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The fate of a contracting liquid filament depends on the Ohnesorge number (Oh), the
initial aspect ratio (Γ ) and surface perturbation. Generally, it is believed that there
exists a critical aspect ratio Γc(Oh) such that longer filaments break up and shorter
ones recoil into a single drop. Through computational and experimental studies,
we report a transitional regime for filaments with a broad range of intermediate
aspect ratios, where there exist multiple Γc thresholds at which a novel breakup
mode alternates with no-break mode. We develop a simple model considering the
superposition of capillary waves, which can predict the complicated new phase
diagram. In this model, the breakup results from constructive interference between
the capillary waves that originate from the ends of the filament.
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1. Introduction
The dynamics of contracting liquid filaments is a fundamental problem relevant to

a wide range of natural phenomena and industrial applications (Eggers & Villermaux
2008; Driessen et al. 2013), from the breakup of ocean spume (Veron et al. 2012),
ink-jet printing (Dong, Carr & Morris 2006; Xu & Basaran 2007; Wijshoff 2010) and
spraying (Lefebvre & McDonell 2017) to microfluidics (Stone, Stroock & Ajdari 2004;
Squires & Quake 2005) and particle technology (Hartnett et al. 2015). A number
of computational and theoretical studies have considered Newtonian cylindrical free
filaments that are initially stationary (Schulkes 1996; Notz & Basaran 2004; Driessen
et al. 2013), as illustrated in figure 1. They conclude that the fate of the filament is
controlled by the initial aspect ratio between the half filament length and its radius
Γ = L/R, the Ohnesorge number (Oh = µ/

√
ρσR, where µ, ρ and σ represent

the viscosity, density of the filament and the surface tension coefficient, respectively),

† Email address for correspondence: y.sui@qmul.ac.uk
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FIGURE 1. Illustration of the initial shape of a cylindrical filament. The length of the
filament is 2L and the radii of both the cylindrical section and the semi-spherical ends
are R. Cylindrical coordinates are defined at the centre of the filament.

which measures the relative importance of viscosity and surface tension, and the initial
shape perturbation to the filament surface. Very viscous filaments (Oh� 1) have been
found to be always stable (Eggers & Fontelos 2005; Castrejón-Pita, Castrejón-Pita
& Hutchings 2012). Viscous filaments (i.e. Oh > 0.1) break up mainly due to the
Rayleigh–Plateau instability (Driessen et al. 2013). Low-viscosity filaments can also
fragment through the end-pinching mechanism: the contracting tip forms a blob
connected to the central stationary filament. Due to surface tension, a neck forms
in the connection region. The neck radius decreases towards zero, which breaks the
blob from the filament, as described by Stone, Bentley & Leal (1986), Stone & Leal
(1989), Schulkes (1996) and Notz & Basaran (2004).

So far it has been widely believed that for Oh 6 1, at each Oh, there is a critical
initial aspect ratio Γc at which a filament transits from no-break to breakup. In the
present study, we revisit this classical problem using computational and experimental
approaches. We mainly focus on low-viscosity filaments with 0.003 6 Oh 6 0.02,
seeking to establish the sequence of events when increasing the filament aspect ratio,
and to understand the underlying mechanism that leads to the events.

2. Computational and experimental methods
In our numerical simulations, we consider axisymmetric liquid filaments surrounded

by another fluid with negligible density and viscosity, as shown in figure 1, where
the cylindrical coordinates are defined at the centre of the filament. Gravity is not
considered. Both the filament and the ambient fluids are initially at rest; they are
incompressible and Newtonian, so they are governed by the Navier–Stokes equations.
Our numerical simulations consist of a finite volume method on a staggered grid,
where a level-set method is used to capture the fluid interface. The code was
developed by Sui & Spelt (2013, 2015). In the present study, we have checked
for mesh convergence and domain independence to ensure that the reported results
do not change with further increasing the mesh density or domain size.

