
5

Continuous optimization

Continuous optimization problems arise throughout science and industry. On

their face, continuous optimization problems rarely seem quantum mechanical;

nevertheless, quantum algorithms have been proposed for accelerating both

convex and nonconvex continuous optimization. Most of the research on these

algorithms thus far has been to develop and utilize the diverse set of primitive

ingredients that give rise to potential quantum advantage in this space, without

an eye toward the end-to-end practicality of the algorithms. Developing a bet-

ter understanding of the practicality of these approaches should be a focus of

future work.

We refer the reader to [6] for a comprehensive survey of quantum methods

for continuous and combinatorial optimization.

The authors are grateful to Sander Gribling for reviewing this chapter.

5.1 Zero-sum games: Computing Nash equilibria

Overview

In a two-player zero-sum game, each player independently chooses an action

and then receives a “payoff” (such that the sum of the payoffs is always zero)

that depends on which pair of actions was chosen. A Nash equilibrium is an

optimal way of (probabilistically) choosing an action that maximizes a player’s

worst-case payoff. The problem of computing a Nash equilibrium is, in a cer-

tain sense, equivalent to solving a linear program (LP): computing a Nash

equilibrium is a special case of LP, and conversely any LP can be reduced

to computing a Nash equilibrium at the expense of introducing dependencies

on a certain instance-specific “scale-invariant” precision parameter [46]. How-
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5.1 Zero-sum games: Computing Nash equilibria 79

ever, the quantum approach to solving LPs based on the multiplicative weights

update method [46] is more efficient in the special case of computing Nash

equilibria, and has fewer caveats—notably, it avoids the dependence on the

difficult-to-predict scale-invariant precision parameter. It gives a potentially

quadratic speedup over its classical counterpart.

Actual end-to-end problem(s) solved

A two-player zero-sum game is defined by an n×m matrix A called the “payoff

matrix,” which specifies how much player 1 wins from player 2 when player 1

chooses action i ∈ [n] and player 2 chooses action j ∈ [m]. A pure strategy is

one in which the players deterministically choose one fixed action i ∈ [n] (or

j ∈ [m]) in each game. By contrast, a mixed strategy is one in which players

randomly choose an action, according to some probability distribution. As-

sume the entries of A are between −1 and 1. A Nash equilibrium is an optimal

(generally mixed) strategy that maximizes a player’s worst-case payoff regard-

less of the other player’s choice. That is, a distribution y ∈ ∆m, where ∆m de-

notes the m-dimensional probability simplex, is an optimal strategy for player

2 if it is the argument that optimizes the equation

λ∗ = min
y∈∆m

max
i∈[n]

e
⊺

i
Ay,

where [n] denotes the set of actions available to player 1, and ei denotes a basis

state associated with action i. The quantity λ∗ is the value of the game. This

can be rewritten explicitly [46] as the following LP

min
y∈Rm

λ

subject to Ay ≤ λ1,
∑

j

y j = 1, y j ≥ 0 ∀ j,

where 1 is the all-ones vector. The dual LP for the above then corresponds to

computing the Nash equilibrium for player 1.

The end-to-end problem solved is to, given access to the entries of the matrix

A and an error parameter ϵ, compute a probability vector y such that

Ay ≤ (λ∗ + ϵ)1 .

Dominant resource cost/complexity

The quantum algorithm builds on a classical algorithm based on the multi-

plicative weights update method from [459]. With probability at least 1−δ, the

classical algorithm finds a solution y that approximates a Nash equilibrium to

error ϵ after ⌈16 ln(nm/δ)/ϵ2)⌉ iterations, where the cost per iteration is n + m

queries to the entries of the matrix A and O(n +m) other arithmetic operations

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.007
Downloaded from https://www.cambridge.org/core. IP address: 18.218.137.145, on 12 May 2025 at 15:22:50, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.007
https://www.cambridge.org/core


80 5. Continuous optimization

[46, Lemma 3]. An important subroutine of each iteration is a Gibbs sampling

step for a diagonal matrix (a special case of the general quantum Gibbs sam-

pling problem in which any Hermitian matrix is allowable). When the matrix

A is sparse, the number of queries per iteration can be reduced to 2s, where s

is the maximum number of nonzero entries in a row or column of A, and the

total time per iteration can be reduced to Õ(s) [46, Lemma 4].

The quantum algorithm assumes coherent access to the matrix entries of

A. Through amplitude amplification and the related subroutines of amplitude

estimation and minimum finding, the quantum algorithm of [46] speeds up

the Gibbs sampling task and reduces the maximum cost of an iteration to

Õ(
√

n + m/ϵ) queries to the matrix elements of A and an equal amount of

time complexity, where Õ notation suppresses logarithmic factors. In the case

that the matrices are sparse, the maximum cost of an iteration is reduced to

Õ(
√

s/ϵ1.5). The work of [178] introduces a technique called dynamic Gibbs

sampling, which exploits the fact that the distribution to be sampled changes

slowly from iteration to iteration and further reduces the iteration cost to

Õ(
√

n + m/ϵ1/2 + 1/ϵ) in the dense case. This gives a total query and time

complexity roughly given by

dense:

(
16 ln(nm)

ϵ2
iters.

)
×

(
Õ

( √
n + m√
ϵ
+

1

ϵ

)
per iter.

)
= Õ

( √
n + m

ϵ2.5
+

1

ϵ3

)

sparse:

(
16 ln(nm)

ϵ2
iters.

)
×

(
Õ

( √
s

ϵ1.5

)
per iter.

