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Abstract

We consider the problem of finding, for each even number m, a basis of orthogonal vectors of length y/m
in the Leech lattice. We give such a construction by means of double circulant codes whenever m = 2p
and p is a prime not equal to 11. From this one can derive a construction for all even m not of the
f o r m 2 H r .

2000 Mathematics subject classification: primary 11H06,11H71, 94B05.

1. Introduction

We say that the lattice L is defined by construction Am if there is a lattice V similar
to L with 2" 2 L' 2 ml". This lattice L' corresponds to a subgroup C = L'/mln

of the group (I/ml)". We can use the language of coding theory and regard C as
a linear code of length n over the ring TLm = Z/mZ. If the code C is self-dual over
Zm, then m~l/2L is an integral unimodular lattice. In this language Leech's original
construction [7] is an example of an A 8 construction.

Recently linear codes over Z4, the integers modulo 4, have been widely investigated.
For instance Bonnecaze, Sole and Calderbank use a quadratic residue code of length
24 over Z4 to construct the Leech lattice, and describe this method as 'perhaps the
simplest construction that is known for this lattice'. In [2] Calderbank and Sloane
revisit a construction due to McKay [8] of the Leech lattice from a different self-dual
code over Z4. However, to show the associated lattice has minimum norm 4, they
find the symmetrized weight enumerator of the code by using the Bell Labs Cray
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Y-MP. Here we begin by providing a computer-free proof that this construction gives
the Leech lattice, and then give a simpler calculation of the symmetrized weight
enumerator of the code.

Harada, Sole and Gaborit, [5] have asked for which m is there an Am construction
of the Leech lattice. This is only possible when m is even and m > 4. We show that
this is true for almost all such m, namely for all m not of the form 2 • IT. Were there
also an An construction, then this would settle the problem completely.

The author would like to thank Patrick Sole for various stimulating conversations.

2. Notation and terminology

We let 1m denote the integers modulo m, and Fp the finite field of p elements. Most
matrices are 12 by 12, and / denotes the identity matrix and / the all-ones matrix
of this size. Lowercase boldface letters stand for vectors with entries either from 2
or from 1n. All vectors have length 12 or 24, and the notation a = (b c) indicates
that a has length 24 and is the concatenation of the vectors b and c each of length 12.
Also j denotes the all-one vector of length 12. We sometimes abuse the notation of
matrix multiplication; where a = (b c) and T is a 12 by 12 matrix then we write a T
for QtT cT).

A code over lm of length r is a subgroup of (Zm)r. A lattice is a discrete subgroup
of some Euclidean space. The norm of a vector in a lattice is the square of its length.
If a € (lm)r, then a = (a , , . . . , ar), where we take |a> | < m/2. The Euclidean norm
of such an a is |a! |2 H \- \ar\

2. We give (lm)r the obvious dot product, and we say
that a code <g c (lm)r is self-dual if a e ^ if and only if a • ^ = 0. We say that a
code ^ c (Im)r is of type II if m is even, 'tf is self-dual and the Euclidean weight of
each element of ^ is divisible by 2m.

3. The construction
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Deleting the first row and column of S yields a circulant matrix whose first row
contains the entries (j/ll) in order for 0 < j < 10. (Here (j/11) is the Legendre
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[3] Constructions of the Leech lattice 289

symbol.) Also ST = - S and S2 = -117. Let if be the linear code of length 24
over Z4 with generator matrix M = (7 27 + 5). Applying construction A4 to ^
gives a lattice L. Equivalently L is the set of vectors (a b), where b = a(27 + 5)
(mod 4). Note that (27 + Sf = 47 + 45 + S2 = -77 +4S = I (mod 4). It follows
that (27 + 5 7) is also a generator matrix for t6, and so (a b) e ? implies that
(b a) € if. Since the generating matrix is formed by concatenating two bordered
circulant matrices we call the code a double circulant code following Calderbank and
Sloane [2].

PROPOSITION 3.1. The lattice \L is isometric to the Leech lattice.

PROOF. It suffices by the main result of Conway [3] to show that \L is an even
unimodular lattice of rank 24 with no vector of norm 2.

