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Abstract

We prove analogs of the Bezout and the Bernstein–Kushnirenko–Khovanskii theorems
for systems of algebraic differential conditions over differentially closed fields. Namely,
given a system of algebraic conditions on the first l derivatives of an n-tuple of
functions, which admits finitely many solutions, we show that the number of solutions
is bounded by an appropriate constant (depending singly-exponentially on n and l)
times the volume of the Newton polytope of the set of conditions. This improves a
doubly-exponential estimate due to Hrushovski and Pillay. We illustrate the application
of our estimates in two diophantine contexts: to counting transcendental lattice points
on algebraic subvarieties of semi-abelian varieties, following Hrushovski and Pillay; and
to counting the number of intersections between isogeny classes of elliptic curves
and algebraic varieties, following Freitag and Scanlon. In both cases we obtain
bounds which are singly-exponential (improving the known doubly-exponential bounds)
and which exhibit the natural asymptotic growth with respect to the degrees of the
equations involved.

1. Introduction

In its most elementary form, Bezout’s theorem states that a subset of Cn defined by equations
P1, . . . , Pn of respective degrees d1, . . . , dn can have at most d1 · · · dn isolated points. Various
generalizations of this statement have been proposed. For example, the Bernstein–Kushnirenko–
Khovanskii theorem estimates the number of isolated points in terms of the mixed volume
of the Newton polytopes ∆(P1), . . . ,∆(Pn). As a consequence of the Bezout theorem and its
generalizations, whenever a set defined within the algebraic category happens to be finite, one
can produce effective estimates for the size of the set (which often turn out to be fairly accurate).

In this paper we consider generalizations of Bezout’s bound for systems of differential
equations. The fundamental question is as follows: given a system of algebraic conditions on
an n-tuple of functions and their first l derivatives, which admits finitely many solutions, can
one estimate the number of solutions in terms of the degrees of the equations involved?

This question has been considered by Hrushovski and Pillay in [HP00]. Their result, quoted
in Theorem 2 below, is a powerful analog of the Bezout theorem which similarly allows one to
translate qualitative finiteness results obtained using differential-algebraic and model-theoretic
methods into effective estimates (two examples of a diophantine nature are discussed below).

The explicit estimate in Theorem 2 is stated in terms of slightly different algebraic data than
our naive formulation of the Bezout bound, making it difficult to make a direct comparison.
Nonetheless, it is clear that the Bezout bound has two advantages. First, the Bezout bound and
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its various generalizations are singly-exponential with respect to the ambient dimension, whereas
Theorem 2 admits doubly-exponential growth. Second, assuming for example that all equations
involved have degree d, the Bezout bound is a polynomial in d with exponent equal to the ambient
dimension. This is the natural asymptotic for solutions of n-dimensional systems of equations,
and is known of course to be optimal in the algebraic context. The bound of Theorem 2 depends
polynomially on the degree as well, but the exponent can in general be much larger than the
ambient dimension (indeed, exponentially large).

Our principal result is an estimate which recovers the two asymptotic properties above in the
differential algebraic context. The statements are presented in § 1.2, with formulations in terms
of degrees and, more generally, mixed volumes of Newton polytopes.

Theorem 2 has been applied to produce effective bounds for some diophantine counting
problems:

(i) In [HP00] Theorem 2 was used to derive bounds on the number of transcendental lattice
points on algebraic subvarieties of semi-abelian varieties. In particular, in the case of the
two-dimensional torus this allowed the authors to produce doubly-exponential bounds for
a counting problem due to Bombieri, improving the previous repeated-exponential bounds
obtained by Buium [Bui95b].

(ii) More recently, Theorem 2 has been used in [FS14] to derive bounds on the number of
intersections between isogeny classes of elliptic curves and algebraic varieties. In particular,
in the two-dimensional case this allowed the authors to produce doubly-exponential bounds
for a counting problem due to Mazur.

Both of these applications follow the same principal strategy, inspired by the work of Buium
[Bui92, Bui93] (see [Pil97, Sca01] for surveys). Namely, given a counting problem of a diophantine
nature (over C, for example) one first expands the structure by adjoining to C a differential
operator making it into a differentially-closed field with field of constants Q̄. One then writes a
system of differential algebraic conditions satisfied by the solutions of the diophantine problem.
Finally, one shows (and this is naturally the deeper step involving arguments specific to the
problem at hand) that the system, while possibly admitting more solutions than the original
diophantine problem, still admits finitely many solutions.

After carrying out the steps above, one can use Theorem 2 to produce an explicit estimate
for the number of solutions of the diophantine problem. In § 5 we apply our estimates to obtain
refined (singly-exponential) bounds for problems (i) and (ii) above.

1.1 Setup and notation
Let K denote a differentially-closed field of characteristic zero with a derivation D, and K0 its
field of constants. Let M denote an ambient space, which we will take to be either an affine space
Kn or a Zariski open dense subset thereof. Denote by ξ a coordinate on M . We define the lth
prolongation as M (l) = M ×Knl, and denote by ξ = ξ(0), ξ(1), . . . , ξ(l) coordinates on M (l). For
simplicity of notation we denote s := dimM (l) = n(l + 1). We denote by πM : M (l)

→ M the
projection onto M . If there is no ambiguity we omit M from this notation.

For any x ∈M , denote by x(l) ∈M (l) the l-jet of x, i.e. the element (x, . . . ,Dlx). We denote
by J l(M) ⊂M (l) the set of all l-jets in M (l),

J l(M) := {x(l) : x ∈M}. (1)

Let Ω(l) ⊂M (l) denote a Zariski open dense subset of M (l) (we include l in the notation Ω(l)

in the interest of clarity, but this is in fact an arbitrary open dense set). If we do not explicitly
specify Ω(l) then it is taken to be equal to M (l).
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Let S ⊂ Ω(l) be a Zariski closed set. We view S as a system of algebraic-differential conditions
on M . We say that x ∈M is a solution for S if x(l) ∈ S. We define the reduction of S, denoted
R(S) ⊂ S, to be

R(S) := Clo[J l(M) ∩ S] (2)

where Clo denotes Zariski closure. In other words, the reduction of S is the Zariski closure of
the set of jets of the solutions of S. If S admits finitely many solutions then R(S) is the set
consisting of their jets. In this case we denote the number of solutions by N (S).

Example 1. Suppose M = K2 with coordinates ξ, η, and consider the set S ⊂ M (1) given by
the conditions ξη = 1 and ξ(1)η + ξη(1) = 1. Then dimS = 2. However, it is clear that S
admits no solutions, since deriving the first condition we see that any solution must also satisfy
ξ(1)η + ξη(1) = 0, contradicting the second condition. Thus R(S) = ∅.

In [HP00], Hrushovski and Pillay considered the problem of estimating N (S) in terms of the
algebraic degree of S. In particular, using differential algebraic methods, they have established
the following estimate.

Theorem 2 [HP00, Proposition 3.1]. Let X ⊂M and S ⊂ Ω(l) be Zariski closed. Denote m :=
dimX. Denote T = S ∩ π−1(X) and suppose that T admits finitely many solutions. Then

N (T ) 6 deg(X)l2
ml

deg(S)2ml−1. (3)

1.2 Statement of our results

Recall that for a Laurent polynomial P in the ξ(0), . . . , ξ(l) variables (over K), its Newton polytope
denoted ∆(P ) is defined to be the convex hull of the set of exponents (of terms with non-zero
coefficients) of P , viewed as a subset of Rs. We say that ∆ is a lattice polytope if it is obtained as
the Newton polytope of some Laurent polynomial. We will denote by ∆ξ(j) the standard simplex

in the ξ(j) variables, and by ∆
(l)
ξ the standard simplex in the ξ(0), . . . , ξ(l) variables.