)
= Õ

( √
s

ϵ3.5

)
.

This complexity assumes access to a quantum random access memory

(QRAM). Without a QRAM, the cost per iteration increases by a factor

Õ(1/ϵ2).

See also [680], which independently from [46] gave a quantum algorithm

that solves zero-sum games with slightly worse ϵ dependence, as well as [681],

which gave quantum algorithms for generalizations of zero-sum games to other

vector norms.

Existing resource estimates

There are no existing explicit resource estimates for this algorithm.

Caveats

• Due to poor dependence of the complexity on the error ϵ, this algorithm is

only likely to be useful in situations where it is not necessary to learn the

optimal strategy to high precision. It is unclear when such situations arise in

practice.
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5.1 Zero-sum games: Computing Nash equilibria 81

• As mentioned above, if no QRAM is available, the runtime suffers a Õ(1/ϵ2)

time slowdown.

• A fully end-to-end analysis should also consider the exact way that the

queries to the matrix entries of A are implemented. If they are given in a

classical database, a large O(nm)-size QRAM may also be required to im-

plement the queries in polylog(mn) time. Note that this would be separate

from the Õ(1/ϵ2)-size QRAM the algorithm uses to reduce the time com-

plexity. To avoid the QRAM requirement for implementing a query, it must

be the case that the matrix entries are efficiently computable in some other

way.

Comparable classical complexity and challenging instance sizes

The classical version of the quantum algorithm has time and query complexity

given by [46, Section 2]

dense:

(
16 ln(nm)

ϵ2
iters.

)
× (O (n + m) per iter.

)
= Õ

(
n + m

ϵ2

)

sparse:

(
16 ln(nm)

ϵ2
iters.

)
×

(
Õ (s) per iter.

)
= Õ

(
s

ϵ2

)
.

Alternatively, the problem could be solved using other approaches for solv-

ing the associated LP. Classical interior point methods for LPs can achieve

O(nω log(1/ϵ)) runtime in the common case that m = O(n) [304], where ω <

2.37 is the matrix multiplication exponent. This runtime exhibits better ϵ de-

pendence at the expense of worse n dependence. Note that quantum inte-

rior point methods have also been proposed for conic programs like LPs, but

whether they could yield a speedup over classical interior point methods would

depend on the scaling of certain instance-specific parameters.

Speedup

The quantum complexity has a quadratic improvement in complexity with re-

spect to the parameter n + m, and a polynomial slowdown with respect to the

parameter ϵ.

Outlook

It is difficult to assess whether a practical advantage could be obtained in the

setting of zero-sum games without further investigation of how queries to ma-

trix elements are accomplished, an assessment of constant prefactors involved

in the algorithm, and consideration of any additional overheads from fault-

tolerant quantum computation. The theoretical speedup available is quadratic
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82 5. Continuous optimization

and may require a medium- or large-scale QRAM. This speedup may not be

sufficiently large to overcome these overheads in practice.

It is perhaps instructive to compare the outlook of zero-sum games to conic

programming more generally. On the one hand, unlike the algorithm for gen-

eral SDPs and LPs, the algorithm for zero-sum games does not have a complex-

ity dependence on instance-specific parameters denoting the size of the primal

and dual solutions. This makes it easier to evaluate the runtime of the algo-

rithm and more likely that it can be an effective algorithm. On the other hand,

a core subroutine of the quantum algorithm is to perform classical Gibbs sam-

pling quadratically faster than a classical computer can using techniques like

amplitude amplification. However, it is not clear how the speedup could be

made greater than quadratic, even in special cases. A similar subroutine is re-

quired in the multiplicative weights approach to solving SDPs, but in that case,

the Gibbs state to be sampled is a truly quantum state (i.e., nondiagonal in the

computational basis), rather than a classical state. Using more advanced meth-

ods for Gibbs sampling, it is possible that in some special cases there could

be a superquadratic quantum speedup for SDPs that would not be available for

the simpler case of LPs and zero-sum games.

5.2 Conic programming: Solving LPs, SOCPs, and SDPs

Overview

Conic programs are a specific subclass of convex optimization problems,

where the objective function is linear and the convex constraints are re-

strictions to the intersection of affine spaces and certain cones within Rn.

Commonly considered cones are the positive orthant, the second-order cone

(“ice-cream cone”), and the semidefinite cone, which give rise to linear

programs (LPs), second-order cone programs (SOCPs), and semidefinite

programs (SDPs), respectively. This framework remains quite general, and

many real-world problems can be reduced to a conic program. However, the

additional structure of the program allows for more efficient classical and

quantum algorithms, compared to completely general convex problems.

Algorithms for LPs, SOCPs, and SDPs have long been a topic of study. To-

day, the best classical algorithms are based on interior point methods (IPMs)

[304, 778, 538] and cutting-plane methods [671, 575], but other algorithms

based on the multiplicative weights update (MWU) method [57, 56, 58] exist

and can be superior in a regime where high precision is not required. Both of

these approaches can be turned into quantum algorithms with potential to de-

liver asymptotic quantum speedup for general LPs, SOCPs, and SDPs. How-
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5.2 Conic programming: Solving LPs, SOCPs, and SDPs 83

ever, the runtime of the quantum algorithm typically depends on additional

instance-specific parameters, which makes it difficult to produce a general

apples-to-apples comparison with classical algorithms.

Actual end-to-end problem(s) solved

• Linear programs (LPs) are the simplest convex program. An LP instance

is specified by an m × n matrix A, an n-dimensional vector c, and an m-

dimensional vector b. The problem can then be written as

min
x∈Rn
⟨c, x⟩

subject to Ax = b

xi ≥ 0 for i = 1, . . . , n ,

where notation ⟨u, v⟩ denotes the standard dot product of vectors u and v.