Our experimental set-up is schematically shown in figure 2(a), and is adapted from
a design described elsewhere (Castrejón-Pita et al. 2011). In brief, the jet generator
consists of a long cylindrical chamber with an outlet nozzle of 2.29 mm in diameter
in its lower side and closed at the top by a flexible rubber membrane mechanically
coupled to an electromagnetic actuator (V201, LDS Instruments). The jet speed u
ranges from 1.1 to 1.9 m s−1. The jet is modulated by the electromagnetic actuator,
driven by a harmonic waveform. The harmonic modulation produces a string of
droplets by driving Rayleigh–Plateau instability on the jet surface; filaments can
be formed between two droplets as secondary products of breakup, as shown in
figure 2(b). The actuation frequency ν controls the droplet separation w, i.e. ν = u/w,
and consequently the length of the filament. At low modulation amplitudes, the jet
breaks up at the front of the filament being formed, as shown in figure 2(b). This is
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FIGURE 2. (Colour online) (a) Schematic of experimental set-up; (b) three modes of
pinching in filament generation; (c) example of symmetric-pinching.

called front-pinching. At large modulation amplitudes, the jet breaks up at the back
of the filament. This is called back-pinching. Symmetric filaments are produced by
carefully adjusting the amplitude of the modulation to produce pinch-off at both ends
simultaneously, and examples can be seen in figure 2(c). It is difficult to control the
radius of the filament, which generally decreases with the filament length, but is also
affected by the modulation amplitude. We conduct experiments with pure water at
room temperature. The filament radius 0.15 mm<R<0.75 mm is obtained by directly
measuring the experimental images, and this gives 0.004< Oh< 0.01. Filaments are
imaged by a high-speed camera (Phantom Miro, Phantom), with a macro lens (Tamron
SP AF90) in shadowgraph configuration. Experiments are recorded at 20 000 frames
per second with a 30 µs exposure. The region of interest is illuminated by a linear
array of 10 W light-emitting diode (LED) lights, through an optical diffuser. Image
resolution ranges from 12 to 32 pixels mm−1. The present set-up permits a simpler
control of the filament characteristics than the previous drop-on-demand mode set-up
(Castrejón-Pita et al. 2012).

According to our calculations, the breakup behaviour of the liquid filaments is not
expected to be influenced by the presence of air. Viscous drag from the surrounding
air becomes significant for filaments with a radius smaller than RµairOh2/µ (Chen,
Notz & Basaran 2002). Under our conditions, this critical radius is far below the
resolution of the imaging system. Inertial influences from air would become significant
when the air Weber number, Weair = ρairu2R/σ , exceeds 0.2 (van Hoeve et al. 2010).
In our work, Weair is always less than 0.07. In the experiments, a filament contracts
under surface tension effect during its free fall. The importance of gravity compared
with surface tension can be estimated by comparing the capillary velocity uc to the
velocity increase of the filament due to gravity during one acoustic period 1ug. The
capillary velocity uc=R/ti, where ti=

√
ρR3/σ is the inertial-capillary time; 1ug can

be approximated by gw/u. If we use typical values of R= 0.5 mm, u= 1 m s−1 and
w= 0.01 m, the value of uc/1ug is ∼4, indicating that gravity may not significantly
affect the filament fate. The conclusion seems to be confirmed by the good agreement
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FIGURE 3. (Colour online) Fates of filaments with different initial aspect ratios and
Ohnesorge numbers. Small solid symbols are results from numerical simulations. Large
solid symbols represent experiments; many of them correspond within error bars to
simulations (typical error bars are shown near photo inset b). Photo insets on the right
show fates of the filaments. Two solid lines (red online) are used as guides for the eyes
to divide regimes. Right above the upper line the filament breaks into three parts through
end-pinching (a special case for Γ = 18 at Oh= 0.003 is highlighted by an oval and is
discussed in § 3.2), between the two lines the filament shows alternate middle-break and
no-break and below the lower line the filament is too short to break.

between numerical simulations and experiments in terms of the filament fates and the
contracting dynamics shown in § 3.1. The numerical simulations have omitted gravity.

We have limited our studies to low-viscosity filaments with 0.003 6 Oh 6 0.02,
mainly because of the limitations of the present computational and experimental
methods. Our numerical simulation becomes increasingly unstable with even lower
Oh. At higher Oh, i.e. Oh = 0.04, a much higher aspect ratio (typically Γ > 50) is
required to observe filament end-pinching. It is experimentally difficult to generate
a symmetric long filament with the present method. The computational time also
increases significantly when viscous effect becomes significant.