Recall that for s convex bodies ∆1, . . . ,∆s in Rs, their mixed volume is defined to be

V (∆1, . . . ,∆s) =
∂s

∂λ1 · · · ∂λs
Vol(λ1∆1 + · · ·+ λs∆s)|λ1=···=λs=0+ . (4)

The mixed volume is symmetric and multilinear, and generates the volume function in the sense
that V (∆, . . . ,∆) = Vol(∆). In fact, these properties completely determine the mixed volume
function.

The following classical Bernstein–Kushnirenko–Khovanskii (BKK) theorem relates the
number of solutions of a system of polynomial equations to the mixed volume of their Newton
polytopes.

Theorem 3 [Kuš76, Ber75]. Let ∆1, . . . ,∆s be lattice polytopes in Rs. Then for any tuple P1,
. . . , Ps with ∆(Pi) = ∆i, the system of equations P1 = · · · = Ps = 0 admits at most µ isolated
solutions in (K∗)s, where

µ = s!V (∆1, . . . ,∆s) (5)

and V (· · ·) denotes the mixed volume. Moreover, for a sufficiently generic choice of the tuple Pi
the bound µ is attained.
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Remark 4. Under some mild conditions, the BKK estimate also bounds the number of zeros in

Ks. For instance, this is true if each ∆i is the convex hull of a finite co-ideal Ii ⊂ Z>0 (since in

this case one can always, after a generic translation, assume that none of the solutions lie on the

coordinate axes). We will refer to such polytopes as co-ideal polytopes. The common case of

the polytope of polynomials with bounded degree or multi-degree certainly satisfies this

condition.

Our results can be applied either to (K∗)s or to Ks, but in the latter case we always assume

that all polytopes involved are co-ideal polytopes.

Our main result is an analog of the first part of the BKK theorem. Namely, for a system

of algebraic-differential conditions S admitting finitely many solution, we estimate the number

of solutions in terms of a mixed volume of the Newton polytopes associated to the equations

defining S. Note that our various formulations are stated in terms of the degrees/polytopes of

the equations defining S, whereas Theorem 2 is stated in terms of the algebraic degree of S as

a variety. The proofs of the various statements are given in § 4.

Remark 5. The reader unfamiliar with the theory of Newton polytopes may wish to assume on

first reading that the Newton polytopes under consideration are of the form d∆
(l)
ξ (this amounts

to requiring that the polynomial equations in the ξ(0), . . . , ξ(l) variables have degree bounded

by d). Not much will be lost by considering only this special case, where the BKK theorem

reduces to the Bezout theorem. In particular, the use of the BKK theorem is not essential for

obtaining the single-exponential asymptotics of the constants in all of our results.

We begin with a formulation valid for complete intersections (for a slightly more general

form valid for flat limits of complete intersections, see Proposition 29).

Theorem 6. Let S ⊂ Ω(l) be a complete intersection defined by polynomials with Newton

polytopes ∆1, . . . ,∆k, and suppose that N (S) <∞. Denote

Γ := (s+ 1)∆
(l)
ξ + ∆1 + · · ·+ ∆k. (6)

Then

N (S) 6 Cs,kV (∆1, . . . ,∆k,Γ, . . . ,Γ), Cs,k = s!(δ + 2)δ(δ+1)/2, (7)

where δ := s− k.

We note that the factor of s! in Cs,k is the usual factor appearing in the BKK theorem. The

additional factor is an artifact of our construction and could certainly be improved somewhat.

We next present a result valid for arbitrary varieties rather than complete intersections.

Theorem 7. Let S ⊂ Ω(l) be any variety with N (S) <∞. Suppose that:

(i) S is contained in a complete intersection defined by polynomials with Newton polytopes

∆1, . . . ,∆k;

(ii) S is set-theoretically cut out by equations whose Newton polytopes are contained in a

polytope ∆ ⊃ ∆
(l)
ξ . To simplify the notation we write ∆j = ∆ for j > k.
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Denote
Γj := (s+ 1)∆

(l)
ξ + ∆1 + · · ·+ ∆j . (8)

Then

N (S) 6
s∑

j=k

Cs,jV (∆1, . . . ,∆j ,Γj , . . . ,Γj). (9)

In particular, assuming ∆j ⊂ ∆ for j = 1, . . . , k, we have

N (S) 6 Es,kV (∆1, . . . ,∆k,∆, . . . ,∆), Es,k =

s∑
j=k

(2s)s−jCs,k. (10)

As an immediate consequence we obtain the following analog of the Kushnirenko theorem.

Corollary 8. Let S ⊂ Ω(l) be any variety of top dimension s− k cut out by equations whose

Newton polytopes are contained in a polytope ∆ ⊃ ∆
(l)
ξ . Suppose that S admits finitely many

solutions. Then
N (S) 6 Es,k Vol(∆). (11)

Proof. Let P denote the given collection of polynomials with Newton polytopes contained in ∆
which set theoretically cut out S. We define a sequence of polynomials P1, . . . , Pk ∈ P as follows:
for j = 1 let P1 ∈ P be a non-zero polynomial; for j < k and assuming Pj is already constructed,
let Pj+1 ∈ P be any polynomial which is not identically vanishing on any component of
{P1 = · · · = Pj = 0}. Such a polynomial must exist since otherwise a component of {P1 =
· · · = Pj = 0} is a component of S, which is ruled out by our assumption on the dimension of S.

It follows by an easy induction that the intersection P1 = · · · = Pk = 0 is a complete
intersection and the claim of the theorem now follows by application of Theorem 7. 2

More generally, for systems admitting infinitely many solutions we have similar estimates for
the degree of their reduction. Here the degree of an irreducible variety in Ω(l) is defined to be
the number of intersections with a generic affine-linear space of complementary dimension, and
this notion is extended by linearity to arbitrary (possible mixed-dimensional) varieties. We give
an analog of the second part of Theorem 7 (but the other part extends in a similar manner).

Theorem 9. Let S ⊂ Ω(l) and suppose that:

(i) S is contained in a complete-intersection defined by polynomials with Newton polytopes
∆1, . . . ,∆k;

(ii) S is set-theoretically cut out by equations whose Newton polytopes are contained in a

polytope ∆ ⊃ ∆
(l)
ξ .

Assume further that ∆j ⊂ ∆ for j = 1, . . . , k. Then

deg(R(S)) 6 (s− k + 1)Es,kV (∆1, . . . ,∆k,∆, . . . ,∆). (12)

The proof of the following corollary is similar to that of Corollary 8.

Corollary 10. Let S ⊂ Ω(l) be any variety of top dimension s− k cut out by equations whose

Newton polytope are contained in a polytope ∆ ⊃ ∆
(l)
ξ . Then

deg(R(S)) 6 (s− k + 1)Es,k Vol(∆). (13)
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Finally, we record a statement with a formulation more similar to that of Theorem 2. In
particular, it shows that for a fixed system of differential conditions S, the number of solutions
within a variety X defined by equations of degrees bounded by dX grows asymptotically like dnX ,
which is the expected order of growth (even in a purely algebraic context).

Corollary 11. Let S ⊂ Ω(l) be a variety of top dimension s−k cut out by equations of degrees
at most dS and X ⊂ M be a variety cut out by equations of degrees at most dX > dS . Denote
T = S ∩ π−1(X) and suppose that T admits finitely many solutions. Then

N (T ) 6
Es,k
s!

dnXd
nl
S . (14)

More generally, without the assumption that T admits finitely many solutions, we have

deg(R(T )) 6 (s− k + 1)
Es,k
s!

dnXd
nl
S . (15)

Proof. We let ∆ ⊂ Rs denote the polytope obtained from the polytope dS∆
(l)
ξ by stretching each

of the coordinates ξ = (ξ1, . . . , ξn) by a factor of dX/dS . In particular, ∆ contains both dS∆
(l)
ξ

and dX∆ξ, i.e. it contains the Newton polytopes of the given equations for S and π−1(X). It
remains to note that

Vol(∆) = (dX/dS)nd
n(l+1)
S (s!)−1 (16)

and apply Corollaries 8 and 10, respectively. 2

1.3 Elementary differential algebraic constructions

For any Zariski closed set V ⊂ M we define the lth prolongation V (l) ⊂ M (l) to be the Zariski
closure of {x(l) : x ∈ V }. The prolongation of a finite union of closed sets is clearly equal to the
union of their prolongations. Moreover, by a theorem of Kolchin [Kol73], the prolongation of an
irreducible set is itself irreducible.

