin are known. Since a variety obtained by a bounded number of blowups

from a variety of known type is again of known type, X has known type.

Corollary 3.2 Given nonnegative integers b1, b2, and b3 and a natural number n,

there exists an effective constant C so that the following holds. Let X be a smooth, pro-

jective, geometrically irreducible surface over a finite field F. Suppose that X is of general

type and admits a flat lifting to W (F)/p2, and that dim Hi(X, Qℓ) = bi for 1 ≤ i ≤ 3.

Then (X/F,C, n) satisfies (1.1).

Proof The hypothesis that X lifts modulo p2 implies that the Hodge to deRham se-

quence for X degenerates [4]; this, combined with the comparison theorem between

étale and deRham cohomology, implies that
∑i

r=0 hi,i−r(X) = bi for each i. There-

fore, there are only finitely many possibilities for the Hodge numbers of X, and thus

for the type of X (Lemma 3.1). The result now follows from Theorem 2.5.

Similar results are possible for surfaces which are not necessarily of general type.

Here is one example.

Corollary 3.3 Given a natural number n, there exists a constant C so that the follow-

ing holds. Let F be a finite field of odd characteristic, and let X/F be an Enriques surface.

Then (X/F,C, n) satisfies (1.1).

Proof By [1, Introduction], X
F

admits an étale double cover which is the intersection

of three quadrics in P5; therefore, X
F

is of known type. For each scheme Z which

arises in the proof of Theorem 2.5, Z
F

is of known type. Therefore, the conclusion of

Theorem 2.5 applies to X.

4 Examples

Most known examples of exceptional covers involve curves, especially the projective

line. Higher-dimensional examples tend to involve special varieties, such as abelian

varieties or projective spaces. While exceptional covers are indeed rare, in this section

we show that there actually exist infinitely many exceptional covers of each dimension

over a given finite field. (See also the forthcoming work of Lenstra, Moulton, and

Zieve.)

Theorem 2.5 (like its antecedents in [6]) states that if a finite field is sufficiently

large relative to the topology of two varieties, then a cover is injective on rational

points if and only if it is surjective. We give examples showing that this fails if the

field is not sufficiently large.

Throughout this section, let F = Fq0
be a finite field of cardinality q0.

Proposition 4.1 Let Y /F be a smooth, projective, geometrically irreducible variety.
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(a) There exists an exceptional cover fex : Xex → Y .

(b) There exists a cover fsurj : Xsurj → Y such that Xsurj(F) → Y (F) is surjective but not

injective.

(c) Suppose Y (F) is nonempty. There exists a cover finj : Xinj → Y such that Xinj(F) →
Yinj(F) is injective but not surjective.

Each of Xex, Xsurj, and Xinj is a projective, smooth, geometrically irreducible variety, and

each of fex, fsurj and finj is a finite, generically étale surjective morphism.

We present constructions after recalling some of the technology for producing

space-filling and space-avoiding varieties developed by Poonen in [9].

Lemma 4.2 Let f : X → Y be a surjective morphism of smooth, projective, geometri-

cally irreducible varieties over F that is smooth over an open subset of Y containing Y (F).

Then there exists a smooth, projective, geometrically irreducible subvariety Z ⊂ X such

that Z(F) = X(F) and Z →֒ X → Y is a surjective morphism which is étale over an

open subset of Y containing Y (F).

Proof Fix an embedding X →֒ PM . By induction on r := dim X − dim Y , it suffices

to show that there is a hypersurface H ⊂ PM such that Z := H ∩ X is smooth,

projective, and geometrically irreducible, Z(F) = X(F), and f |Z : Z → Y is smooth

of relative dimension r − 1 over an open subset of Y which contains Y (F).

We follow the proof of [9, Thm. 3.3], and describe suitable hypersurfaces in

terms of local tangency conditions. In this description, all intersections are scheme-

theoretic, and the empty scheme is smooth of any dimension. Let S = Y (F); if S is

empty, let S consist of a point Q ∈ Y (F) such that f | f −1(Q) is smooth.

For each P ∈ X(F), choose a codimension one subspace VP ⊂ TP,PM such that

VP ∩ TP,X has codimension one in TP,X , and the induced map (d f )P : (VP ∩ TP,X) →
T f (P),Y is surjective. Consider the problem of finding a hypersurface H ⊂ PM such

that for each P ∈ X(F), P ∈ H and TP,H = VP; and for each other closed point P of

X, H, and H ∩ X are smooth of dimensions M − 1 and dim X − 1, respectively, at P.

