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Abstract We construct examples of quasi-isometric embeddings of word hyperbolic groups into SL(d,R)
for d ≥ 4 which are not limits of Anosov representations into SL(d,R). As a consequence, we conclude
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1. Introduction

Let g ≥ 1 and Γg be the word hyperbolic group with presentation

Γg =

〈
a1,b1, . . . ,a2g,b2g,

c1,d1, . . . ,c2g,d2g

∣∣∣∣[a1,b1] · · · [a2g,b2g],[c1,d1] · · · [c2g,d2g],[a1,b1] · · · [ag,bg] · [c1,d1] · · · [cg,dg]

〉
.

The group Γg is the fundamental group of a book of I-bundles, and by Thurston’s
geometrization theorem [19] it admits a convex co-compact representation into PSL(2,C)
and thus Anosov representations into SL(d,R) for every d≥ 4. In this paper, we construct

the first examples of quasi-isometric embeddings of word hyperbolic groups into SL(d,R)
for d≥ 5 which are not limits of Anosov representations into SL(d,R). More precisely, we
prove the following:

Theorem 1.1. Let g ≥ 1 and Γg be the word hyperbolic group already defined.

(i) For every d≥ 5 there exists a quasi-isometric embedding ρ : Γg → SL(d,R) such that
ρ is not a limit of Anosov representations of Γg into SL(d,R).

(ii) For g ≥ 4, there exists a strongly irreducible quasi-isometric embedding ψ : Γg →
SL(12,R) such that ψ is not a limit of Anosov representations of Γ into SL(12,R).

We remark that for d ≥ 6 in Theorem 1.1(i), we may replace Γg with any one-ended
word hyperbolic convex co-compact Kleinian group which admits a retraction to a free
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subgroup of rank at least 8 and is not virtually a free group or a surface group (see

Theorem 3.1). The density conjecture for Kleinian groups established by the work of

Brock and Bromberg [5], Brock, Canary, and Minsky [6], Namazi and Souto [20], and
Ohshika [21] implies that every discrete and faithful representation of a word hyperbolic

group into PSL(2,C) is an algebraic limit of Anosov representations. The representations

constructed in Theorem 1.1 demonstrate the failure of the density conjecture for the
higher-rank Lie group SL(d,R) for d≥ 5.

In infinitely many dimensions, Theorem 4.1 produces examples similar to those in

Theorem 1.1(ii) whose elements are all semiproximal (i.e., admit a real eigenvalue of
maximum modulus). Moreover, in Proposition 4.4 we also provide examples of quasi-

isometric embeddings of surface groups and of free groups into SL(4,R) and SL(6,R)
which are not in the closure of the space of Anosov representations. In particular, the

density conjecture fails for SL(d,R) when d≥ 4.
An example of a quasi-isometric embedding of the free group of rank 2 which

is not Anosov was constructed by Guichard in [12] (see also [11, Proposition A.1,

p. 67]. Moreover, Guichard’s example is unstable – that is, it is a limit of nondiscrete
representations but also a limit of P2-Anosov representations (see Definition 2.1) of the

free group of rank 2 into SL(4,R).
For our constructions we shall use the following fact: For a P1-Anosov subgroup Γ

of SL(d,R), d ≥ 4, every quasiconvex infinite-index subgroup Δ of Γ with connected

Gromov boundary contains a finite-index subgroup whose infinite-order elements are all

positively proximal (see Corollary 2.4). It follows that if ρ : Γ→ SL(d,R) is a limit of Pi-

Anosov representations, then ∧iρ : Γ→ SL
(
∧iRd

)
is a limit of P1-Anosov representations

and the group ∧iρ(Δ) contains a finite-index subgroup consisting entirely of positively

semiproximal elements.

It is unknown to us whether there exist nearby deformations of the examples in Theorem
1.1 which are discrete, faithful, and Zariski dense in SL(d,R). In particular, we ask the

following:

Question. Does there exist an open neighbourhood U in Hom
(
Γg,SL(d,R)

)
of the

examples in Theorem 1.1 consisting entirely of discrete and faithful representations?