The following encapsulates a key property of differentially closed fields.

Fact 12 [HP00, Fact 3.7]. Let V denote an irreducible variety and W ⊂ V (1) an irreducible
variety which projects dominantly on V . Then for any non-empty Zariski open subset U ⊂ W
there exists x ∈ V with x(1) ∈ U .

We denote M (l)(1) := (M (l))(1), and similarly for x(l)(1). We have a canonical variety
Ξ ⊂ M (l)(1) defined to be the Zariski closure of {x(l)(1) : x ∈ M}. It is given by the equations
ξ(k)(0) = ξ(k−1)(1) for k = 1, . . . , l.

Proposition 13. The points y ∈M (l) that satisfy y(1) ∈ Ξ are precisely the points of the form
x(l) for some x ∈M .

Proof. Let y = (x0, x1, . . . , xl) with y(1) = (y,Dy) ∈ Ξ. It follows that xk =Dxk−1 for k = 1, . . . , l,
so y = (x0)(l) as claimed. The other direction is obvious. 2

Lemma 14. Let S ⊂ Ω(l) be a variety admitting finitely many solutions. Then S(1) ∩Ξ does not
project dominantly on any positive-dimensional component of S. More generally, the same holds
if R(S) does not contain any component of S.
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Proof. It is enough to check the case of S irreducible (and positive-dimensional). Let U =

Ω(l)\R(S). By assumption, U ∩ S is open dense in S.

Assume toward contradiction that S(1)∩Ξ projects dominantly on S. Then some irreducible

component W of this intersection projects dominantly on S as well. Thus we can apply Fact 12 to

the non-empty open subset W ∩π−1(U) and deduce that there exists y ∈ U with y(1) ∈ S(1) ∩Ξ.

But by Proposition 13 such y is of the form z(l) for some z ∈M , and hence z is another solution

of S, contradicting the definition of U . 2

1.4 Overview of the proof

1.4.1 The reduction of dimension. Let S ⊂ Ω(l) be a variety of positive dimension admitting

finitely many solutions, and let S̃ := πΩ(l)(S(1)∩Ξ). Then by Lemma 14 we have dim S̃ < dimS.

If x ∈ M is any solution of S, then x(l) ∈ S and hence x(l)(1) ∈ S(1) ∩ Ξ, so x(l) ∈ S̃. That is, x

is also a solution of S̃. Since S̃ ⊂ S we conclude that N (S) = N (S̃).

Repeating this reduction s times, one is eventually reduced to counting the number of

solutions of a zero-dimensional variety, which is certainly bounded by the number of points

in the variety. This is similar to the approach employed in [HP00]. In order to obtain good

effective estimates it is thus necessary to have an effective description of S̃ in terms of S, and

the key step is obtaining an effective description of S(1).

1.4.2 An approximation for the first prolongation. We now work with an arbitrary ambient

space N , and the reader should keep in mind that eventually we will take this ambient space to

be M (l) or its open dense subset Ω(l). To avoid confusion we denote the coordinates on N by ζ.

If V ⊂ N is an effectively smooth complete intersection defined by k polynomial equations

{Pj} with a given Newton polytope ∆, then one can explicitly write 2k equations in ζ, ζ(1) for

V (1), with (essentially) the same Newton polytope in ζ and linear in ζ(1). However, this system

of equations degenerates if V is a non-smooth intersection.

Our proof is based on the following idea. We embed V as the zero fiber V = X0 of a flat

family X whose generic fiber is a complete intersection. Making a small perturbation, we may

also assume that the generic fiber is smooth. We write the system of 2k equations as above (now

depending on an extra deformation parameter e), obtaining a family τ(X). It turns out that the

limit τ(X)0, while not necessarily equal to V (1), still approximates it rather well: the two agree

over an open dense set. To conclude, if V is a limit of a family of complete intersections of a

given Newton polytope, then the same is essentially true for V (1) (at least in an open dense set).

1.4.3 Conclusion. Returning now to the notation of § 1.4.1, we show that if S was the limit

of a family of complete intersections with a given Newton polytope, then the same is true for

S̃ (with a slightly larger Newton polytope). We may now repeat the construction s times and

eventually obtain the limit of a zero-dimensional variety. Of course, the number of points of such

a limit is bounded by the number of points of the generic fiber, which may now be estimated

with the help of the BKK theorem.

2. Smooth approximations and flat families

In this section we denote the ambient space by N and its dimension by n. The reader should

keep in mind that eventually we will take this ambient space to be M (l) or its open dense subset

Ω(l). To avoid confusion we denote the coordinates on N by ζ.
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2.1 The τ -variety associated to a flat family
Let V ⊂ N be given by

V = {P1 = · · · = Pk = 0}, Pj ∈ K[ζ]. (17)

We define τ(V ) ⊂ N (1) to be

τ(V ) := {(ζ, ζ(1)) : Pj(ζ) = 0, (dPj)ζ(ζ
(1)) + PDj (ζ) = 0, j = 1, . . . , k}, (18)

where PD is the polynomial obtained by applying D to each coefficient of P . It follows from the
chain rule that V (1) ⊂ τ(V ). Moreover, if V is effectively smooth (i.e. the differentials dP1, . . . , dPk
are linearly independent at every point of V ) then equality holds [HP00, Remark 3.5(3)], and in
particular τ(V ) has pure codimension 2k in N (1) (assuming V is non-empty).

Recall that a variety X ⊂N×AK is flat over AK if and only if every component of X projects
dominantly on AK . For general X, we denote by F(X) the flat family obtained by removing any
component which projects to a point in AK . For any ε ∈ AK we denote by Xε the ε-fiber of X.

Consider now a variety X ⊂ N × AK given by

X = F [{P1 = · · · = Pk = 0}], Pj ∈ K[ζ, e], (19)

where e denotes a coordinate on AK . We say that X is a generic complete intersection if the
generic fiber Xε has pure codimension k. We define τ(X) ⊂ N (1) × AK to be

τ(X) := F [{(ζ, ζ(1)) : Pj(ζ) = 0, (dPj)ζ(ζ
(1)) + PDj (ζ) = 0, j = 1, . . . , k}]. (20)

For generic ε ∈ K0, τ(X)ε is just τ(Xε). The following subsection establishes a precise sense in
which τ(X)0, obtained as the limit of these generic fibers, approximates (X0)(1).

2.2 Approximation of the first prolongation
In this section it will be convenient for us to assume that the field K has an analytic realization.
We therefore assume that the field of constants K0 is a subfield of C, and that all functions
involved in the definition of any of the varieties we consider have been embedded in the field of
meromorphic functions on the disc D (this is always possible by a result of Seidenberg [Sei58,
Sei69]). Thus we may consider K-varieties as analytic sets.

We begin with a simple lemma.

Lemma 15. Let X ⊂ N × AK be a flat family, and x ∈ X0. Then for any sequence εi ∈ K0

with εi → 0, there exists a sequence of K-points xi ∈ Xεi , holomorphic in a common disc and
converging uniformly to x.

Proof. Intersecting with generic linear functionals vanishing at x, one can reduce the problem to
the case that X is a curve. Moreover, changing coordinate e → eν , we may assume that the curve
is irreducible, smooth and transversal to e at x in the K-sense, i.e. for generic t. We restrict the
disc D to make this true for every t.