The function ⟨c, x⟩, which is linear in x, is called the objective function,

and a point x is called feasible if it satisfies the linear equality1 constraints

Ax = b as well as the positivity constraints xi ≥ 0 for all i. We denote the

feasible point that optimizes the objective function by x∗. Let ϵ be a preci-

sion parameter. The actual end-to-end problem solved is to take as input a

classical description of the problem instance (c, A, b, ϵ) and output a classi-

cal description of a feasible point x for which ⟨c, x⟩ ≤ ⟨c, x∗⟩ + ϵ. The set of

points that obey the positivity constraints xi ≥ 0 forms the positive orthant of

the vector space Rn. This set meets the mathematical definition of a convex

cone: for any points u and v in the set and any non-negative scalars α, β ≥ 0,

the point αu + βv is also in the set.

• Second-order cone programs (SOCPs) are formed by replacing the positivity

constraints in the definition of LPs with one or more second-order cone con-

straints, where the second-order cone of dimension k is defined to include

points (x0; x1; . . . ; xk−1) ∈ Rk for which x2
0 ≥ x2

1 + · · · + x2
k−1

.

• Semidefinite programs (SDPs) are formed by replacing the n-dimensional

vector x in the definition of LPs with an n × n symmetric matrix X and

replacing the positive orthant constraint with the conic constraint that X is

a positive semidefinite matrix. Denote the set of n × n symmetric matrices

by Sn, and for any pair of matrices U,V ∈ Sn, define the notation ⟨U,V⟩ =
tr(UV) (which generalizes the standard dot product). Then, an SDP instance

is specified by matrices C, A(1), A(2), . . . , A(m) ∈ Sn, as well as b ∈ Rm, and

1 Inequality constraints of the form Ax ≤ b can be converted to linear equality constraints and
positivity constraints by introducing a vector of slack variables s and imposing Ax + s = b and
si ≥ 0 for all i. An analogous trick is possible for SOCP and SDP.
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84 5. Continuous optimization

can be written as

min
X∈Sn
⟨C, X⟩

subject to ⟨A( j), X⟩ = b j for j = 1, . . . ,m

X ⪰ 0 ,

where X ⪰ 0 denotes the constraint that X is positive semidefinite.

In the LP or SDP case, we might also require as input parameters R and r,

where R is a known upper bound on the size of the solution in the sense that∑
i |xi| ≤ R (LP) or tr(X) ≤ R (SDP), and where r is an analogous upper bound

on the size of the solution to the dual program (not written explicitly here,

see [181, 48, 45]).

Dominant resource cost/complexity

Two separate approaches to solving conic programs with quantum algorithms

have been proposed in the literature. Both methods start with classical algo-

rithms and replace some of the subroutines with quantum algorithms.

(i) Quantum interior point methods (QIPMs) for LPs [610], SOCPs

[612, 68], and SDPs [610, 70, 537] have been proposed. In the standard

approach, these methods start with classical interior point methods,

for which the core step is solving a linear system, and simply replace

the classical linear system solver with a quantum linear system solver

(QLSS), combined with pure state quantum tomography. Given a linear

system Gu = v, the QLSS produces a quantum state |u⟩, and quantum

tomography is subsequently used to gain a classical estimate of the

amplitudes of |u⟩ in the computational basis. The QLSS ingredient

introduces complexity dependence on a parameter κ = ∥G∥ ∥G−1∥,
the condition number of G, where ∥·∥ denotes the spectral norm.

Additionally, the QLSS requires that the classical data defining G be

loaded in the form of a block-encoding, for which the standard con-

struction introduces a dependence on the factor ζ = ∥G∥F∥G∥−1, where

∥·∥F denotes the Frobenius norm. Finally, the tomography ingredient

introduces a complexity dependence on a parameter ξ, defined as the

precision to which the vector u must be classically learned, measured

in ℓ2 norm. Assuming m is on the order of the number of degrees of

freedom (i.e., O(n) in the case of LP and SOCP, and O(n2) in the case

of SDP), the number of queries the QIPM makes to block-encodings of
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5.2 Conic programming: Solving LPs, SOCPs, and SDPs 85

the input matrices is

LP, SOCP [68]: Õ
(

n1.5ζκ

ξ
log(1/ϵ)

)

SDP [610, 70]: Õ
(

n2.5ζκ

ξ
log(1/ϵ)

)
,

where the Õ notation hides logarithmic factors. Note that depending on

how ξ is defined, extra factors of κ may be required. Moreover, note

that the complexity statements in [70] go further and analyze the worst-

case dependence of ξ on the overall error ϵ, and additionally make the

worst-case replacement ζ ≤ O(n)—this explains the deviation in our pre-

sentation from the bounds in [70]. We do not include these worst-case

assumptions on ζ and ξ because it is possible they are not achieved in

practice.2 Generally speaking, the numerical values of κ, ζ, and ξ are not

possible to determine in advance for a specific application; empirical in-

vestigations at small system sizes such as those of [611, 328] require an

assumption that trends observed accurately extrapolate to other untested

instances and to larger system sizes. The block-encoding queries can be

executed in circuit depth polylog(n+m, 1/ϵ), which can also be absorbed

into the Õ notation (although it is important to note that the circuit size is

generally O(n2))—this is equivalent to an assumption of log-depth quan-

tum random access memory (QRAM). If the input matrices are sparse

or given in a form other than as a list of matrix entries, there may be

other more efficient methods for block-encoding; in this case the param-

eter ζ might be replaced with another parameter α > 1, whose value

would depend on the block-encoding method. It should also be noted

that in addition to the quantum complexity quoted above, the QIPM can

require (depending on the precise formulation of the QIPM) purely clas-

sical complexity on the order of O(n2.5) for LP/SOCP and O(n4.5) for

SDP.