First of all

MM1 = (I 27 + S) ( I_A = l2 + (27 + 5)(27 - 5) = 57 - S2 = 167.

As the entries of MM1 are all divisible by 4, then ^ is a self-orthogonal code, and
is self-dual as manifestly | ^ | = 412. Also the Euclidean weight of each generator is
divisible by 8 and by self-duality it follows that the Euclidean weight of all elements
is divisible by 8, that is ^ is of type II. Thus \L is an even unimodular lattice. To
show that it is the Leech lattice, it suffices to show that its minimum weight is 4
(by Conway's characterization [3]). Equivalently one must show that the minimum
Euclidean weight of ^ is 16.

The only way that ^ can fail to have minimum Euclidean weight 16 is if it has
vectors of Euclidean weight 8. Such a vector will have shape (22 022), (21 (±1)4 019)
or ((±1)8 016). Associated with ^ are two binary codes. Let ^ be the image of
if under the reduction map (Z4)24 -+ (Z2)

24 and let if' = {a : a € if n {0,2}24}
be the intersection of if with the kernel of this reduction map. We can identify
{0,2} c Z4 with T2 and we denote the binary code corresponding to if' as ^2. Then
if, c if2 and |if| = \%W^2\. But if, has generator matrix (7 S) which is congruent to
(7 7 - 7 ) modulo 2. Thus the elements of if, are (a a), where a has even weight, and
(a j - a), where a has odd weight. Thus % has order 212 and minimum weight 4. Also
|if,| = |i?2| and so if, = if2. A vector of shape (22 022) in if would give a weight 2
word in ^2 which is impossible.

A vector v of shape (21 (±1)4 019) in i? reduces modulo 2 to an element of if,.
This must have shape (a a), where a has weight 2. Thus v = (b c) where b and c
have shapes ((±1)2 010) and (2 (±1)2 09) in some order. As (c b) also lies in if we
may assume that b has shape ((±1)2 010). Similarly, a vector v of shape ((±1)8 016)
in if must have the form (b c), where both b and c have shape ((±1)4 08). It suffices,
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therefore, to show that no vector of the form ±V! ± v2 and ±V[ ± v2 ± v3 ± v4, where
the v,s are (distinct) rows of M, has Euclidean weight 8. This is a straightforward,
but tedious computation, but it finally proves that |L is the Leech lattice.

However using the symmetry of 5, the above computations can be greatly abbrevi-
ated. Let
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Then A, B and C all commute with S. (For A and B this easily follows from the
construction of 5 as a bordered circulant, and the fact that (3/11) = 1.) If (a b) e *&,
then b = a(27 + 5) (mod 4). Therefore, aA(27 + 5) = a(27 + S)A = bA (mod 4),
and so (a b)A = (aA bA) etf. Similarly, ( a b ) B e ? and (a b) C e *£. The matrices
A, B and C are all monomial matrices, with non-zero entries ±1. Denote the rows of
M by Too, r0, ru r2,... , r)0 considering the suffixes as elements of P = P'(FU), the
projective line over the field F u . Then for a e P we have raA = ra+l, ra B = r3a and
raC = ±r_1/a. The transformations a ^ a + l , a K 3 a and a i-> — I/a generate
the standard action of PSL(2, 11) on P. It follows that given a, b, c, d e F u with
ad — be = 1, there is a matrix D, a product of powers of A, B and C in some order,
with raD = ±r(ao+W/(ca+d) for each a € P. Then D is monomial and commutes with
S. Hence D preserves f and preserves the shapes of the elements of c€.