Consider the intersection X ∩ {e = εi}. This is a zero-dimensional set, and for sufficiently
small εi contains precisely one solution xi near x. All xi are K-points and, moreover, are in fact
defined over the field of definition of X. Therefore they may be viewed as (a priori, ramified)
holomorphic functions on D. But in fact xi(t) is well defined for t ∈ D, and thus no ramification
can occur and the functions xi(t) are holomorphic in D. Finally, xi converges pointwise to x
by definition, and it follows by standard arguments that convergence is uniform (perhaps on a
smaller disc). 2
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We remark that since the Zariski topology is coarser than the analytic C-topology, the
converse also holds: if xi ∈ Xεi is a sequence of K points holomorphic on a disc D and converging
uniformly to x ∈ K, then any Zariski closed set containing xi for every i must contain x.

Proposition 16. Let X be a generic complete intersection as in (19). Then we have
(X0)(1) ⊂ τ(X)0.

Proof. Since τ(X)0 is closed by definition, it is enough to prove that for every x ∈ X0, we have
x(1) ∈ τ(X)0. Let x ∈ X0. Since the family X is flat, we can choose by Lemma 15 a sequence
xi ∈ Xεi with εi ∈ K0 and εi → 0, converging uniformly to x. Then (xi)

(1) converges uniformly
to x(l) (in an appropriate disc). Since (Xεi)

(1) ⊂ τ(Xεi) and τ(Xεi) = τ(X)εi by the remark
following (20), we have (xi)

(1) ∈ τ(X)εi . Since τ(X) is closed we conclude that x(l) ∈ τ(X)0 as
claimed. 2

For a variety V ⊂ N as in (17), we can describe τ(V ) at effectively smooth points in terms of
complex tangent spaces. Indeed, let x ∈ V be an effectively smooth K-point. Then V is smooth
as a complex variety at x(t) for generic t and we have the equivalence

(x, v) ∈ τ(V ) ⇐⇒ ∂t + v · ∂ζ ∈ TxV, (21)

where the right-hand side is understood to hold for generic t. In particular, if V is any variety
then one can choose a system of equations such that it becomes effectively smooth at every
smooth point. Thus, since we know that τ(V ) agrees with V (1) over the effectively smooth locus,
we conclude that for every smooth point x ∈ V we also have

(x, v) ∈ V (1) ⇐⇒ ∂t + v · ∂ζ ∈ TxV. (22)

The following proposition establishes a partial converse to Proposition 16.

Proposition 17. Let X be a generic complete intersection as in (19) such that the generic fiber
Xε is effectively smooth. Then there is an open dense set U ⊂ X0 such that

(X0)(1) ∩ π−1(U) = τ(X)0 ∩ π−1(U). (23)

Before proving this proposition, we illustrate with the following example.

Example 18. Consider X ⊂ A2
K×AK given by y2 = ex (see Figure 1). Since the family is defined

by an equation with constant coefficients, (X0)(1) agrees with the tangent bundle of X0. For
generic ε, the fiber Xε is an effectively smooth parabola, and for ε constant τ(X)ε agrees with
the tangent bundle of this parabola.

The fiber τ(X)0 is the flat limit of τ(X)e. Since ∂y is tangent to Xε at (x, y) = (0, 0) for any
ε, the fiber of τ(X)0 over this point contains ∂y. Thus τ(X)0 is strictly larger than the tangent
bundle of X0. However, over any point of U := X0\{(0, 0)}, one can easily check that the limit
of Xε agrees with the tangent bundle of X0.

Proof of Proposition 17. To avoid confusion, in this proof we make the convention that p denotes
C-points, whereas x denotes K-points.

Since the map e is flat on X (over K), it follows that for generic t there are no components
of X contained in the e = 0 fiber. After restricting to a disc where this holds, the map
e : X → C can be viewed as a flat map over C. By a theorem of Hironaka [Hir77], there exists
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Figure 1. Degeneration of τ(X) in Example 18.

an analytic stratification {Zα} of X0 with the following property: for any sequence of points
pi ∈ X converging to p ∈ Zα, if Xe(pi) is smooth at pi and TpiXe(pi) converges to a limit T , then
TpZα ⊂ T . This is a somewhat weaker form of Thom’s Ae-condition, which will suffice for our
purposes. We fix such a stratification, and let Z0 denote the (union of) top-dimensional strata.

The following observation is the key geometric idea for the proof. Let pi ∈X be any sequence
of points converging to p ∈ Z0 with Xe(pi) smooth at pi and vi ∈ TpiXe(pi) a sequence of tangent
vectors converging to a vector v. Then v ∈ TpX0. Indeed, one can always pass to a subsequence
such that TpiXe(pi) converges to some limit T , and hence TpZ0 ⊂ T . But since the dimensions of
these sets agree, in fact TpX0 = TpZ0 = T , and in particular v ∈ T implies v ∈ TpX0.

We know by Proposition 16 that (X0)(1) ⊂ τ(X)0. The set of points in X0 such that the
π-fibers of these two sets are equal is K-constructible. Thus, if it does not contain an open dense
set it must be contained in a closed set of strictly smaller dimension. Therefore it will suffice to
establish the claim over any analytic open dense set U . We will establish it with U = Z0. Thus,
let (x, v) ∈ τ(X)0 with x ∈ Z0, and we will prove that (x, v) ∈ (X0)(1).

Since τ(X) is flat by definition, we may by Lemma 15 choose a sequence εi ∈K0 with εi → 0
and a sequence (xi, vi) ∈ τ(X)εi such that (xi, vi) are defined in a common disc D and converge
uniformly to (x, v). By assumption, we may take the fibers Xεi to be effectively smooth. Also,
by the remark following (20) we may assume that τ(X)εi = τ(Xεi). We conclude from (21) that

∂t + vi · ∂ζ ∈ TxiXεi (24)

for generic t.
For t outside a countable set, each fiber Xεi is effectively smooth (over C) at xi(t). By the

key geometric observation above it now follows that

∂t + v · ∂ζ ∈ TxX0 (25)

for generic t. Thus (22) gives (x, v) ∈ (X0)(1) as claimed. 2

Corollary 19. Let X be a generic complete intersection as in (19) and suppose that the generic
fiber Xε is effectively smooth. Then every component of (X0)(1) is a component of τ(X)0.

876

https://doi.org/10.1112/S0010437X17007035 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007035


Bezout-type theorems for differential fields

Proof. Indeed, if Z1, . . . , Zr denote the components of X0 then they each have codimension k

(since X is a flat family of pure codimension k), and Z
(1)
i are the components of (X0)(1). In

particular, π−1(U) is dense in each Z
(1)
i (for U given in Proposition 17), and since τ(X)0 agrees

with (X0)(1) over π−1(U) it follows that each Z
(1)
i is also a component of τ(X)0. 2

3. Constructions with flat families

Once again, in this section we denote the ambient space by N and its dimension by n. The reader
should keep in mind that eventually we will take this ambient space to be M (l) or its open dense
subset Ω(l). To avoid confusion we denote the coordinates on N by ζ.

When speaking about the Newton polytope of a polynomial in K[ζ, e] we mean the Newton
polytope in the ζ variables obtained for a generic value of e.

3.1 General lemmas on perturbations and intersections in flat families
The following proposition shows that the 0-fiber of a flat family is not changed if one makes a
sufficiently small perturbation of the family, i.e. a perturbation of sufficiently high order in e.

Proposition 20. Let X ⊂N×A2
K be a variety, and suppose that every component of X projects

dominantly on A2
K . Then the flat limit at the origin of Xs,t (as a variety) along Γ = {t = 0} ⊂ A2

K

is the same as the flat limit at the origin along any smooth curve Γ′ ⊂ A2
K sufficiently tangent

to Γ.

Proof. We may assume that X is irreducible. Denote the projection to A2
K by η. Recall that

N is an open dense subset of some projective space CPS . Let X̄ denote the closure of X in
CPS × A2

K , which clearly projects dominantly to A2
K as well.