Refine this problem by insisting that for each closed point P of X and each Q ∈ S, the

intersection H ∩ X ∩ f −1(Q) is smooth of dimension r − 1 at P.

Then [9, Thm. 1.3] guarantees the existence of a smooth, geometrically irreducible

hypersurface which satisfies these conditions. Choose such a hypersurface H, and let

Z = H ∩ X. Then Z is smooth, Z(F) = X(F), and the morphism Z →֒ X → Y is

generically smooth of relative dimension r − 1, and in particular smooth over each

F-rational point of Y . A dimension count shows the morphism is dominant, and

thus surjective.

There is a point-avoiding complement to Lemma 4.2.

Lemma 4.3 Let f : X → Y be a surjective morphism of smooth, projective, geomet-

rically irreducible varieties over F which is smooth over an open subset of Y containing

Y (F). Then there exists a smooth, projective, geometrically irreducible subvariety Z ⊂ X

such that Z(F) is empty, and Z →֒ X → Y is a surjective morphism which is étale over

an open subset of Y containing Y (F).
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Proof This is a relative version of [9, Cor. 3.6]. The proof is the same as that of

Lemma 4.3, except that in the local conditions we insist that the hypersurface avoid

each point of X(F).

With these results secured, construction of examples is straightforward.

Proof of Proposition 4.1 For part (a), let Y0 = Spec B be an open affine subvariety

of Y . Fix a prime ℓ relatively prime to q0 − 1, and let u ∈ B be an element of

some system of uniformizing parameters for Y0. Let A = B[x]/(xℓ − u), and let

X0 = Spec A. Then X0 is geometrically irreducible (since xℓ − u is irreducible over

B ⊗ F) and smooth (by the Jacobian criterion). Let Fq/F be any finite extension with

gcd(q − 1, ℓ) = 1, and suppose Q ∈ Y0(Fq). Then there is a unique solution in Fq

to the equation xℓ
= u(Q), and X0(Fq) → Y0(Fq) is bijective. Since this is true for

arbitrarily large q, the cover X0 → Y0 is exceptional. Let X be the normalization of Y

in Frac(A); it, too, is smooth. The geometric characterization of exceptionality makes

it clear that being exceptional is a birational property, and so X → Y is exceptional.

For (b), let V be a smooth, projective, geometrically irreducible variety such that

|V (F)| ≥ 2; concretely, one may take V = P1. Then the product Y × V is again

smooth, projective, and geometrically irreducible, and the projection Y ×V → Y is

smooth. Moreover, (Y ×V )(F) → Y (F) is surjective but not injective. By Lemma 4.2,

there is a smooth, projective, geometrically irreducible subvariety X̃surj ⊂ Y × V

such that X̃surj(F) = (Y ×V )(F), and f |eXsurj
is étale over each element of Y (F). Con-

sider the Stein factorization X̃surj
s
→ Xsurj

t
→ Y of the projective morphism f |eXsurj

. The

morphism t is finite and generically étale. Moreover, since X̃surj → Y is finite over

Y (F), the birational morphism s induces a bijection X̃surj(F)
∼
→Xsurj(F). Therefore,

Xsurj → Y is finite and generically étale, and Xsurj(F) → Y (F) is surjective but not

injective.

The proof of (c) is similar, except that we use Lemma 4.3 to construct a suitable

subvariety X̃inj ⊂ Y × V with X̃inj(F) empty. Again, the Stein factorization X̃inj →
Xinj → Y yields a finite cover of Y , and X̃inj(F)

∼
→Xinj(F). If Y (F) is nonempty, then

Xinj(F) → Y (F) is injective but not surjective.

Remark 4.4 The construction of the “space-filling” variety Xsurj ⊂ Y ×V in Propo-

sition 4.1.(b) depends on F; the equality of sets Xsurj(F) = (Y ×V )(F) is only possible

if q0 is small relative to the Betti numbers of Xsurj. Similarly, in 4.1.(c), the variety Xinj

acquires rational points over sufficiently large extensions of F. While there is no rea-

son to believe that the constant C in Theorem 2.5 is optimal, these examples indicate

that the equivalences in (∗) cannot hold for F itself, but only for sufficiently large

extensions.

Acknowledgment I thank R. M. Guralnick for a helpful discussion of [6, Prop. 5.6];

see Remark 2.6.
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