The action of PSL(2,11) on unordered pairs of elements of P has one orbit, namely
that of {oo, 0}. The action of PGL(2,11) on 4-element subsets of P is governed by the
cross ratio; each orbit contains a set of the form {oo, 0,1, a} and this lies in the same
orbitas{oo,0,1,0} if and only if a e {0,1-0, 1/(1-0), 0/(1-0), (l-0)/0,1/0}.
It readily follows that PGL(2, 11) has two orbits on 4-element subsets of P, namely
those containing {oo, 0,1,2} and {oo, 0,1, 3}. The set {oo, 0,1,2} is fixed under
the map O I H 2 - a and the set {oo, 0,1, 3} is fixed under the map a i-> 3/a.
These transformations are induced from the action of PGL(2, 11) but not from that
of PSL(2,11). It follows that the PGL(2,11) and the PSL(2,11) orbits of 4-element
subsets of P coincide. Thus it suffices to show that i r ^ ± r0, i r ^ ± ro ± r! ± r2

and ±roo ± r0 ± r, ± r3 all have Euclidean weight at least 16. But if we change the
signs of two of the rows in one of these expressions, then we add a vector of the form
2ra -I- 2r^, which has shape (24 020), where the twos lie in positions occupied by ones
in the vector we are altering. Therefore, the shape, and so the Euclidean weight of the
vector is not altered, and so we only need check the six cases r^ ± r0, r^ + r0 + r! ± r2

and Too -(- r0 + r! ± r3. The back of a modest envelope is adequate to this task. •

4. Weight enumerators

By exploiting the symmetry of ^ under PSL(2, 11) we can compute the sym-
metrized weight enumerator of ^ without much difficulty. Given a word w e ^
define 0 (w) = X" YbZc, where a is the number of 0s in w, c is the number of 2s in w
and b = 24 — a — c is the number of ± l s in w. The symmetrized weight enumerator
of "if is

WV(X, K, Z) = ]T>(w).

The polynomial W#(X, Y, Z) is called symmetrized, as the numbers 1 and —1 play
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an equal role; this also facilitates the computation. The symmetrized weight enumer-
ator also determines the theta series of the lattice produced from If by construction
A4.

To calculate this we calculate, for each W! G %, the sum

where the sum is over all words w in ^ reducing modulo 2 to w(.
The words W! e ^ are of two types: there are words (a a) with a of even weight

and (b j — b) with b of odd weight. The following of lemmas deal with each possible
case.

LEMMA 4.1. (i) For w, = (0 0) we have

(ii) For W] = (j j) we have

Ww, = 211F24.

PROOF. Let w, = (0 0). The words reducing to (0 0) are those in 2%. For even./
the code ^ has (12) words (c c) where c has weighty. Also % has 2" words of the
form (c j — c). It follows that

as claimed.
The case w, = (j j) is clear. D

LEMMA 4.2. Let Wi = (a a), where a has even weight j and) ^ 0 or 12. Then

for certain integers rj to be defined.

PROOF. Fix some v € ^ reducing to W! and let v' = v + (0 2j). Then each w e ^
reducing to W! has the form v + (2a 2a) or V + (2a 2a) for some a of even weight.

Let v = (v, v2) and note that Vi = v2 (mod 2). By applying the same permutation
to the order of coordinates in V[ and v2 we get

v, = ((±iy 0r' (P 2r3 2ri) and v2 = ((±iy 0ri 2n 0° 2r"),
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where r, + r2 + r3 + r4 = 12 — j . As j 0 we can replace v by v + 2 (a a) for a suitable
a of even weight and rearrange again to get

v, = ((±iy 0ri+r<

It is apparent that

2°) and v2 = ((±iy 0r'+r4 2n (T).

where s is the number of Is in a corresponding to positions where the entries of V]
and v2 both vanish. The number of a of even weight giving rise to a particular value
for s is 2"-r'-r4(ri^r4) and so the sum of <p(\ + 2(a a)) over all a of even weight a

u~n~rt Z2)n+rt.

Replacing v by v' interchanges the roles of rx + r4 and r2 + r3 and so

Wm, = Z2)n+rt

D

LEMMA 4.3. 7/"w, = (b j - b) with b of odd weight, then

Wmi = Yl2[(X + Z)12 - (X - Z)12].