Consider the map Φ taking a pair (s, t) to the fiber Xs,t := X̄ ∩ η−1(s, t) with its cycle
structure in the Chow variety parametrizing cycles of degree degX in CPS . This is a rational
map defined over the (open dense) locus U = A2

K\Σ such that the intersection above is proper.
We have codim Σ > 2 (otherwise dim η−1(Σ) = dimX, which is ruled out by the hypotheses).
Thus Φ is defined on both Γ and Γ′ except for possibly finitely many exceptions where they
intersect Σ.

In projective coordinates on the Chow variety, we have

Φ(s, 0) = sν [X̃] +O(sν+1), (26)

where [X̃] denotes the Chow form of the flat limit of Xs,t along Γ (with its cycle structure). Thus

Φ(s, t) = sν [X̃] +O(sν+1) +O(t). (27)

We see that if t = O(sν+1) along Γ′ then the limit of Xs,t along Γ′ is also equal to [X̃] as a cycle.
In particular, these cycles intersect N in the same set, proving the claim. 2

Remark 21. Let U denote a Zariski open subset in the space of n-tuples of polynomials with
a given Newton polytope. Proposition 20 implies, in particular, that one may deform a given
complete intersection family (19) to make Pi(ζ, e) ∈ U for generic values of e, without changing
the fiber X0. Indeed, consider P̃i = Pi+sQi where Qi denotes some tuple of polynomials from the
space. Then taking s = eν for sufficiently large ν ensures that the families defined by {Pi} and
{P̃i} have the same 0-fiber, whereas an appropriate (generic) choice of Qi ensures that {P̃i} ∈ U
for generic e.
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Figure 2. The different families in Example 23.

For instance, in conjunction with the Bertini theorem, this implies that one can make the
generic fiber effectively smooth.

If X is a flat family and P ∈ K[ζ] is such that {P = 0} intersects X0 properly, then the
family Y = F

[
X ∩ {P = 0}

]
satisfies Y0 = X0 ∩ {P = 0}. However, if the intersection is not

proper, one cannot in general predict the structure of Y0. The following proposition shows that
under a technical modification, one can guarantee that Y0 is given by the intersection between
{P = 0} and those components of X0 that meet it properly.

Proposition 22. Let X ⊂ N × AK be a generic complete intersection and P ∈ K[ζ]. Define
Y, Ỹ by

Y = F [X ∩ {P = e1/ν}], (28)

Ỹ = F [(X0 × AK) ∩ {P = e1/ν}], (29)

where ν is a sufficiently large natural number.
Then Ỹ0 = Y0. In particular, if X0 = C ∪ C ′ where C ′ denotes the union of components of

X0 where P vanishes identically and C the rest, then Y0 = C ∩ {P = 0}.

Proof. The first part of the statement is simply Proposition 20 applied to the family (X×AsK)∩
{P = s} (with e in place of t). For the second part it suffices to compute Ỹ0 by noting that
{P = e1/ν} intersects C properly and does not intersect C ′ at all (in the affine space). 2

We remark that the use of the ramified factor e1/ν is merely a notational convenience, to
avoid reparametrizing the original family X. One could of course obtain an honest polynomial
family by passing to a new deformation parameter.

Example 23. Consider X ⊂ C2×C given by xy = e, and P = x (see Figure 2). Then X0 has two
components, the x- and y-axes. The former intersects {P = 0} properly at the origin, whereas
the latter intersects {P = 0} non-properly.

If we consider the family Y = F(X ∩ {P = 0}) we obtain Y0 = ∅. If we consider
Y = F(X ∩ {P = e}) we obtain Y0 = {(0, 1)}. Finally, if we consider Y = F(X ∩ {P = eα})
where0 < α < 1, then we obtain Y = {(0, 0)}, which is the intersection between the x-axis and
{P = 0} as predicted by Proposition 22.
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3.2 Projections and reduction of dimension

We begin with a simple lemma on linear elimination of variables. Let P ∈ K[ζ, ζ(1)] be a
polynomial with degζ(1) P 6 1. The homogenization P̃ of P is the polynomial in one extra

variable, ζ
(1)
0 , . . . , ζ

(1)
n , where the free term of P is multiplied by ζ

(1)
0 .

Lemma 24. Let

P1, . . . , Pn+1 ∈ K[ζ, ζ(1)] ∆(Pj) ⊂ ∆j ×∆ζ(1) (30)

and let P̃1, . . . , P̃n+1 denote their homogenization, and W ⊂ N × PnK the variety they define.
Let R denote the determinant of the (n+1)×(n+1) matrix whose jth row is given by the n+1

coefficients of P̃j , viewed as a linear form in the variables ζ
(1)
0 , . . . , ζ

(1)
n . Then ∆(R) ⊂

∑n+1
j=1 ∆j

and π(W ) = {R = 0}.

Proof. The points of π(W ) correspond to points ζ ∈ N such that the linear forms P̃j have a
common kernel in PnK – the locus of which corresponds to the zeros of the determinant R. 2

Lemma 25. Let

P1, . . . , Pk ∈ K[ζ, e] (31)

and

Q1, . . . , Ql ∈ K[ζ, ζ(1), e], ∆(Qj) ⊂ ∆j ×∆ζ(1) , (32)

define a generic complete intersection X ⊂ N (1) × AK ,

X = F [{P1 = · · · = Pk = Q1 = · · · = Ql = 0}]. (33)

Denote by W the union of the components C of X0 such that codimπ(C) > k. Then there exist
R ∈ K[ζ, e] and a generic complete intersection Y ,

Y = F [{P1 = · · · = Pk = R = 0}], ∆(R) ⊂
l∑

j=1

∆j , (34)

such that π(W ) ⊂ Y0.

Proof. We prove the claim by reverse induction on l, starting with the case l > n + 1. In this
case W = X0. We replace Q1, . . . , Qn+1 by their small generic perturbation (keeping the same
Newton polytope). By Proposition 20 this does not change X0. We can thus assume without
loss of generality that the generic fiber of V ⊂ N × PnK × AK cut out by P1, . . . , Pk and the
homogenizations of Q1, . . . , Qn+1 has codimension n+k+1. Applying Lemma 24 to Q1, . . . , Qn+1,
we thus obtain R giving a generic complete intersection (34). By construction the generic fiber
Yε contains π(Xε), and it follows that Y0 contains π(X0) as claimed.

We now consider the case l 6 n. Then for any component C ⊂ W , the generic fiber of
π : C → π(C) has dimension at least n + 1 − l > 1. Let ` be a generic affine-linear form in the
ζ(1) variables. Then {` = 0} meets X0 properly, and, taking Ql+1 to be `, we obtain a new family
X ′ such that

C ′ := C ∩ {` = 0} ⊂ X ′0. (35)

Moreover,

Clo[π(C)] = Clo[π(C ′)] (36)

879

https://doi.org/10.1112/S0010437X17007035 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007035


G. Binyamini

since {` = 0} meets the generic fiber of π : C → π(C). Since this is true for any component
C ⊂W (with sufficiently generic `), the claim follows by induction with the new family X ′ and
∆l+1 = {0}. 2

The following lemma provides the main inductive step in our estimates.

Lemma 26. Let X ⊂ N × AK given by

X = F [{P1 = · · · = Pk = 0}], Pj ∈ K[ζ, e],∆(Pj) ⊂ ∆j , (37)

be a generic complete intersection. Let S ⊂ N (1) be a variety defined by equations which are
affine-linear in ζ, ζ(1). Suppose that (X0)(1) ∩ S does not project dominantly on any component
of X0. Then there exist

P̃1, . . . , P̃k+1 ∈ K[ζ, e], (38)

with ∆(P̃j) ⊂ ∆j for j = 1, . . . , k and

∆(P̃k+1) ⊂ (n− k + 1)Γ, Γ = (n+ 1)∆ζ +
k∑
i=1

∆j , (39)

such that
Y = F [{P̃1 = · · · = P̃k+1 = 0}] (40)

is a generic complete intersection and π((X0)(1) ∩ S) ⊂ Y0 ⊂ X0.

