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Lithium-ion batteries and supercapacitors both rely on electrochemical redox processes, although 
different mechanisms determine their relative energy and power densities [1]. For nanostructured 
electrodes of lithium-ion batteries, the capacity contains contributions from redox reactions that occur in 
both the interior (I) and near-surface (NS) regions. It is believed that the interior redox reactions 
contribute more to the overall battery capacity, but these take a longer time to be activated.  In contrast, 
redox reactions in the near-surface reaction may exhibit a supercapacitor-like behavior (i.e. a high power 
density) because of the short transport paths for ions and electrons. Thus, an understanding of the 
kinetics of the transition from NS-redox to I-redox is critical to determining the rate capability of a 
lithium ion battery. 
 
In this work, we performed TEM experiments using two setups: (I) TEM “grid-in-a-coin-cell” using 
liquid electrolyte, and (II) in situ lithiation using Li2O solid electrolyte. The in situ measurements and 
tomography were performed on a JEOL 2100F TEM operated at 200 kV. The high-resolution imaging 
and analytical EELS were conducted on a Hitachi HD2700C STEM operated at 200 kV and equipped 
with a probe aberration corrector. Using combined electron microscopy approaches (in situ TEM/STEM, 
diffraction, tomography and STEM-EELS(Fig.1)), we observe the heterogeneous lithiation pathways 
that occur in NiO electrodes in real time (Fig.2). We find that the near-surface electroactive (Ni2+→Ni0) 
sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition 
into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni2+→Ni0 
can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the 
sample bulk, but only after a certain incubation time. The reaction timescale and patterns we discovered 
from in situ TEM correlate with the ultimate rate performance of large-format batteries and are further 
supported by ex situ TEM and X-ray spectroscopies. We believe such heterogeneous transition 
mechanisms from NS-redox to I-redox may be generic and transferrable to a large class of conversion 
nano-electrode materials [2]. 
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Figure 1.  Tomography and EELS mapping of lithiated NiO fingers. (a) A series of reconstructed 3D 
tomograms from an in situ lithiated NiO nanosheet. (b), (e), and (h) are zoom-in ADF-STEM images 
corresponding to the labeled regions in (a). (c) and (f) show EELS mapping of Ni2+ (green) and Li++Ni0 
(red) for areas in (b) and (e) using the low-loss spectra components shown in (g). (d) Atomically-
resolved STEM image showing a crack region coherently bounded with unlithiated NiO in (b). (i) EELS 
charge mapping of Ni2+ (green) and Ni0 (red) for the area in (h), a series of EELS spectra and Ni2+/0 
concentration profiles along the arrow are shown in (j) and (k), respectively. Scale bars, 20 nm (a), 10 
nm (b), 2 nm (d), 20 nm (e), 10 nm (h).   

   
Figure 2.  Structural evolution during in situ lithiation of NiO nanosheets. (a) Schematic illustration of 
in situ setup. Time-sequenced S/TEM snapshots (b) shrinking-core mode, and (c) finger mode. (d) 
Schematic cartoon showing heterogeneous pathways. (e) The velocity of reaction front propagation. (f) 
Histogram showing statistics of incubation time. Scale bars, 20 nm.   
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