Alternatives to the standard approach above have been proposed. For

“tall” LPs (where m ≫ n), one can quantize interior point methods

in a distinct way that avoids the QLSS and dependence on any con-

dition numbers. Specifically, [51] gave an algorithm that runs in time

Õ(
√

m log(1/ϵ)) · poly(n). The algorithm leverages primitives for spec-

tral approximation (i.e., given a tall matrix B, finding a smaller matrix

2 For example, numerical results in [611] for small instances of an SOCP formulation of the
portfolio optimization problem suggested that the ζ parameter was upper bounded by a small
constant, and similar numerical investigations in [328] suggest that ξ can be independent of
the target error ϵ, at least for the instances that were simulated.
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86 5. Continuous optimization

B̃ for which B̃⊺B̃ ≈ B⊺B), and approximate matrix-vector multiplica-

tion, as well as multivariate mean estimation [310] (which is related to

quantum gradient estimation).

(ii) Quantum algorithms based on the multiplicative weights update (MWU)

method have been proposed for SDP [181, 182, 48, 45] and LP [48, 46].

The quantum algorithm closely follows the classical algorithm based on

MWU to iteratively update a candidate solution to the program. Each

iteration is carried out using quantum subroutines, including Gibbs sam-

pling, as well as Grover search and quantum minimum finding [367, 48]

(a direct application of Grover search). Let s denote the sparsity, that is,

the maximum number of nonzero entries in any row or column of the

matrices composing the problem input (thus, s ≤ max(m, n)). Then, the

number of queries the algorithm makes to the matrix entries (assuming

a sparse access input model) has been upper bounded by

LP [178]: Õ
(√

s

(
rR

ϵ

)3.5
)

SDP [45]: Õ
(
s
√

m

(
rR

ϵ

)4

+ s
√

n

(
rR

ϵ

)5
)
,

where r,R are the parameters related to the size of the primal and dual

solutions, defined above. The sparse access queries can be implemented

with quantum circuits of size polylog(m, n) if the matrix entries are

given by succinct formulas computable in polylog(n,m) time. Oth-

erwise, their implementation can be accomplished with circuits of

polylog(m, n) depth (but poly(m, n) size) assuming availability of log-

depth QRAM. In [45], the input model was generalized to a “quantum

operator input model,” based on block-encodings where s is replaced by

the block-encoding normalization factor α in the runtime expressions,

but here again the full end-to-end complexity must account for the

gate cost of implementing the block-encoding. Note that it is possible

the ϵ-dependence of the runtime for LP could be slightly improved by

applying the dynamic Gibbs sampling method of [178] together with

the reduction from LP to zero-sum games in [46].

The runtime expressions for the QIPM approach and the MWU approach are

not directly comparable, as the former depends on instance-specific parameters

κ, ζ, and ξ, while the latter depends on instance-specific parameters r and R.

However, note that the explicit n-dependence is better in the case of MWU

than QIPM, while the ϵ-dependence is worse.
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5.2 Conic programming: Solving LPs, SOCPs, and SDPs 87

Existing resource estimates

Neither of the approaches for conic programs have garnered study at the level

of resource estimates for physical devices. Reference [328] performed a re-

source analysis for a QIPM at the logical level, but did not analyze additional

overheads due to error correction. The goal of that analysis was to completely

compile the QIPM for SOCP into Clifford gates and T gates, and then to nu-

merically estimate the parameters κ, ζ, and ξ for the particular use case of

financial portfolio optimization, which can be reduced to SOCP. A salient fea-

ture of the QIPM is that O(n + m) × O(n + m) matrices of classical data must

be repeatedly accessed by the QLSS via block-encoding, necessitating a large-

scale QRAM with O(n2) qubits. Accordingly, for SOCPs with n = 500 and

m = 400 (which are still easily solved on classical computers) it was estimated

that 8 million logical qubits would be needed. The total number of T gates

needed for the same instance size was on the order of 1029, which can be dis-

tributed over roughly 1024 layers. These estimates would likely be improved

by incorporating subsequent improvements to the underlying primitives of to-

mography [49] and QLSS [571, 327].

We are not aware of an analogous logical resource analysis for the MWU ap-

proach to conic programming. Such an analysis would be valuable and should

ideally choose a specific use case to be able to evaluate the size of all parame-

ters involved. A use case that may fit this criteria is solving the SDP relaxation

of binary quadratic optimization problems, where r and R can be bounded;

quantum algorithms for this task have been studied in [183, 71].

Caveats

• The QIPM approach requires a large-scale QRAM of size O(n2). This is a

necessary ingredient to retain any hope of a speedup, and for relevant choice

of n the associated hardware requirements could be prohibitively large. Note

that recent work of [69] gave a method for solving LPs that, like QIPMs,

follows the central path to the optimal point, but does so in a distinct, non-

iterative way, and has the potential for a small polynomial speedup without

the need for a QRAM.

• The standard QIPM approach has a weak case for a large asymptotic

speedup: even under optimal circumstances, the asymptotic speedup over

classical interior point methods is less than quadratic. See Chapter 22 on

the QIPM approach for more information.