Proof. By Proposition 20 any sufficiently small perturbation of P1, . . . , Pk does not change X0.
We fix such a perturbation making the generic fiber of the family effectively smooth (without
changing the Newton polytopes). Without loss of generality we may assume that the family
P1, . . . , Pk is already in this form.

We let Z0 denote the family τ(X). Recall that it is a generic complete intersection
defined by the vanishing of P1, . . . , Pk and another set of k equations Q1, . . . , Qk with
∆(Qj) ⊂ (∆ + ∆ζ) × ∆ζ(1) . By Corollary 19 every component of (X0)(1) is also a component

of Z0
0 . Moreover, any extra components do not project dominantly on a component of X0 by

Proposition 17.
For j = 1, . . . , n − k + 1 we define Zj to be the family obtained from Zj−1 by intersecting

with a generic linear combination Q̃j of the given equations of S, using Proposition 22. We define
Rj , Y j by applying Lemma 25 to Zj . We have ∆(Rj) ⊂ Γ. Finally, we take P̃k+1 = R1 · · ·Rn−k+1

which gives Y = Y 1 ∪ · · · ∪ Y n−k+1.
Let C be a component of (X0)(1). Then it is also a component of Z0

0 . Since C projects
dominantly on a component of X0, it cannot be contained in S. Hence by genericity C ′ :=
C ∩ {Q̃1 = 0} is strictly contained in C, and by Proposition 22 we have C ′ ⊂ Z1

0 . Moreover,
clearly C ′ ∩ S = C ∩ S. Thus it will suffice to prove that

π(Z1
0 ∩ S) ⊂ Y0. (41)

Now let C be any component of Z1
0 . If codim(π(C)) > k then

π(C ∩ S) ⊂ π(C) ⊂ Y 1
0 ⊂ Y0, (42)

where the middle inclusion follows from Lemma 25. Otherwise, C projects dominantly on a
component of X0, so it again cannot be contained in S. Again by genericity C ′ := C ∩ {Q̃2 = 0}
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is strictly contained in C, and by Proposition 22 we have C ′ ⊂ Z2
0 . Moreover, clearly C ∩ S =

C ′ ∩ S. Thus it will suffice to prove that

π(Z2
0 ∩ S) ⊂ Y0. (43)

We repeat this process until Zn−k+1
0 . At this point every component has dimension at most

n− k− 1 even before the π projection, and thus projects to a set of codimension greater than k.
As in (42) it then follows that

π(C ∩ S) ⊂ π(C) ⊂ Y n−k+1
0 ⊂ Y0 (44)

for every component C of Zn−k+1
0 , thus concluding the proof. 2

Remark 27. If the polytopes ∆1, . . . ,∆k are co-ideal polytopes (see Remark 4) then they are
stable under differentiations. In this case in the definition of Γ in (39) one can replace (n+ 1)∆ζ

by (n − k + 1)∆ζ . For such polytopes, all of our main results remain valid with this refined
definition of Γ.

4. Proofs of the main estimates

In this section we prove our main results on the number of isolated solutions of a differential
system of equations and the degree of its reduction. Recall the notation of § 1.1. In particular,
M denotes our ambient space, which is a Zariski open subset of Kn; Ω(l) denotes a Zariski
open subset of the prolongation M (l); and s := dim Ω(l) = n(l + 1). We begin with a lemma
demonstrating the application of Lemma 26 to this context.

Lemma 28. Let X ⊂ Ω(l) × AK be a generic complete intersection family, and suppose that
(X0)(1) ∩Ξ does not project dominantly on any component of X0. Then the family Y defined by
applying Lemma 26 to X with N = Ω(l) and S = Ξ satisfies X0 ∩ J l(M) = Y0 ∩ J l(M).

Proof. Since Y0 ⊂ X0, one inclusion is obvious. In the other direction, let x(l) ∈ X0. Then
x(l)(1) ∈ (X0)(1) ∩ Ξ so by Lemma 26 x(l) = π(x(l)(1)) ∈ Y0 as well. 2

We now prove our result for the case that S is a fiber X0 of a generic complete intersection
family X. In particular, the following proposition implies (and generalizes) Theorem 6.

Proposition 29. Let X ⊂ Ω(l) × AK be a generic complete intersection family defined by
polynomials with Newton polytopes ∆1, . . . ,∆k, and suppose that X0 admits finitely many
solutions. Denote

Γ = s∆
(l)
ξ + ∆1 + · · ·+ ∆k. (45)

Then

N (X0) 6 Cs,kV (∆1, . . . ,∆k,Γ, . . . ,Γ), Cs,k = s!(δ + 2)δ(δ+1)/2, (46)

where δ := s− k.

Proof. LetX(0) =X. As long asX(j)0 has positive dimension, we defineX(j+1) to be the family
obtained by applying Lemma 26 to X(j) with the ambient space Ω(l) and S = Ξ. The lemma is
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applicable by application of Lemma 14, since X(j)0 admits finitely many solutions. We denote
the extra equation obtained in this process1 by Rj+1. By Lemma 28 we have N (X(j + 1)0) =
N (X(j)0).

The Newton polytope of Rj is contained in (δ+ 2)jΓ, as one can see by the following simple
induction:

∆(Rj) ⊂ (δ + 1)

(j−1∑
i=0

(δ + 2)iΓ

)
⊂ (δ + 1)

(δ + 2)j − 1

δ + 1
Γ ⊂ (δ + 2)jΓ. (47)

Eventually we obtain the zero-dimensional variety X(δ). From the above we conclude that
N (X0) = N (X(δ)0), which is certainly bounded by the number of points in X(δ)0. Since the
number of points of a flat limit is certainly bounded by the number of points of the generic fiber,
we have by the BKK theorem

N (X0) 6 s!V (∆1, . . . ,∆k, (δ + 2)1Γ, . . . , (δ + 2)δΓ)

= (δ + 2)δ(δ+1)/2s!V (∆1, . . . ,∆k,Γ, . . . ,Γ) (48)

as claimed. 2

We now prove our result for arbitrary varieties S ⊂ Ω(l).

Proof of Theorem 7. Let X(k) ⊂ Ω(l) × AK be the (constant) family cut out by the given
equations with Newton polytopes ∆1, . . . ,∆k.

For j > k, let Pj denote a generic linear combination of the given equations with Newton
polytope ∆ defining S. Define X(j+1) to be the family obtained by application of Proposition 22
to X(j) and Pj . Write X(j)0 = A(j) ∪ B(j), where A(j) denotes the union of the components
of X(j)0 that are contained in S, and B(j) the rest.

The number of solutions of S which are contained in C(j) = A(j)\B(j) is bounded by

N (C(j)) 6 Cs,kV (∆1, . . . ,∆j ,Γj , . . . ,Γj). (49)

Indeed, C(j) is the flat limit of the family X(j) in the ambient space Ω(l)\B(j), and the bound
thus follows from Proposition 29. The claim of the theorem will follow once we show that
S = C(k) ∪ · · · ∪ C(s).

Let x ∈ S, and we will show that it belongs to some C(j). Certainly x ∈ X(k)0. If X 6∈ B(k),
we are done. Otherwise x is contained in some component G ⊂ X(k)0 with G 6⊂ S, and we may
assume by genericity that Pk does not vanish identically on G. Then according to Proposition 22,
X(k + 1)0 contains G ∩ {Pk = 0}, and, in particular, x ∈ X(k + 1)0.

We continue in the same manner. The process must stop at j = s (if not before), because at
this point X(j)0 consists of isolated points, so x ∈ X(j)0 implies x ∈ C(j). 2

Finally, we prove the more general Theorem 9.

Proof of Theorem 9. We indicate the minor changes required in the proofs of Proposition 29 and
Theorem 7.

The proof of Proposition 29 carries out verbatim as long as X(j)0 does not have a component
which is a component of R(S). Let S(j) ⊂ R(S) denote the components of codimension j.