The paper is organized as follows. In §2 we provide the necessary background on
Anosov representations and prove Lemma 2.3, which is essential for our construction. In

§3 we prove Theorem 1.1, and in §4 we prove Theorem 4.1, providing strongly irreducible

examples in infinitely many dimensions.

2. Background

In this section, we define Anosov representations and prove two lemmas required for our

construction.

Let d ≥ 2 and denote by (e1, . . . ,ed) the canonical basis of Rd and by 〈·,·〉 the
inner product on Rd so that the basis (e1, . . . ,ed) is orthonormal. For a transformation

g ∈ SL(d,R) we denote by �1(g) ≥ ·· · ≥ �d(g) and σ1(g) ≥ ·· · ≥ σd(g) the moduli of the

eigenvalues and the singular values of g in nonincreasing order, respectively. We recall
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that σi(g) =
√
�i (ggt) for 1 ≤ i ≤ d, where gt denotes the transpose matrix of g. For

1≤ i≤ d−1, the matrix g ∈ SL(d,R) is called Pi-proximal if �i(g)> �i+1(g). If i= 1, we
will say that g is proximal. If g is proximal, we denote by λ1(g) the unique eigenvalue of

g of maximum modulus in which case λ1(g) =±�1(g). A matrix g is called semiproximal

if either �1(g) or −�1(g) is an eigenvalue of g. Obviously, if g is proximal then it is also
semiproximal. A matrix g is called positively semiproximal if �1(g) is an eigenvalue of g,

and positively proximal if g is proximal and λ1(g) = �1(g).

2.1. Amalgamated products

Let {Γi}i∈I be a family of groups and H be a group, and suppose that there exists a
family of monomorphisms ϕi :H ↪−→ Γi. The amalgamated product of {Γi}i∈Iwith respect

to {ϕi}i∈I is the group with presentation

∗HΓi =
〈
Γi, i ∈ I

∣∣rel(Γi), ϕi(h)
−1ϕj(h), i,j ∈ I, h ∈H

〉
.

For every i ∈ I, the natural map ιi : Γi →∗HΓi is a monomorphism. For more details on

amalgamated products, we refer the reader to [22].

2.2. Anosov representations

For a finitely generated group Γ we fix a left invariant word metric dΓ induced by a finite

generating subset of Γ; and for γ ∈ Γ, |γ|Γ denotes the distance of γ from the identity

element e ∈ Γ. If Γ is word hyperbolic, ∂∞Γ denotes the Gromov boundary of Γ. Every

infinite-order element γ ∈Γ has exactly two distinct fixed points γ+ and γ− in ∂∞Γ, called
the attracting and repelling fixed points of γ, respectively. If Γ is furthermore not virtually

cyclic, ∂∞Γ is perfect, and for every x ∈ ∂∞Γ\{γ+,γ−}, we have limn→∞ γ±nx= γ±.
Let ρ : Γ → SL(d,R) be a representation. Since Γ is finitely generated, there exist

constants A,a > 0 such that

max
{
σ1(ρ(γ)),σd(ρ(γ))

−1
}
≤ σ1(ρ(γ))

σd(ρ(γ))
≤Aea|γ|Γ

for every γ ∈ Γ. The representation ρ is called a quasi-isometric embedding if there exist
constants J,K > 0 such that

σ1(ρ(γ))

σd(ρ(γ))
≥KeJ|γ|Γ

for every γ ∈ Γ. Equivalently, if we equip the symmetric space Xd = SL(d,R)/Kd, where

Kd = SO(d), with the distance function

d(gKd,hKd) =

(
d∑

i=1

(
logσi

(
g−1h

))2) 1
2

, g,h ∈ SL(d,R),

then ρ is a quasi-isometric embedding if and only if the orbit map of ρ, τρ : (Γ,dΓ)→ (Xd,d),
τρ(γ) = ρ(γ)Kd for γ ∈ Γ, is a quasi-isometric embedding.

For a representation of a finitely generated group, a much stronger property than being

a quasi-isometric embedding is being Anosov. Anosov representations were introduced by
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Labourie [17] in his study of Hitchin representations and further developed by Guichard

and Wienhard in [13]. We define Anosov representations by using a characterization in

terms of gaps between singular values of elements, established by Kapovich, Leeb, and
Porti in [15] and Bochi, Potrie, and Sambarino in [4].