PROOF. Let v e ^ reduce to w, modujo 2. Clearly, ^(v) = X" Y12Z12~a for some
integer a. We claim that a is odd. This follows as v is equal to the modulo 4 reduction
of ]Ta cara, where JZa ca is odd. Then as the ra are orthogonal and of norm 12 we
have

cara
= 12 ^ c2 s 12 (mod 24)

and as

= 12 + Aa (mod 8)

then a must be odd. Each u € ^ reducing modulo 2 to W! has the form ±v + 2(c c),
where c has even weight. Write u = ±v + 2(c c) = (uj u2). For each position in Uj
either the element there or the corresponding element in u2 is even but not both. The
set of such positions where this even element is 2 has odd cardinality, and we get each
such set exactly twice. Thus

WW1 = 2K12 J^ L l2 V 1 2 - 2 r Z 2 ' = Y12 [(X + Z)12 - (X - Z)12] .
r=0 V^r + V

•
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Given a subset 5 c P'(Fn) define r s = £ a E S r a . If \S\ is even, then r s has
r3 = r4 = 0 in the notation of Lemma 4.2. Note that replacing Wi by Wi D, where D
lies in the group generated by matrices A, B and C, does not alter WWl. So we need
only compute WWl for one representative of each orbit under PSL(2,11) of even size
subsets S of IPl(Fii).

The following table gives the orbits of the non-trivial subsets of even cardinality of
P1 (Fi i) under the action of PSL(2,11) where we record rx and r2 for the appropriate rs.

set
{oo,0}
{oo,0,l,2}
{oo,0,l,3}
{oo,l,3,4,5,9}
{oo, 2,6,7, 8, 10}
{00,0,2,5,6,9}
{oo, 1,2,3,4,9}
{00,2,7,8,9,10}
{00,0,2,3,5,7}
{3,4,5,6,7,8,9,10}
{2,4,5,6,7,8,9,10}
{1,2,3,4,5,6,7,8,9,10}

size
2
4
4
6
6
6
6
6
6
8
8 "
10

length of orbit
66
165
330
132
132
110
110
110
330
165
330
66

r\
5
4
6
1
5
3
3
3
3
4
7
1

r2

5
4
2
5
1
3

3
3
0
7
1

The symmetrized weight enumerator of *if is

(X2 + Z2)12/2 + (X2 - Z2)I2/2 + 2nXl2Z12 + 212F24

+ 66 • 27K4(XZ)5(X2 + Z2)5 + 165 • 2gY\XZ)4(X2 + Z2)4

+ 330 • 29 Y\XZ)6(X2 + Z2)2 + 330 • 25 Y\XZ)2(X2 + Z2)6

+ 264 • 26Yl2XZ(X2 + Z2)5 + 264 • 2lorI2(XZ)5(X2 + Z2)

+ 660 • 29K12(XZ)3(X2 + Z2)3 + 165 • 2" K16(XZ)4

+ 165 • 27 K16(X2 + Z2)4 + 330 • 210r16(XZ)2(X2 -I- Z2)2

+ 66 • 211 r2Oxz(x2 + z2) -i- 2" y'2(x + z)12 - 2" y'2(x - z>12

= X24 + 66X20Z4 + 495XI6Z8 + 8448X15 Y4Z5 + 10560X14 Y%Z2

+ 42240X13r4Z7 + 105600X12r8Z4 + 2972X12Z12 + 66048X" YnZ

+ 84480X" Y4Z9 + 496320X10K8Z6 + 1323520X9 Yl2Z3

+ 84480X9r4Zu + 21120X8r16 -I- 802560X8F8Z8 + 495X8Z16

+ 4697088X7 KI2Z5 + 42240X7 K4Z13 + 422400X6 716Z2

+ 496320X6K8Z10 + 4697088X5 K12Z7 + 8448X5 K4Z15

-I- 1140480X4 Yl6Z4 + 105600X4r8Z12 + 66X4Z20 + 135168X3K20Z

+ 1323520X3 Yl2Z9 + 422400X2 Yl6Z6 + 10560X2K8Z14
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+ 135168AT2OZ3 + 66048XYl2Zn +4096K24 + 21120y16Z8 + Z24

in agreement with the computer-assisted computation in [2].