1 In fact each application of Lemma 26 perturbs all the equations defining X(j); but the Newton polytopes remain
unchanged.
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Then these are also components of X(j)0, and their degrees can be bounded by the BKK
theorem. We then define X(j + 1) in the same way, but restricting the ambient space to
Ω(l)\(S(1) ∪ · · · ∪ S(j)). This insures that Lemma 26 is again applicable. It remain only to note
that the degree of the remaining components of R(S) in the new ambient space is the same as
the degree in the original ambient space. The proof is thus concluded by induction. The resulting
bound has an extra multiplicative factor of s−k+1 corresponding to the fact that we separately
bound the degree in each dimension.2

We can now carry out the proof of Theorem 7 in the same way, noting that since
S = C(k) ∪ · · · ∪ C(s), any component of R(S) must be a component of R(C(j)) for some
j = k, . . . , s. 2

5. Diophantine applications

In the papers [HP00, FS14] the effective estimate of Theorem 2 has been used to derive estimates
for some counting problems of a diophantine nature. In this section we illustrate our result by
improving the estimates presented in these papers.

In this section we assume that K = C, and the differentiation operator D is chosen such that
the field of constants is k = Q̄.

5.1 Transcendental points in subvarieties of semi-abelian varieties
Recall that a semi-abelian variety is an extension of an abelian variety by a torus. Let A be a
semi-abelian variety and Γ ⊂ A a subgroup of finite rational rank r := dimQ Γ ⊗ Q. Finally, let
X be a subvariety of A.

In [HP00] effective bounds are given on the number of points in the intersection X ∩Γ under
various conditions on Γ, X. The estimates are presented in terms of the following data. Suppose
that A has dimension n and is defined over k. We assume that A is embedded as a locally closed
subset of a projective space CPN . Let ω1, . . . , ωn be a basis of translation-invariant differential
forms on A.

We assume that A is covered by t affine charts, and that each ωi is given in each chart by a
polynomial in the local coordinates x1, . . . , xN and dx1, . . . , dxn. Let dA be the maximal degree
of the equations defining A in any of the charts, and dω be the maximal degree of any of the
polynomials defining ω1, . . . , ωn in any of the charts. Finally, let dX denote an upper bound on
the degrees of the equations defining X in any of the charts. We assume for simplicity of the
formulation that dX > dA.

The following is a refined form of the main result of [HP00].

Theorem 30 (Cf. [HP00, Theorem 1.1]). Suppose A,X are defined over k and there exist no
positive-dimensional subvarieties X1, X2 ⊂ A such that X1 +X2 ⊂ X. Then

#[(X ∩ Γ)\X(k)] 6 FN,n,r · t · dNrω dnx, (50)

where

FN,n,r =
EN(r+1),N−n

N(r + 1)!

(
Nr + n

n

)
dN−nA 2n. (51)

Proof. In [HP00] it is shown that Γ is contained in a finite-dimensional differential algebraic
subgroup G of A such that B := (X ∩ G)\X(k) is finite. It is therefore enough to bound the

2 One could obviously obtain a sharper estimate taking into account the different BKK estimate for each dimension.
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number of points in B. Moreover, it is shown that in each of the affine charts on A, the group G
can be written in the form

G = {x : x(r) ∈ V },

where V ⊂ (KN )(r) is a variety defined by equations of degrees bounded by dω.
We will apply Theorem 7 with parameters

M = KN ,

l = r,

Ω(r) = M (r)\{ξ(1) = 0},
S = Ω(r) ∩ V ∩ π−1(X).

Since S is contained in π−1(A) which has codimension N − n and is cut out by equations of
degree at most dA, we can apply Theorem 7 with

∆1 = · · · = ∆N−n = dA∆ξ, ∆ = dX∆ξ + dω∆
(r)
ξ . (52)

We note that ∆ ⊂ ∆′ + ∆′′ where ∆′ = 2dX∆ξ and ∆′′ is the polytope of polynomials of degree
dω in ξ(1), . . . , ξ(r).

Finally, S admits finitely many solutions, and by Theorem 7 we have

N (S) 6 Es,N−nV (∆1, . . . ,∆N−n,∆
′ + ∆′′, . . . ,∆′ + ∆′′)

= Es,N−n

(
s−N + n

n

)
V

(
dA∆ξ︸ ︷︷ ︸

N−n times

, ∆′︸︷︷︸
n times

, ∆′′︸︷︷︸
s−N times

)

6 Es,N−n

(
s−N + n

n

)
dN−nA (2dX)ndN−nω V (∆

(l)
ξ , . . . ,∆

(l)
ξ )

= Es,N−n

(
s−N + n

n

)
2n(s!)−1dN−nA ds−Nω dnX ,

where in the second equality we expand the mixed volume by multilinearity and use the fact
that the value is non-zero if and only if ∆′ appears exactly n times. 2

We note, in particular, that the bound of Theorem 30 is singly-exponential with respect to
N and r, and has the natural asymptotic dnX with respect to dX . We also remark that since A is
smooth, the arguments of this paper could have been applied with small changes in the ambient
space A rather than KN , leading to somewhat better estimates.

We next present a version of Theorem 30 for a torus. This result may be seen as an analog
of the Kushnirenko theorem. Similar analogs of the BKK theorem involving mixed volumes can
be obtained in a similar manner.

Theorem 31. Let A = (C∗)n and let X ⊂ A be defined over k by equations with Newton
polytope ∆. Suppose that there exist no positive-dimensional subvarieties X1, X2 ⊂ A such that
X1 +X2 ⊂ X. Then

#[(X ∩ Γ)\X(k)] 6 F2n,n,r2
n(2r+1) Vol(∆). (53)

Proof. We embed A in C2n = C[x1, . . . , xn, y1, . . . , yn] with the equations xiyi = 1. Then the
invariant forms dxi/xi become polynomials of degree 2, so dA = dω = 2. The proof proceeds in
a manner analogous to the proof of Theorem 30. 2
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A special case with n = 2 in Theorem 31 is of some particular interest. It has been considered
by Buium [Bui95b] who gave an iterated-exponential bound, answering a question posed by
Bombieri. The bound was improved in [HP00] to a doubly-exponential bound as follows.

Theorem 32 [HP00, Corollary 1.2]. Let f ∈ Q̄[x, y] be an irreducible polynomial of degree d,
whose zero locus in (C∗)2 is not a translate of a torus. Let Γ ⊂ C∗ be a subgroup of rational
rank r. Then

#{(x, y) ∈ Γ2 : f(x, y) = 0, x 6∈ Q̄} 6 dr2
r
(r + 1)2(2r+1). (54)

From Theorem 31 we obtain the following.

Theorem 33. Let f ∈ Q̄[x, y] be an irreducible polynomial with Newton polygon ∆, whose
zero-locus in (C∗)2 is not a translate of a torus. Let Γ ⊂ C∗ be a subgroup of rational rank r.
Then

#{(x, y) ∈ Γ2 : f(x, y) = 0, x 6∈ Q̄} 6 F4,2,r2
4r+2 Vol(∆). (55)

We note, in particular, that the bound of Theorem 32 is singly-exponential in r, and if we
assume that deg f = d then Vol(∆) = d2/2.

We also present a refined form of [HP00, Theorem 1.1], replacing the condition on X in
Theorem 31 by a condition on the lattice Γ. For simplicity we present the result in the context
of the torus, although the proof works in general in the same way as the proof of Theorem 30.

Theorem 34. Let A = (C∗)n and let X ⊂ A be defined by equations with Newton polytope
∆, and suppose that it does not contain a translate of a non-trivial subtorus. Suppose that
Γ ∩A(k) = {0}. Then

#(X ∩ Γ) 6 n(2r + 1)F2n,n,r2
n(2r+1) Vol(∆). (56)

Proof. In [HP00, Lemma 6.1] it is shown that Γ is contained in a finite-dimensional differential
algebraic subgroup G of (K∗)n such that X ∩G intersects only finitely many translates c1(k∗)n,
. . . , cν(k∗)n of (k∗)n. By the assumption on Γ, each such translate intersects Γ at most once, so
it will suffice to give a bound on ν.