• The MWU approach also requires a large-scale QRAM of size

O(min(ms, ns)) to implement the queries to the arbitrary entries of the

s-sparse input matrices. This could be avoided if the matrix elements are

efficiently computable.
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88 5. Continuous optimization

• Beyond the number of queries to the input data (and the cost to implement

those queries), the MWU approach for LP and SDP requires some additional

complexity deriving from a step in the algorithm where it prepares a state

with O(R2r2/ϵ2) nonzero amplitudes stored in a classical database. The cost

of state preparation from classical data is Õ(R2r2/ϵ2) total gates, which can

be parallelized to circuit depth polylog(R2r2/ϵ2). If the cost of state prepa-

ration is taken to be equal to the circuit depth (similar to the assumption of

access to a medium-scale QRAM), the additional complexity is on the same

order as the number of queries. If the cost is taken to be equal to the circuit

size, the additional complexity is a factor Õ(R2r2/ϵ2) larger than the query

complexity quoted above.

• The MWU approach has poor dependence on error ϵ; for SDPs it is ϵ−5.

Even at modest choices of ϵ, this may lead the algorithm to be impractical

pending significant improvements.

• A general caveat that applies to both approaches is that the appearance of

instance-specific parameters makes it difficult to predict the performance of

these algorithms for more specific applications.

Comparable classical complexity and challenging instance sizes

As in the quantum case, there are multiple distinct approaches in the classical

case.

(i) Classical interior point methods (CIPMs): There exist fast IPM-based

software implementations for solving conic programs, such as ECOS

[355], MOSEK [38], Gurobi [470], SCIP [164], and CPLEX.3 These

solvers can solve instances with thousands of variables in a matter of

seconds on a standard laptop (e.g., [355]). However, the runtime scal-

ing is poor and scaling too far beyond this regime leads the solvers to

be far less practical. Many variants of IPMs exist; the runtime of the

best provably correct classical IPMs for the regime where the number of

constraints is roughly equal to the number of degrees of freedom is

LP [304]: Õ (
nω log(1/ϵ)

)

SOCP [778]: Õ
(
nω+0.5 log(1/ϵ)

)

SDP [538]: Õ
(
n2ω log(1/ϵ)

)
,

3 In practice, these solvers are not solely based on IPMs and utilize many methods at once.
Additionally, they employ heuristic preprocessing methods to transform and simplify inputs
prior to applying an IPM. Note that they are useful also for nonconvex problems such as
mixed-integer programs, where LP-solving can often be an important subroutine.
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5.2 Conic programming: Solving LPs, SOCPs, and SDPs 89

whereω < 2.37 is the matrix multiplication exponent. It is plausible that,

with some attention, the extra n0.5 factor for SOCP could be eliminated

with modern techniques. Additionally, the runtime can be somewhat re-

duced when the number of constraints is much less than the number of

degrees of freedom; for example, the n-dependence of the complexity of

the CIPM for SDP in [574] can be as low as Õ(n2.5) when there are few

constraints. On practical instances, employing techniques for fast ma-

trix multiplication is often not beneficial, and Gaussian elimination–like

methods are used, where nω is replaced with n3. Note that, alternatively,

by using iterative classical linear system solvers, such as the randomized

Kaczmarz method [959], each nω factor could be replaced by a factor of

n at the cost of a linear dependence on (κζ)2, which could be superior if

the matrices are well conditioned.

For tall LPs (m ≫ n), CIPMs can achieve scaling nearly linear in the

number of matrix entries: the algorithm of [185] runs in time O(mn+n3).

We refer the reader to [1053, 1052, 797, 438] for additional informa-

tion on CIPMs and their historical development.

(ii) Classical MWU methods: A classical complexity statement for LPs is

inferred from the reduction in [46] from LPs to zero-sum games and the

classical analysis that appears there. For the SDP case, references in the

classical literature appear only to examine specific subclasses of SDPs

(e.g., [57, 56]). A general statement of the classical complexity for SDPs

appears alongside the quantum algorithm in [48, Section 2.4]:

LP [46]: Õ
(
s

(
rR

ϵ

)3.5
)

SDP [48]: Õ
(
snm

(
rR

ϵ

)4

+ sn

(
rR

ϵ

)7
)
.

(iii) Cutting-plane methods: These classical methods are used for

SDPs and can outperform IPMs when the number of constraints

is small. The best algorithm, based on [671, 575], has runtime

O(m(mn2 + nω +m2) log(1/ϵ)), which can be as low as O(nω) when m is

small.

It is important to note that the algorithms with the best provable complexities

may not be the ones that are most useful in practice.

Speedup

For both the IPM approach and the MWU approach, there can be at most a

polynomial quantum speedup: upper and lower bounds scaling polynomially
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90 5. Continuous optimization

with n are known in both the classical and quantum cases [45]. The speedup of

the QIPM method depends on the scaling of κwith n, but the speedup cannot be

more than quadratic. For the MWU method, if m = O(n), s = O(1), and rR/ϵ =

O(1), existing bounds on the classical and quantum complexities leave open the

possibility of a quartic Õ(n2) → Õ(
√

n) speedup. However, it is unclear if the

classical complexity quoted in [48, Section 2.4] is optimal (e.g., if the classical

Õ(mn) scaling could be improved to Õ(m + n), the available quantum speedup

would be at most quadratic). There is a possibility that the speedup could be

larger in practice if the Gibbs sampling routine is faster on actual instances than

its worst-case upper bounds suggest, perhaps by utilizing Monte Carlo–style

approaches to Gibbs sampling.