Definition 2.1. Let Γ be a finitely generated group and ρ : Γ → SL(d,R) be a
representation. For 1 ≤ i ≤ d− 1, the representation ρ is called Pi-Anosov if there exist

constants C,a > 0 with the property

σi(ρ(γ))

σi+1(ρ(γ))
≥ Cea|γ|Γ

for every γ ∈ Γ.

In addition, it was proved in [15] and [4] that a finitely generated group which admits
an Anosov representation into SL(d,R) is necessarily word hyperbolic. We shall (a little

abusively) call a representation ρ : Γ → SL(d,R) Anosov into SL(d,R) if it is Pi-Anosov

for some 1 ≤ i ≤ d− 1. Note that ρ is Pi-Anosov if and only if the exterior power ∧iρ
is P1-Anosov. Moreover, since σj

(
g−1

)
= σd−j+1(g)

−1 for g ∈ SL(d,R) and j ∈ {i,i+1},
the representation ρ is Pi-Anosov if and only if ρ is Pd−i-Anosov. The property of being

Anosov is stable – that is, for every Pi-Anosov representation ρ there exists an open
neighbourhood U of ρ in Hom(Γ,SL(d,R)) consisting entirely of Pi-Anosov representations

(see [17] and [13, Theorem 5.14]). Examples of Anosov representations include quasi-

isometrically embedded subgroups of simple real rank 1 Lie groups and their small

deformations into higher-rank Lie groups, Hitchin representations, and holonomies of
strictly convex projective structures on closed manifolds.

For 1≤m≤ d−1, denote by Grm
(
Rd
)
the Grassmannian of m-planes in Rd. Every Pi-

Anosov representation ρ : Γ→ SL(d,R) admits a unique pair of continuous, ρ-equivariant
maps ξiρ : ∂∞Γ→Gri

(
Rd
)
and ξd−i

ρ : ∂∞Γ→Grd−i

(
Rd
)
called the Anosov limit maps. We

refer the reader to [13] and [11] for a careful discussion of Anosov limit maps and their

properties. We mention here some of their main properties:

(i) The maps ξiρ and ξd−i
ρ are compatible – that is, ξiρ(x)⊂ ξd−i

ρ (x) for every x ∈ ∂∞Γ.

(ii) For every γ ∈ Γ of infinite order, ρ(γ) is Pi- and Pd−i-proximal where ξiρ(γ
+)

and ξd−i
ρ (γ+) are the attracting fixed points of ρ(γ) in Gri

(
Rd
)
and Grd−i

(
Rd
)
,

respectively.

(iii) The maps ξiρ and ξd−i
ρ are transverse – that is, for every x,y ∈ ∂∞Γ with x �= y,

Rd = ξiρ(x)⊕ ξd−i
ρ (y).

For a finitely generated group Γ, we denote by Γ(2) the intersection of all finite-index

subgroups of Γ of index at most 2. Note that since Γ is finitely generated, it has finitely

many subgroups of index at most 2, and hence Γ(2) is a finite-index subgroup of Γ.
An open subset Ω of P

(
Rd
)
is called properly convex if it is bounded and convex in an

affine chart of P
(
Rd
)
.

We shall use the following observation:
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Observation 2.2. Suppose that Γ is a finitely generated subgroup of GL(d,R) which

preserves a properly convex domain Ω of P
(
Rd
)
. Then the finite-index subgroup Γ(2)

of Γ preserves a properly convex open cone C in Rd.

Proof. Let π :Rd \{(0, . . . ,0)}→ P
(
Rd
)
be the natural projection. There exists a properly

convex open cone C ⊂Rd such that π−1(Ω) =C∪(−C) and C∩(−C) is empty. Note that

H := {g ∈ Γ : gC =C} is a subgroup of Γ. If H is a proper subgroup of Γ, given w ∈ Γ\H
we have wC = −C and hence Γ =H ∪wH. It follows that H is a finite-index subgroup

of Γ of index at most 2. In particular, Γ(2) is a subgroup of H.