3. Results and discussion
3.1. Phase diagram

Figure 3 summarizes the fate of the filament as a function of the initial aspect ratios
Γ and Ohnesorge number Oh. Note that the phase diagram has focused on the
low-viscosity phase space (Oh < 0.02), where the dominant mechanism for breakup
of initially smooth filaments has been found to be end-pinching, i.e. the contracting
bulbous ends break from the central filament. From the phase diagram, we can see
that contrary to the present understanding that at each Oh there exists one critical
Γc which divides no-break and breakup regimes, the present computational and
experimental results clearly show that there is a transitional regime for filaments in
a broad range of intermediate Γ , where there are multiple Γc at which the filament
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t = 0(a)

(b)

t = 2.0 t = 5.6 t = 6.6 t = 6.8 t = 7.4 t = 8.0 t = 8.6 t = 9.2 t = 9.5 t = 9.8 t = 10.0

t = 0 t = 2.0 t = 5.0 t = 6.0 t = 6.2 t = 6.8 t = 7.4 t = 8.0 t = 8.6 t = 8.9 t = 9.2 t = 9.4

FIGURE 4. Instantaneous profiles of a contracting filament from numerical simulation (a)
and experiment (b). Parameters are Oh= 0.0057, Γ = 12.

alternates between no-break and a novel middle-break mode. After breakup, the two
parts can have a moderate aspect ratio (inset c) or an elongated filamentous shape
(inset b).

Notz & Basaran (2004) first discovered a third regime between end-pinching and no-
break, where a filament breaks after shape oscillations. However, they did not observe
the fate alternation and the middle-break mode in their numerical study. The present
phase diagram has three regimes, separated by the two solid lines (red online) in
figure 3. For long filaments (large Γ ), breakup happens through the end-pinching
mechanism where droplets break from the filament at the contracting ends. Photo
inset a in figure 3 shows a case right above the lower boundary of end-pinching;
the size of the filament between the two droplets will increase with Γ . For short
filaments, the contraction time is too short for any capillary instability to develop and
therefore a filament contracts to a droplet. Both regimes have been well documented
previously (Stone et al. 1986; Stone & Leal 1989; Schulkes 1996; Notz & Basaran
2004; Castrejón-Pita et al. 2012). In the fate-alternating transitional regime between
end-pinching and short-filament regimes, we observe strong wave interactions on the
filament surface and therefore name it the wave-interaction regime. Also note the
peculiar case of a filament with Γ =18 at Oh=0.003, which breaks into two filaments
from the middle within the end-pinching regime where filaments first break into three
parts. As we shall see later, this isolated case is explained by the same mechanism
that explains the fate-alternating transitional regime.

An overview of the filament contraction in the wave-interaction regime is presented
in figure 4 for a filament with Γ = 12 at Oh = 0.0057, which is the same case as
the photo inset c in figure 3 where the filament breaks from the middle into two
droplets. In figure 4 we also compare the instantaneous profiles from the numerical
simulation and experiment. It should be noted that in experiments a filament is
generated between two droplets as a secondary product of breakup. Therefore when
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A transitional regime in contracting liquid filaments 645

the filament evolves into a cylindrical shape with semi-spherical ends, it already has a
non-negligible contracting speed, which leads to faster filament contraction and wave
evolution at the early stage, compared with numerical simulations where the filament
is initially stationary. This can be seen from the comparison at t= 2.0. However, the
evolution of the filament at a later stage (t> 5.0) seems to have not been affected too
much by the initial differences. The filament profiles from numerical simulation agree
reasonably well with experiments, with a single adjustment of the time by 0.6. Note
here the time is made dimensionless by the inertial-capillary time ti. From figure 4
we can see waves propagate inwards with the contracting ends and interact at the
middle plane. From the experimental images, when the experimental time is around
t = 6.0 the secondary troughs from both ends meet at the middle plane to form a
neck which, however, is not deep enough to break the filament. The neck reopens,
followed by the collision of the two primary troughs associated with the bulbous
ends, at the experimental time of around t= 8.6. The neck formed is deep enough to
trigger thinning which finally leads to breakup.