We choose M,Ω(r) as in the proof of Theorem 30 and write X ∩G as the set of solutions of a
variety S ⊂ Ω(r). The logarithmic derivative l(x) = (Dx)/x takes a different value l(cj) on each of
the translates cj(k

∗)n, so the solutions of S are contained in a union of ν disjoint planes ξ(1) = cjξ
in Ω(r) (and meets each of them). Then the same is true for the Zariski closure R(S), and it is
thus enough to bound the degree of this variety. The result now follows by Theorem 9. 2

5.2 Isogeny classes of elliptic curves
Denote by Ex the elliptic curve with j-invariant x ∈ C. We write Ex ∼ Ey when Ex is isogenous
to Ey. We denote

Iso(x) = {y ∈ C : Ey ∼ Ex} (57)

and more generally, for x̄ ∈ Cn,

Iso(x̄) := {ȳ ∈ Cn : Exj ∼ Eyj for j = 1, . . . , n}. (58)

In [FS14] the authors, following a question of Mazur, consider the following problem: given
a non-identity automorphism α of CP 1 and τ ∈ C, estimate the number of elliptic curves Eρ
satisfying Eρ ∼ Eτ and Eα·ρ ∼ Eα·τ . In particular, they obtain the following estimate.
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Theorem 35 [FS14, § 6.1]. Assume τ is transcendental and set

S := {(z, w) : w = α · z} ∩ Iso(τ, α · τ). (59)

Then the size of S, i.e. the number of elliptic curves Eρ satisfying Eρ ∼ Eτ and Eα·ρ ∼ Eα·τ , is
at most3 224367 ' 1018.

The proof of this theorem, as in § 5.1, is based on the introduction of a differential algebraic
construction. Namely, recall that the Schwartzian operator is defined by

S(x) =

(
x′′

x′

)′
− 1

2

(
x′′

x′

)2

, (60)

where we interpret this as an operator on our differentially closed field C, and write x′ as a
shorthand for Dx. We introduce the differential operator

χ(x) = S(x) +R(x)(x′)2, R(x) =
x2 − 1968x+ 2654208

2x2(x− 1728)2
, (61)

which is a third order algebraic differential operator vanishing on Klein’s j-invariant j [Bui95a].
Let τ ∈ C be transcendental (i.e., non-constant with respect to our chosen differential structure).
By a theorem of Buium [Bui95a], the set χ−1(χ(τ)) is the Kolchin closure of Iso(τ). One may
therefore attempt to study the set S in (59) by considering the (possibly larger) set

Z := {(z, w) : w = α · z} ∩ {(z, w) : χ(z) = χ(τ), χ(w) = χ(α · τ)}. (62)

Of course, even if the set S is finite (which is not an obvious assertion), it is not clear a priori
that the set Z must also be finite. However, in [FS14, § 6.1] it is proven that this is indeed the
case. Since Z is a set given by differential algebraic conditions, it is thus possible to estimate its
size using the methods of [HP00], and this is carried out in [FS14] to give Theorem 35.

We now apply our results, specifically Theorem 6, to estimate the size of Z. We
begin by expressing Z as the set of solutions of a variety of differential conditions S. Let
α · z = (az + b)/(cz + d). We choose M = C2, l = 3 and let Ω(l) be the open dense subset of M (l)

obtained by removing the polar divisor of α · ξ (i.e. {cξ+ d = 0}) as well as the polar divisors of
χ(ξ) and χ(η).

We write six explicit equations for S. The first is given by P1 : (cξ+ d)η = aξ+ b. We obtain
the next three equations P2, P3, P4 by taking the first three derivatives of P1 with respect to D
(and replacing Dξ by ξ(1), etc.). One can easily check that these equations define a complete
intersection (in fact, they define the third prolongation of the graph of α: at this point it is

essential that we removed the polar divisor cξ + d = 0). Clearly ∆(Pj) ⊂ ∆
(3)
ξ + ∆

(3)
η for j = 1,

2, 3, 4.
The next two equations P5, P6 are given by χ(ξ) = χ(τ) and χ(η) = χ(α · τ) respectively,

where we clear out all the denominators. We have ∆(P5) ⊂ 6∆
(3)
ξ and ∆(P6) ⊂ 6∆

(3)
η . Since

these equations are linear in ξ(3) and η(3) respectively, it is not hard to check that they are each
irreducible (this was already noted in [FS14, § 5.2]). It follows that P1, . . . , P6 define a complete
intersection. Indeed, otherwise P1, . . . , P5 would imply P6. But P5, being an equation of order 3,
admits infinitely many solutions z, and for each of these (z, α·z) would be a solution of P1, . . . , P5

and hence also of P6, contradicting the fact that S has finitely many solutions.

3 The constant appearing in [FS14] contains a minor computational error; this is a tentative correction.
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Finally, we apply Theorem 6 to S. In computing Γ we also take into account Remark 27,

Γ ⊂ [(8− 6 + 1) + 4 + 6](∆
(3)
ξ + ∆(3)

η ) = 13(∆
(3)
ξ + ∆(3)

η ) (63)

and

N (S) 6 43 · 8!V

(
∆

(3)
ξ + ∆(3)

η︸ ︷︷ ︸
4 times

, 6∆
(3)
ξ , 6∆(3)

η , 13(∆
(3)
ξ + ∆(3)

η )︸ ︷︷ ︸
2 times

)

6 2662132 · 8!V

(
∆

(3)
ξ ,∆(3)

η ,∆
(3)
ξ + ∆(3)

η︸ ︷︷ ︸
6 times

)

= 2662132

(
6

3

)
· 8!V

(
∆

(3)
ξ︸︷︷︸

4 times

, ∆(3)
η︸︷︷︸

4 times

)

= 2662132

(
6

3

)
= 210 · 33 · 132.

In conclusion, we have the following result.

Theorem 36 (Cf. Theorem 35). Assume τ is transcendental. Then the number of elliptic curves
Eρ satisfying Eρ ∼ Eτ and Eα·ρ ∼ Eα·τ is at most 210 · 33 · 132 ' 5× 106.

Remark 37. One could have derived a bound directly using Theorem 7 without the derivation
of the extra equations P2, P3, P4 and the fact that the intersection with P5 and P6 is complete.
We presented this more detailed approach because it gives a somewhat better estimate, and also
to illustrate a computation involving mixed volumes in Theorem 6.

The computation above could certainly be improved somewhat: by using the precise Newton
polytopes of P1, . . . , P6; by accurately computing the resulting mixed volumes; and by following
the proof of Theorem 6 where various inaccurate estimates were invariably made.

Generalizing to varieties of arbitrary dimension and degree, [FS14] gives the following result.

Corollary 38 [FS14, Corollary 6.9]. Let V ⊂ Cn be a Zariski closed set of dimension m and
τ̄ ∈ Cn an n-tuple of transcendental numbers. Let W denote the Zariski closure of V ∩ Iso(τ̄).
Then W is a weakly-special variety, and (see footnote 3 on page 886)

degW 6 (2n deg V )3·23m623m−1. (64)

We refer the reader to [FS14] for the definition of a weakly special variety. As for the degree
estimate, the proof of this corollary proceeds in a manner analogous to the proof of Theorem 35.
Arguing in a manner analogous to the proof of Theorem 36 and using Theorem 9, we obtain the
following result.

Corollary 39. Let V ⊂ Cn be a Zariski closed set defined by equations of degree d, and
τ̄ ∈ Cn an n-tuple of transcendental numbers. Let W denote the Zariski closure of V ∩ Iso(τ̄).
Then degW 6 Gnd

n where Gn is an explicit constant, singly-exponential in n.

In conclusion, we remark that the estimates in terms of degrees in this section could be
generalized to estimates in terms of volumes of Newton polytopes, with the proofs extending
verbatim.
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