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Source rocks are composed of inorganic minerals, clay particles, and organic matter that are compacted 

to create a composite with texture and pore sizes that vary at the nano- and micro-scales [1-2]. These rocks 

exhibit chemical variations due to the dominant framework phases ( e.g. calcite, dolomite, or quartz) and 

the clay minerals (e.g. illite, smectite, or kaolinite), while exhibiting variations in the organic components 

(kerogen, bitumen, and/or pyrobitumen) where the relative amount and molecular composition varies with 

thermal maturity [2-4]. Scanning Electron Microscopy (SEM) is commonly used for source rock 

characterization to quantify the fraction of various components, porosity, and pore size distribution, which 

are used to evaluate reservoir quality during hydrocarbon exploration. This variation in structural and 

chemical heterogeneity as well as imaging artifacts such as charging, surface contamination, and surface 

damage from sample preparation, create images with a broad multi-modal intensity histogram that is 

challenging to accurately segment [5]. 

Traditionally, image segmentation applies user-defined or mathematically selected gray-scale threshold 

cutoffs to separate the image components after pre-processing and has been applied to, and compared for, 

rock samples [5-9]. For images with few phases, a consistent baseline intensity, and limited surface 

artifacts, these methods can be effectively applied, and mislabeled regions can be corrected manually or 

accepted as part of the quantification error. However, for highly heterogeneous samples with more than 

three components and those with several artifacts including a varying baseline intensity, the mislabeled 

regions can be numerous, making manual correction impractical and creating significant error in the 

overall quantification. In these cases, an advanced segmentation method is required that can effectively 

separate the components using more than intensity variation alone. Recent advances in machine learning 

has led to the development of image segmentation tools that have been previously demonstrated in natural 

and manufactured materials at both the SEM and X-Ray micro-Computed Tomography scales [10-12]. 

Here we demonstrate the use of a supervised machine learning image segmentation technique on high 

resolution large field-of-view (LgFOV) SEM images of source rocks that were generated by stitching >75 

secondary electron tiles (15 nm/pixel). Figure 1A shows an example source rock image after stitching, 

cropping, and application of a mild non-local means filter. The components shown are the pores (black), 

organics (dark gray), matrix minerals (light gray), and high density minerals (white). This image also 

shows common imaging artifacts such as charging (dashed red boxes), uncorrected speckle, and ion mill 

induced scars (solid red boxes), which are challenging to segment and can negatively affect quantification. 

For comparison, LgFOV images were segmented using both intensity threshold ranges (Avizo®, 

ThermoFisher) and machine learning (DigiM
TM

 I2S, DigiM Solution) methods to separate pores (blue), 

organics (green), high density minerals (yellow), and matrix (gray). In the intensity threshold range 

method, a range of intensities in the image histogram are assigned to each component and adjusted to best 

capture the domains. Figure 1B shows the result from using this method. The image shows sporadically 

mislabeled speckle and regions with scars and charging that are similarly mislabeled. The charging is 

commonly mislabeled as high density components (yellow) while the speckle and scars are mislabeled as 
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a mixture of pores (blue), organics (green), and high density components (yellow). In total, these 

mislabeled regions affect the compositional analysis and the pore size distribution measurements. While 

it is possible to manually correct these mislabeled issues, this level of manual correction would take 

considerable time and is impractical as a common practice. 

In the machine learning segmentation method, using the web-browser interface, five to ten regions are 

cropped from the LgFOV SEM image for training purposes using a cloud computing infrastructure that is 

computationally efficient and scalable. During training, each phase is represented by a trace of pixels that 

are subjected to a broad range of image processing steps, e.g filtering, feature extraction, etc. This process 

creates 100+ values for each pixel that are evaluated with a random forest classifier. In each cropped 

region, the components are labeled and used to train a classifier which is then applied to the whole LgFOV 

SEM image. Figure 1C shows the resulting segmented image using the machine learning segmentation 

method. The image shows a significant improvement in the correct assignment of artifacts including both 

ion mill scars (red solid boxes) and charging (red dashed boxes). In addition, the machine learning 

segmentation correctly labeled the background speckle. The mislabeled regions are fewer in this case and 

may be corrected through manual relabeling or possibly with additional classifier training. 

Results will be presented that further demonstrate the differences in these segmentation methods, 

including a quantitative comparison between the segmented composition and the pore size distributions 

obtained from each (Figure 2). A demonstration of the ability to segment fractures verses pores using the 

machine learning method will also be presented. This labeling distinction is not possible when only 

segmenting with intensity threshold ranges. Finally, benefits and challenges of applying machine learning 

segmentation for these materials will be discussed with a comparison to data from other measurement 

techniques when available. Overall, these results demonstrate the application of machine learning 

segmentation for highly heterogeneous natural materials prior to manual image correction, thus saving 

time and improving segmentation quality and accuracy [13]. 
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Figure 1. Representative images showing (A) LgFOV SEM, (B) intensity threshold range segmented, and 

(C) machine learning segmented images. Red solid boxes contain examples of ion mill scars and red 

dashed boxes contain charging artifacts. In (B) and (C), pores=blue, organics=green, matrix 

minerals=gray, and high density minerals=yellow. The scale bar is 100 µm. 
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Figure 2. Pore size distribution histograms from the intensity threshold segmented image in Figure 1B 

(green) and from the machine learning segmented image in Figure 1C (blue) showing the difference in the 

number of pores identified as well as oversampling of the smallest pores in green. To improve comparison, 

the inset shows the histograms each normalized to the maximum frequency. 

References 

[1] KE Peters and MR Cassa, in “The Petroleum System – From Source to Trap” ed. LB Magoon and WG 

Dow, (AAPG, Tulsa) p. 93. 

[2] LT Bryndzia and NR Braunsdof, Elements 10 (2014) p. 271. 

[3] M Vandenbroucke, Rev. IFP, Oil & Gas Science and Technology 58 (2003) p. 243. 

[4] DW van Krevelen, “Coal: typology, physics, chemistry, constitution” (Elsevier, Amsterdam). 

[5] S Schluter et al, Water Resources Research 50 (2014) p. 3615. 

[6] TJ Collins, Biotechniques 43(S1) (2007) p. 25. 

[7] A Sheppard, R Sok and H Averdunk, Physica A 339(1-2) (2004) p. 145. 

[8] H Andra et al, Computers and Geoscience 50 (2013) p. 25. 

[9] N Idowu et al, SPE Reservoir Evaluation and Engineering 17 (2014) p. 473. 

[10] J Howard, S Lin and S Zhang, Petrophysics 60(2) (2019) p. 240. 

[11] S Karimpoulia and P Tahmasebi, Computers and Geoscience 126 (2019) p. 142. 

[12] I Varfolomeev, I Yakimchuk and I Safonov, Computers 8 (2019) p. 72. 

[13] We would like to thank Josh Brothers for assistance in image collection. 

 

https://doi.org/10.1017/S143192762002303X Published online by Cambridge University Press

https://doi.org/10.1017/S143192762002303X