Outlook

It is very plausible that an asymptotic polynomial speedup can be obtained

in problem size using the MWU method for solving LPs or SDPs, but the

speedup appears only quadratic, and an assessment of practicality depends on

the scaling of certain unspecified instance-specific parameters. Similarly, the

standard QIPM method could bring a subquadratic speedup but only under

certain assumptions about the condition number of certain matrices. The alter-

native QIPM method of [51] could deliver a nearly quadratic speedup without

assumptions on the condition number in the case the LP constraint matrix is

very tall. In any case, these quadratic and subquadratic speedups alone might

be regarded as unlikely to yield practical speedups after error correction over-

heads and slower quantum clock speeds are considered. Future work should

aim to find additional asymptotic speedups while focusing on specific practi-

cally relevant use cases that allow the unspecified parameters to be evaluated.

5.3 General convex optimization

Overview

A convex problem asks to minimize a convex function f over a convex set K,

where K is a subset of Rn. Here we examine the situation where the value of

f (x) and the membership of x in the set K can each be efficiently computed

classically. However, we do not exploit/assume any additional structure that

may be present in f or K. This situation contrasts with that of solving conic

programs, where f is linear and K is an intersection of convex cones and affine

spaces, features that can be exploited to yield more efficient classical and quan-

tum algorithms.
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5.3 General convex optimization 91

A so-called “zeroth-order” solution to this problem solves it simply by adap-

tively evaluating f (x) and x ∈ K for different values of x. For the zeroth-order

approach, a quantum algorithm can obtain a quadratic speedup with respect to

the number of times these functions are evaluated, reducing it from Õ(n2) to

Õ(n), where Õ notation hides factors polylogarithmic in n and other parame-

ters. This could lead to a practical speedup only if the cost to evaluate f (x) and

x ∈ K is large, and lack of structure rules out other, possibly faster, approaches

to solving the problem.

Actual end-to-end problem(s) solved

Suppose we have classical algorithmsA f for computing f (x) andAK for com-

puting x ∈ K (“membership oracle”), which require C f and CK gates to per-

form with a reversible classical circuit, respectively. Suppose further we have

an initial point x0 ∈ K and that we have two numbers r and R for which we

know that B(x0, r) ⊂ K ⊂ B(x0,R), where B(y, t) = {z ∈ Rn : ∥z − y∥ ≤ t} de-

notes the ball of radius t centered at y. UsingA f ,AK , x0, r, R, and ϵ as input,

the output is a point x̃ ∈ K that is ϵ-optimal, that is, it satisfies

f (x̃) ≤ min
x∈K

f (x) + ϵ .

Dominant resource cost/complexity

The work of [245] and [47] independently establish that there is a quantum

algorithm that solves this problem with gate complexity upper bounded by
[
(C f +CK)n + n3

]
· polylog(nR/rϵ) ,

where the polylogarithmic factors were left unspecified. The rough idea be-

hind the algorithm is to leverage the quantum gradient estimation algorithm to

implement a separation oracle—a routine that determines membership x ∈ K

and when x < K outputs a hyperplane separating x from all points in K—using

only O(1) queries to algorithmAK andA f . It had been previously established

that Õ(n) queries to a separation oracle then suffice to perform optimization

[671], where Õ denotes that logarithmic factors have been suppressed.

Existing resource estimates

There have not been any explicit resource estimates for this algorithm. It may

not make sense to perform such an estimate without a more concrete scenario

in mind, as the estimate would highly depend on the complexity of performing

the circuits for A f and AK . The estimate would also require a more detailed

accounting of the hidden polylogarithmic factors in the complexity statements

above, and it would only be meaningful if the comparable classical complexity

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.007
Downloaded from https://www.cambridge.org/core. IP address: 18.218.137.145, on 12 May 2025 at 15:22:50, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.007
https://www.cambridge.org/core


92 5. Continuous optimization

for solving the same problem using the best available algorithm were well

understood.

Caveats

One caveat is that the quantum algorithm must coherently perform reversible

implementations of the classical functions that compute f (x) and x ∈ K. Com-

pared to a nonreversible classical implementation, this may cost additional an-

cilla qubits and gates. Another caveat relates to the scenario where f (x) and

x ∈ K are determined by classical data stored in a classical database. Such

a situation may appear to be an appealing place to look for applications of

this algorithm because when f and K are determined empirically rather than

analytically, it becomes easier to argue that there is no structure that can be ex-

ploited. However, in such a situation, implementingA f andAK would require

a large gate complexity, so C f and CK would scale with the size of the classical

database. It would almost certainly be the case that a quantum random access

memory (QRAM) admitting log-depth queries would be needed in order for

the algorithm to remain competitive with classical implementations that have

access to classical RAM, and the practical feasibility of building a large-scale

log-depth QRAM has many additional caveats.

Another caveat is that there may not be many practical situations that

are compatible with a quantum speedup by this algorithm. The source of

the speedup in [245, 47] comes from a separation between the complexity

of computing the gradient of f classically vs. quantumly using calls to the

function f . Classically, this requires at least linear-in-n number of calls.

Quantumly, it can be done in O(1) calls using the quantum algorithm for

gradient estimation. In both the classical and the quantum case, the gradient

can subsequently be used to construct a “separation” oracle for the set K,

which is then used to solve the convex problem.