3.2. Capillary wave superposition: a simple model to predict filament fate
We investigate the underlying mechanism that leads to the non-uniqueness of Γc and
the novel middle-break mode. We find that for a filament with an intermediate Γ , the
interactions of capillary waves originating from both ends determine the filament fate.
It is difficult to analyse the wave interactions directly on filaments of intermediate
Γ , as the waves emanating from both ends quickly superimpose after the onset of
contraction, and become impossible to disentangle and track individually. Instead,
we first investigate the propagation of such capillary waves on a long filament,
without wave interaction. We superpose the waves that we obtained from the long
filament onto a shorter filament to determine how the waves interact on the latter and
potentially cause breakup.

As an example of capillary waves without interaction, we examine the filament with
Γ = 25 at Oh= 0.01, which eventually breaks up through end-pinching. Figure 5(a)
shows the propagation of capillary waves from the contracting tip towards the
centre of the filament. The peaks and troughs of the waves are numbered. The
mechanism of the generation of the capillary waves is similar to that of a contracting
two-dimensional liquid sheet studied by Song & Tryggvason (1999), and may be
understood by examining the vorticity near the contracting tip of the filament, which
is shown in figure 6. In the early contraction of the bulbous end and the associated
trough T1, due to the variation of the sign of their axial curvature, primary vorticity
with positive sign is formed near the bulbous region; secondary negative vorticity
develops at the neck of T1 (see figure 6a). Due to low viscous diffusion, in the
region below the trough T1 where the axial curvature is positive, tertiary positive
vorticity forms and causes the development of the secondary bulb and the secondary
necking (see figure 6b). The process repeats and forms a series of waves towards the
middle plane z= 0 as shown in figure 6(c).

In figure 5(a), the amplitude of a wave peak or trough is defined as a(t)= r(t)−R,
where r(t) is the instantaneous filament radius at the peak or trough. Quantities are
made non-dimensional by the initial filament radius R, the inertial-capillary time
ti and the Taylor–Culick capillary speed R/ti (Keller 1983; Keller, King & Ting
1995). The time evolutions of the amplitudes of the wave peaks and troughs and
their z-axis positions are plotted in figure 5(b). We can see that the amplitudes
oscillate before end-pinching takes place. For example, the filament neck (i.e. T1)
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FIGURE 5. (Colour online) (a) Definitions of capillary waves on a contracting filament. (b)
Amplitudes (upper) and axial positions (lower) of wave troughs and peaks on a contracting
filament with Γ = 25 at Oh = 0.01 from numerical simulation. Panel (c) is for Γ = 12
and is mapped from (b) as explained in the text. The dashed lines in (c) are waves from
the opposite ends of the filament. Note that the present model assumes that the capillary
waves pass each other unchanged, unless two troughs would produce a thin neck that
could break the filament.
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FIGURE 6. (Colour online) Temporal evolution of the vorticity contours near the
contracting end of a filament with Γ = 25 at Oh= 0.01. Only a quarter of the domain is
shown.

initially decreases and then reopens before its final decreasing to −1. This indirect
end-pinching, contrasting to direct end-pinching (for filaments with very low viscosity)
where T1 decreases to −1 monotonically, has been documented by Hoepffner & Paré
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(2013). The wave peaks and troughs travel at an almost constant speed (∼1.05 for
all present cases) except at the very early stage of filament contraction when the
waves are being generated. This suggests that the relative distances between adjacent
peaks or troughs (i.e. wavelength) largely remain unchanged (∼3) and the phases of
the waves are stationary with respect to the contracting ends. It should be noted that
self-similar waves generated in the retraction of liquid cones have been previously
analysed (Sierou & Lister 2004). However, the present waves cannot be described by
the self-similar solutions, due to geometric differences.