5. Constructions of type A „

Let a, b, c and d be integers with c = 2a + b (mod 4) and d == a + 2b (mod 4).
Then the matrix

/ al+bS cl + dS\
~ \-d +dS al - bS)

satisfies NNT = (a2 + 1 \b2 + c2 + 1 ld2)I24, and all its rows are in L. Thus the Leech
lattice contains an orthogonal frame of 24 vectors each of norm \ {a2+11 b2+c?+11 d2).
In [5] Harada, Sole and Gaborit ask whether for £ > 2 there is always a type II code
over Z2* of length 24 and minimum Euclidean weight 8k. By construction A2t this
gives the Leech lattice and an orthogonal frame of vectors of norm 2k inside it. From
such a frame in the Leech lattice, we can reverse this construction to obtain a type
II code over Z2* and minimum Euclidean weight 8k. So we can construct such a
code given integers a, b, c and d with c = 2a + b (mod 4), d = a + 2b (mod 4) and
k = ^{a2 + \\b2 + c1-\-\\d2). It is straightforward to express the codes corresponding
to such frames as double circulant codes.

LEMMA 5.1. Let n be a positive integer divisible by 4. If the rank n lattice L
contains an orthogonal frame ofn vectors of norm m, then it contains an orthogonal
frame ofn vectors of norm km, for each positive integer k.

PROOF. By passing to the sublattice generated by the given frame and scaling we
may assume that L = Z" and the frame consists of the n coordinate vectors. Then as
4 | n we can further assume that n = 4. But the result now reduces to the four-square
theorem; we can take the new frame to be (a, b, c, d), (—b, a, —d, c), (—c, d, a, —b)
and (-d, -c, b, a) where k = a2 + b2 + c2 + d2. D

THEOREM 5.2. For each prime p ^ 11 there exist a, b, c, d € 1 with c = 2a + b
),d = a + 2b(mod4)and2p = \{a2 + lib2 + c2 + Ud2).

PROOF. Consider the lattice

L = [(a, b,c,d) el4 : d = a + 2b, c = 2a + b (mod 4)}
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296 Robin Chapman [10]

but not with the standard inner product, but rather that induced by the quadratic form
\{a2 + lib2 + c2 4- lie?2). This lattice is spanned over 1 by vectors (4,0,0,0),
(1,0,2, 1), (2,1,1,0) and (0,0,4,0) with Gram matrix

(4 1 2 0 ^
1 4 1 2
2 1 4 1
0 2 1 4 ;

Thus L is an even lattice. Define for Im(z) > 0

weL

where q = exp(27riz). This is the theta function of the lattice L. Then as 11M"1 has
integer entries and det M = 112 is a square, 0L is a modular form of weight 2 for the
group

) :a>b>c>d) :a>b>c>deI' ad-Ubc =

[4, Theorem 3.2]. The space of such modular forms is two-dimensional [6, Theo-
rem 9.10] and is spanned by forms E and <fr as defined below. We define

£(2) =

[9, Section VII.3.5], where a, (n) is the sum of divisors of n when n is an integer and
zero otherwise. (This is a multiple of the form E(z; 11) in Schoeneberg's notation,
but beware of the sign error in his formula). Also

n=l

[6, Chapter XI (11.5)], where

oo

r?(z)=exp(7riz/12)f](l-9
n).

n=l

The form $ is the cusp form associated to the elliptic curve y2 + y = x3 — x2 of
conductor 11 [6, Chapter XI (11.15)]. In particular, the number of points in the
projective closure of y2 + y = x3 — x2 with coordinates in the field Fp is 1 + p — cp
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[11] Constructions of the Leech lattice 297

for p ^ 11. Hence cp < 2^/p whenever p ^ 11 is prime by Hasse's Theorem [6,
Theorem 10.5]. The coefficient of ql in 6L vanishes, so that

1U

For a prime p ^ 11 the qp coefficient of 9L is

(12/5)(p + 1 - cp) > (12/5)(p + 1 - 2Vp) = (12/5)(Vp - I)2 > 0.

Thus L always has a vector of squared length 2p for p ^ 11. •

COROLLARY 5.3. For each integer k which is not a power of '11, ?/iere w an orthog-
onal frame of norm 2k in the Leech lattice.

PROOF. By Theorem 5.2 the result is true whenever it is a prime other than 11. But
Lemma 5.1 shows that if it is valid for k, then it is also valid for all multiples of k.
Unless k is a power of 11, k has a prime factor not equal to 11 and the result is valid
for k. •
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