Thus, a speedup is only possible if there is no obvious way to classically

compute the gradient of f other than to evaluate f at many points. This cri-

terion is violated in many practical situations, which are often said to obey a

“cheap gradient principle” [457, 163] that asserts that the gradient of f can be

computed in time comparable to the time required to evaluate f . For exam-

ple, the fact that gradients are cheap is crucial for training modern machine

learning models with a large number of parameters. When this is the case, the

algorithms from [245, 47] do not offer a speedup. On the other hand, as ob-

served in [47, Footnote 19] a nontrivial example of a problem where the cheap

gradient principle may fail (enabling a possible advantage for these quantum

algorithms) is the moment polytope problem, which has connections to quan-

tum information [211].
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5.3 General convex optimization 93

When both the function f and the gradient of f can be evaluated at unit cost,

this constitutes “first-order” optimization, which can be solved classically by

gradient descent. However, gradient descent does not generally offer a quantum

speedup, as general quantum lower bounds match classical upper bounds for

first-order optimization, although a quantum speedup could exist in specific

cases [410]. Indeed, for any p, there is no general quantum speedup for pth-

order optimization, that is, the setting where an oracle provides access to the

function and its first p derivatives [409]. For a comprehensive exposition of

classical methods for black-box optimization, see [798].

Comparable classical complexity

The best classical algorithm [672] in the same setting has complexity
[
(C′f +C′K)n2 + n3

]
· polylog(nR/rϵ) ,

where C′
f

and C′
K

denote the classical complexity of evaluating f and query-

ing membership in K, respectively, without the restriction that the circuit be

reversible.

Speedup

The speedup is greatest when quantities C f and CK are large compared to n and

roughly equal to C′
f

and C′
K

. In this case, the quantum algorithm can provide

an O(n) speedup, which is at best a polynomial speedup. The maximal power

of the polynomial would be obtained if C f + CK ≈ C′
f
+ C′

K
scales as n2,

corresponding to a subquadratic speedup from O(n4) to O(n3).

Outlook

The only analyses of this strategy are theoretical in nature, interested more so

in the query complexity of solving this problem than any specific applications

it might have. As such, the analysis is not sufficiently fine-grained to deter-

mine any impact from constant prefactors or logarithmic prefactors. While a

quadratic speedup in query complexity is possible, the maximal speedup in

gate complexity is smaller than quadratic. Moreover, there is a lack of con-

crete problems that fit into the paradigm of “structureless” quantum convex

optimization. Together, these factors make it unlikely that a practical quantum

advantage can be found in this instance.
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94 5. Continuous optimization

5.4 Nonconvex optimization: Escaping saddle points and

finding local minima

Overview

Finding the global minimum of nonconvex optimization problems is challeng-

ing because local algorithms get stuck in local minima. In analogy to physics

where the objective function is the energy of the system, these local minima

are stable configurations that locally optimize the energy but do not achieve the

globally minimal energy. Often, there are many local minima and they are each

separated by large energy barriers. Accordingly, instead of finding the global

minimum, one may settle for finding a local minimum: local minima can often

still be used effectively in situations such as training machine learning mod-

els. An effective approach to finding a local minimum is gradient descent, but

gradient descent can run into the problem of getting stuck near saddle points,

which are not local minima but nonetheless have a vanishing gradient. Effi-

ciently finding local minima thus requires methods for escaping saddle points.

Limited work in this area suggests a potential polynomial quantum speedup

[1081] in the dimension dependence for finding local minima, using subrou-

tines for Hamiltonian simulation and quantum gradient estimation.

Actual end-to-end problem(s) solved

Suppose we have a classical algorithm A f for (approximately) computing a

function f : Rn → R which requires C f gates to perform with a reversible

classical circuit. The amount of error tolerable is specified later. Following

[1081], suppose further that f is ℓ-smooth and ρ-Hessian Lipschitz, that is,

∥∇ f (x1) − ∇ f (x2)∥ ≤ ℓ∥x1 − x2∥ ∀x1, x2 ∈ Rn

∥∇2 f (x1) − ∇2 f (x2)∥ ≤ ρ∥x1 − x2∥ ∀x1, x2 ∈ Rn ,

where ∇ f denotes the gradient of f (a vector), ∇2 f denotes the Hessian of f

(a matrix), and the norm notation ∥·∥ denotes the standard Euclidean norm for

vector arguments and the spectral norm for matrix arguments.

The end-to-end problem solved is to take as input a specification of the

function f , an initial point x0, and an error parameter ϵ, and to output an ϵ-

approximate second-order stationary point (i.e., approximate local minimum)

x, defined as satisfying

∥∇ f (x)∥ ≤ ϵ λmin(∇2 f (x)) ≥ −√ρϵ ,

where λmin(·) denotes the minimum eigenvalue of its argument. In other

words, the gradient should be nearly zero, and the Hessian should be close to

a positive-semidefinite matrix.
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5.4 Nonconvex optimization: Escaping saddle points 95

Dominant resource cost/complexity

The idea pursued in the quantum algorithm of [1081] is to run normal gradi-

ent descent, which has gradient query cost independent of n, until reaching an

approximate saddle point. Classical algorithms typically apply random pertur-

bations to detect a direction of negative curvature and continue the gradient

descent. Instead, the quantum algorithm constructs a Gaussian wavepacket lo-

calized at the saddle point, and evolves according to the Schrödinger equation

i
∂

∂t
Φ =

(
−1

2
∆ + f (x)

)
Φ , (5.1)

where ∆ denotes the Laplacian operator. The intuition is that, in the directions

of positive curvature, the particle stays localized (as in a harmonic potential),

while in the directions of negative curvature, the particle quickly disperses.