We propose a simple model that predicts the fate of a filament of intermediate
aspect ratio from the superposition of capillary waves emanating from both ends. In
this model, we assume that the capillary waves of figure 5(b) will travel inward from
both ends, and that they will interact linearly upon collision. When two troughs Ti
and Tj meet, in particular, they produce a deeper trough of amplitude aTi + aTj. As
an example, figure 5(c) plots the trajectories of the first two troughs and peaks from
each end of a filament with Γ = 12, shifted from those of figure 5(b) towards z= 0 by
the difference in their Γ . The circular and square symbols mark where two troughs
meet to produce a deeper trough. The model asserts that if its amplitude exceeds a
threshold, the filament will break due to capillary instability. When analysing filaments
at a different Oh, one must use the long-filament waves for that Oh value. Hoepffner
& Paré (2013) tracked the time evolution of the radius of T1; however, their model
does not account for wave interaction which is central to the filament fate in the
transitional wave-interaction regime.

The threshold can be estimated from a simple scaling argument. When two wave
troughs on the filament approach each other, whether they break the filament after
superposition or not depends on two competing time scales: the breakup time of
the superposed trough and the meeting time of the two waves. For the present
cases, since both waves travel at a speed of about 1.05, the meeting time can be
estimated by tm = λ/(1.05 × 2), where λ is the wavelength and is '3 from present
simulations. We can estimate the breakup time from the fastest growing mode of the
Rayleigh–Plateau instability; then tb = (1/ωmax)ln(1/− b), where ωmax is the fastest
wave growth rate and is readily available from the literature (Weber 1931). The
term b is the superposed trough amplitude (i.e. aTi + aTj), and its value is used as
the initial perturbation amplitude in the Rayleigh–Plateau instability. The filament
would break when tb < tm, and that leads to the critical superposed trough amplitude
bc=−1/exp(λωmax/2.1). With Oh ranging from 0.003 to 0.02, bc is between −0.616
and −0.605. For simplicity, a threshold of −0.61 is used in the present model.
Note that the above estimation applies linear results to waves of finite amplitudes,
which violates mass conservation by an amount that is proportional to the square
of amplitude. Linearizing the disturbance in the cross-sectional area will be more
accurate, but is perhaps also more complicated.

The fates of filaments predicted by the simple wave superposition model are
presented in figure 7, together with the full-simulation and available experimental
results. The boundaries between different modes are represented by solid and dashed
lines in the phase diagram: solid lines divide the three different regimes, and dashed
lines separate middle-break and no-break modes in the wave-interaction regime. It
can be seen that the simple model can predict almost all the outcomes in the phase
diagram and define the whole phase space.

Next we demonstrate how the simple model can predict the fates of the filaments
and define the whole phase space. Figure 8 examines the interactions of capillary
waves on six filaments of decreasing Γ , at Oh = 0.01, corresponding to distinct
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FIGURE 7. (Colour online) The same phase diagram of filaments as in figure 3 with
predictions from the simple wave superposition model. Small solid symbols are from
numerical simulations; open symbols on the right are results at the same Oh and are from
the simple model. Large solid symbols represent experiments. The solid and dashed lines
are phase boundaries predicted by the simple model. Solid lines divide the three regimes;
dashed lines separate middle-break and no-break modes in the wave-interaction regime.

breakup scenarios in figure 3. In almost all cases that we have considered, the
breakup only involves the first two troughs, T1 and T2, and we will focus on these
at present. Figure 8(a) demonstrates the ‘classical’ end-pinching scenario for Γ = 25,
with the trough T1 attaining a=−1 in time before any significant wave interaction.
Thus, the filament breaks up into three parts as shown in the inset. On shorter
filaments, the end-pinching occurs closer to the mid-point (z = 0). A threshold is
when T1 attains a = −1 right at z = 0. This happens for Γ = 13.4, and marks the
transition to the wave-interaction regime.

In the wave-interaction regime, a subtlety is that it is not known a priori which
troughs would superimpose to produce a neck that leads to breakup. The troughs
closer to the middle meet sooner, but their amplitudes tend to be smaller, and this may
or may not produce necking. Besides, the amplitudes vary in time as well (figure 8a).
These open up the possibility of a non-monotonic dependence of pinch-off behaviour
on Γ . As demonstrated below, the simple model can predict the phase space and the
fates of the filaments.

In figure 8, we mark the time when the amplitude of the trough T1 crosses −0.305
(a linearly superposed amplitude of the new trough from T1 + T1′ collision will
therefore be at the breakup threshold of −0.61). From the time evolution of the
amplitude of trough T1 in the upper panel of figure 8(a), we can expect that if the
trough T1 of a filament arrives at z = 0 between t1 and t2 or after t3, the filament
will break up from the middle. Since the time it takes for a trough to reach z = 0
depends on the filament length and can be predicted by the simple model (through
mapping the waves of a long filament to shorter filaments), we can expect that there
are two windows of Γ in the wave-interaction regime where the filament breaks from
the middle. This is consistent with the full numerical simulations and the experiments
as shown in figure 7.
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FIGURE 8. (Colour online) Amplitudes (upper panel in (a)) and axial positions of wave
troughs on contracting filaments with decreasing Γ at Oh = 0.01. In (a) the three dots
mark the time when the amplitude of the trough T1 crosses −0.305 (a linearly superposed
amplitude of the new trough from T1 + T1′ collision will be at the breakup threshold of
−0.61). The three time instances are labelled as vertical solid lines in (b–f ). If the trough
T1 arrives at z= 0 between t1 and t2 or after t3, the linearly superposed amplitude of the
new trough from T1 + T1′ collision will be above the threshold and the filament will
break up from the middle. Results are obtained by mapping the waves on a long filament
with Γ = 25 (from numerical simulation) to shorter filaments in the same manner as in
figure 5. The circular and square symbols (blue online) mark collisions between troughs,
and the two numbers in the legend are the time of collision and the resultant amplitude
from linear superposition, respectively. The insets are numerical results showing the fates
of the filaments.

From figure 8(a), we can also see that in a very short time interval around t= 7.5,
the amplitude of trough T2 is below −0.305, suggesting a small window of Γ where
the filament will break in the middle due to the T2 + T2′ collision. Such an example
is shown in figure 8(b) for a filament with Γ = 13, which breaks after the collision
between T2 and T2′ at t = 7.44. This happens before other potential interactions of
T1 + T2′ or T1 + T1′.

On the shorter filament of figure 8(c), the collision T2 + T2′ occurs sooner than in
figure 8(b), but the trough is shallower. Thus, this collision does not produce breakup,
nor do the subsequent collisions of T1 + T2′ and T1′ + T2. Eventually, the T1 + T1′
collision after t3 at t=9.28 produces a deep enough trough that splits the filament into
two. In figure 8(b,c), the wave superposition model accurately predicts the outcome
of the breakup, shown as insets. Besides, note that the T2 + T2′ collision breaks the
filament into two short filaments (figure 8b) while the T1 + T1′ collision leads to two
drops (figure 8c). Those roughly correspond with the experimental images of insets b
and c in figure 3, the differing shapes being readily explained by the different troughs
involved in the breakup.

With decreasing Γ , the collision scenarios are similar to figure 8(c) except that the
T1 + T1′ collision occurs sooner when T1 has a shallower amplitude (see the time
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FIGURE 9. (Colour online) (a) Profile of the filament with Γ = 6 at Oh = 0.01 when
the troughs T1 and T1′ meet at the middle plane z= 0. (b) Amplified neck region of the
filament in (a) with pressure contours. Here κ1 and κ2 measure the radius of curvature in
r–z and azimuthal planes, respectively.

evolution of wave amplitudes in figure 8a). When the trough T1 of a filament reaches
z = 0 between the time t2 and t3, the linearly superposed amplitude from the T1 +
T1′ collision will be smaller than the threshold, leading to no breakup. An example is
shown by a filament with Γ =10 (figure 8d). The critical Γc dividing the middle-break
and no-break regimes is represented by the upper dashed line at Oh= 0.01 in figure 7.
It corresponds to the filament whose trough T1 reaches z= 0 at the time t3.

For even shorter filaments, their trough T1 can reach the middle plane before time
t2, then the T1 + T1′ collision can generate a trough that is strong enough and results
in breakup, as shown by the filament with Γ = 6 (figure 8e).