Thus, when the position of the particle is measured, it is likely to have escaped

the saddle point in a direction of negative curvature, and gradient descent can

be continued. The other technical ingredient is the quantum gradient estimation

algorithm, which uses a constant number of (coherent) queries to the function

f to estimate ∇ f .

The main finding of [1081] is that, to do the gradient descent and the Hamil-

tonian simulation, the algorithm need only query the circuit evaluating the

function f polylog(n) times. Specifically, the algorithm performs the C f -gate

quantum circuit for coherently computing f a number of times scaling as

Õ
(

log(n)( f (x0) − f ∗)

ϵ1.75

)
,

where x0 is the initial point and f ∗ is the global minimum of f . The evaluation

of f must be correct up to precision O(ϵ2/n4). Note that the work of [1081] ini-

tially showed a log2(n) dependence, which was later improved to log(n) using

the improved simulation method of [287, Corollary 8]. However, it is impor-

tant to emphasize that the method has additional cost beyond the queries to

the circuit for evaluating f , originating from the Hamiltonian simulation of

the kinetic term − 1
2
∆ in Eq. (5.1). Specifically, the number of additional gates

needed in the Hamiltonian simulation is seen from [287, Lemma 12 & Corol-

lary 8] to scale as Õ(n( f (x0)− f ∗)/ϵ1.75), although we remark that it is possible

that this gate complexity could be parallelized such that the circuit depth scales

polylogarithmically in n. Thus, the overall gate complexity is

Õ
(

(n +C f log(n))( f (x0) − f ∗)

ϵ1.75

)
.

The space complexity to represent the d-dimensional system on a grid with

grid spacing O(ϵ) is O(n log(1/ϵ)).
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96 5. Continuous optimization

In related work, [439] analyzes the complexity of escaping a saddle point

when one has access to noisy queries to the value of the function f . Addition-

ally, lower bounds on the ϵ-dependence of quantum algorithms for this problem

are given in [1080].

Existing resource estimates

This problem has received relatively little attention, and no resource estimates

have been performed.

Caveats

Reference [1081] gives the query complexity of the quantum algorithm but

does not perform a full end-to-end resource analysis. (However, it does numer-

ically study the performance of the quantum algorithm in a couple of toy ex-

amples.) Additionally, many practical scenarios are said to obey a “cheap gra-

dient principle” [457, 163], which says that computing the gradient is almost

as easy as computing the function itself, and in these scenarios, no significant

quantum speedup is available. Finally, in the setting of variational quantum al-

gorithms, this does not avoid the issue of barren plateaus, which refers to the

situation where a large portion of the parameter space has a gradient (and Hes-

sian) that vanishes exponentially with n. These regions would be characterized

as ϵ-approximate local minima unless ϵ is made exponentially small in n.

Comparable classical complexity and challenging instance sizes

The best classical algorithm [1079] for this problem makes

Õ
(

log(n)( f (x0) − f ∗)

ϵ1.75

)

queries to the gradient of f . Note that Ω(n) queries to the value of f would

be needed to construct a query to the gradient. (When the quantum algorithm

in [1081] was first discovered, the best classical algorithm required O(log(n)6)

gradient queries [577, Theorem 3], and this was later improved.) Although the

literature focuses mainly on the query complexity, examination of [1079, Algo-

rithm 1] indicates that an additional Õ(n( f (x0)− f ∗)/ϵ1.75) arithmetic operations

would be required to process the results of the gradient queries and compute

the next point to be queried (e.g., adding pairs of n-dimensional vectors).

Speedup

The quantum algorithm in [1081] has the same query complexity as the clas-

sical algorithm in [1079]; the difference is that the quantum algorithm makes
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5.4 Nonconvex optimization: Escaping saddle points 97

(coherent) queries to an evaluation oracle, while the classical algorithm re-

quires access to a gradient oracle. Thus, if classical gradient queries are just

as cheap as evaluation queries (as is often the case), there is no speedup. If it

were the case that gradient queries are not directly available, then the speedup

in query complexity could be exponential. However, even in this case, the

speedup in gate complexity can be at most polynomial, since both the classical

and quantum algorithms have poly(n) gate complexity, and classical gradient

queries can be constructed from Õ(n) classical evaluation queries, which can

be accomplished with at most C f classical gates. Indeed, the largest polyno-

mial speedup in gate complexity occurs when C f = O(n)—in this case, the

quantum algorithm has Õ(n) gate complexity and the classical algorithm has

Õ(n) ·C f = O(n2) gate complexity, a quadratic speedup.

Outlook

It is unclear whether the algorithm for finding local minima could lead to a

practical speedup, as it depends highly on the (non)availability of an efficient

classical procedure for implementing gradient oracles; a quantum speedup is

possible only when such oracles are difficult to implement classically, and even

so, the speedup in gate complexity would be modest. However, the algorithm

represents a useful end-to-end problem where the quantum gradient estima-

tion primitive can be applied. It is also notable that the quantum algorithm em-

ploys Hamiltonian simulation, a primitive not used in most other approaches to

continuous optimization. Relatedly, [675, 674] propose a quantum subroutine

called “quantum Hamiltonian descent” which is a genuinely quantum counter-

part to classical gradient descent, via Hamiltonian simulation of an equation

similar to Eq. (5.1). Unlike classical gradient descent, it can exploit quantum

tunneling to avoid getting stuck in local minima; thus, it can potentially find

global minima of nonconvex functions. Establishing concrete end-to-end prob-

lems where quantum approaches based on Hamiltonian simulation yield an ad-

vantage in nonconvex optimization is an interesting direction for future work.
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