Finally, the troughs of short filaments such as Γ = 5 (figure 8f ) reach the middle
plane z = 0 too soon (i.e. before t1) for any trough superposition to be sufficiently
deep. In the phase diagram the point of Γ =5 falls below the phase boundary dividing
the middle-break and short-filament no-break regimes (the lower black solid line in
figure 7). The phase boundary is obtained by identifying the critical Γc where the
trough T1 of the filament reaches z= 0 at the time t1. Overall, figure 8 suggests that
the simple model has captured all the noted outcomes in the phase diagram and can
define the whole phase space.

In our simple model, we have assumed that the Rayleigh–Plateau type of necking
will happen and lead to breakup if two troughs meet and the linearly superimposed
trough amplitude is larger than a threshold. It is interesting to study the filament
profile when two troughs meet. Figure 9 presents the filament profile and the
pressure contour at t = 3.65 when T1 and T1′ meet at z = 0, for the filament
shown in figure 8(e) which breaks after the trough collision. It is clearly seen that
the radius of the azimuthal curvature is smaller than that of the axial curvature which
has an opposite sign due the shape of the trough. This results in a positive Laplace
pressure which drives liquid away from the neck, finally leading to breakup. A similar
phenomenon is observed for the filaments in figure 8(b,c), at the instances of trough
collision leading to middle-break. For the filament shown in figure 9, we notice that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

85
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.855


A transitional regime in contracting liquid filaments 651

without trough collision, the Laplace pressure inside the trough T1 will be negative
at t= 3.65, because the radius of the azimuthal curvature would not be small enough.

Now we turn to the special case of Γ = 18 and Oh= 0.003 in figure 3, where the
filament breaks up in the middle into two short filaments, whereas longer and shorter
filaments both exhibit end-pinching. This case is peculiar in that before the trough
T1 produces end-pinching, the troughs T3 and T3′ meet at z= 0, producing a trough
just deep enough to split the filament into two. On a longer filament, T1 will have
attained a=−1 before the T3 + T3′ collision, thus producing classical end-pinching.
On shorter filaments, the troughs T3 and T3′ are not deep enough when they meet,
but the filament contraction time is still sufficiently long to allow T1 to produce end-
pinching.

3.3. Limitations of the wave superposition model
We note the failure of the wave superposition model in capturing the outcome of
filaments just below the upper solid red line in figure 3. For three out of the four Oh
values tested, the model suggests end-pinching while numerical simulations produce
no-break or middle-break. The model assumes that the capillary waves pass each other
unchanged, unless two troughs would produce a thin neck that could pinch off within
the meeting time. This is not quite true for those few filaments where, shortly before
end-pinching, the trough T1 meets the strong peak P1′. The peak P1′ opens the neck
of T1 to some extent, which leads to no-break or middle-break.

A second major limitation of the model is that it is not entirely self-contained. At
each Oh, one will need to first obtain the evolution of non-interacting waves from full
numerical simulation of a long filament at the same Oh. The fates of shorter filaments
can then be predicted by mapping the waves to shorter filaments and analysing their
interactions. The main difficulty of developing a full predictive model lies in the
fact that the wave amplitudes oscillate in time in a complicated way and building
a mechanistic model to explicitly describe the oscillation is non-trivial. Finally, the
present study is limited to low-viscosity filaments. The performance of the simple
model on more viscous filaments is yet to be tested.

4. Concluding remarks
To summarize, we find that for a contracting filament with low viscosity,

end-pinching happens only when the filament is sufficiently long. For filaments
with intermediate lengths, the contraction time is too short for the neck to develop
to end-pinching, and a filament’s fate will be decided by the interactions of capillary
waves. The amplitudes of the waves oscillate in time, leading to alternate no-break
and middle-break modes of the filament with increasing length. Short filaments will
not break because of the short contraction time.

The fate-alternating transitional regime and the middle-break mode are the new
findings of this work. They show the importance of the superposition of capillary
waves, which can serve as a new mechanism for controlling the breakup of liquid
filaments. The simple but effective wave superposition model proposed here may be
applicable to other systems, such as the ejection of small droplets in rapid droplet
spreading (Ding et al. 2012). Towards practical applications, the broad transitional
regime offers new means to control and manipulate the integrity and breakup of
filaments of a wide range of lengths. The novel middle-break mode also provides a
new mechanism to generate equal-sized small droplets. Both can potentially improve
the current design strategies in technologies such as ink-jet printing.
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