The key property of Anosov representations that we use for our construction is
that when Γ is neither a free group nor a surface group, then for every P1-Anosov

representation ρ : Γ → SL(d,R), the image ρ(Γ) contains a quasiconvex subgroup with

connected Gromov boundary, whose elements are all positively proximal. Given a
representation ψ : Γ→ GL(d,R) of a word hyperbolic group Γ, a continuous ψ-equivariant

map ξ : ∂∞Γ → Gri
(
Rd
)
(if it exists) is called dynamics-preserving if for every infinite-

order element γ ∈ Γ, ψ(γ) is Pi-proximal and ξ(γ+) is the attracting fixed point of ψ(γ)

in Gri
(
Rd
)
.

The following lemma is essential for the construction of our examples:

Lemma 2.3. Let Γ be a word hyperbolic group and Δ be a quasiconvex and infinite-

index subgroup of Γ such that ∂∞Δ is connected. Let d ≥ 4 and ρ : Γ → SL(d,R)
be a representation. Suppose that there exists a sequence {ρn : Γ → SL(d,R)}n∈N of

representations such that the following hold:

(i) For every n ∈N, ρn admits a continuous, ρn-equivariant, dynamics-preserving map
ξρn

: ∂∞Γ→ P
(
Rd
)
.

(ii) limn ρn = ρ.

Then for every δ ∈Δ(2), ρ(δ) is positively semiproximal.

Proof. We first show that for every n ∈N and δ ∈Δ(2), ρn(δ) is positively proximal. Let

us fix n ∈N. Since in Γ, Δ has infinite index and is quasiconvex, we may find w ∈ Γ such

that w+ and w− are not in ∂∞Δ. By definition, ρn(w) is proximal with attracting fixed

point in P
(
Rd
)
the line ξρn

(w+). Let V −
ρn(w) ⊂ Rd be the repelling hyperplane of ρn(w).

We claim that the connected compact set Cρn(Δ) := ξρn
(∂∞Δ) is contained in the affine

chart An = P
(
Rd
)
\P
(
V −
ρn(w)

)
. If not, there exists x∈ ∂∞Δ with ξρn

(x)∈ P

(
V −
ρn(w)

)
and

hence ρn(w
m)ξρn

(x) = ξρn
(wmx) is contained in P

(
V −
ρn(w)

)
for every m ∈ N. However,

limm ξρn
(wmx) = ξρn

(limmwmx) = ξρn
(w+), and ξρn

(w+) is not in P

(
V −
ρn(w)

)
. The claim

follows, and ξρn
(∂∞Δ)⊂An.

Let Vn =
〈
u : [u] ∈ Cρn(Δ)

〉
. The connected set Cρn(Δ) also lies in the affine chart

An∩P(Vn) of P(Vn), and the convex hull ConvAn∩P(Vn)

(
Cρn(Δ)

)
is preserved by ρn|Vn

(Δ).
By definition, Cρn(Δ) spans Vn, so the interior Int

(
ConvAn∩P(Vn)

(
Cρn(Δ)

))
of the convex

hull of Cρn(Δ) in An ∩ P(Vn) is a well-defined properly convex subset of An ∩ P(Vn).

In particular, the properly convex subset Int
(
ConvAn∩P(Vn)

(
Cρn(Δ)

))
is preserved by
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ρn|Vn
(Δ). By Observation 2.2, there exists a properly convex open cone Cn ⊂ Vn such

that ρn|Vn
(δ)Cn = Cn for every δ ∈ Δ(2). Note that for every δ ∈ Δ(2), the attracting

fixed point ξρn
(δ+) of ρn(δ) is always in Vn, and ρn|Vn

(δ) is proximal. Thus, λ1(ρn(δ)) =
λ1 (ρn|Vn

(δ)) for every δ ∈ Δ(2). By [2, Lemma 3.2], we have λ1(ρn(δ)) > 0 and hence

ρn(δ) is positively proximal for every δ ∈Δ(2).

Now set δ ∈Δ(2). By the previous arguments, for every n ∈ N, we have λ1(ρn(δ)) > 0
and there exists a unit vector un ∈ Rd such that ρn(δ)un = λ1(ρn(δ))un. Up to passing

to a subsequence, we may assume that λ := limnλ1(ρn(δ)) exists. The number λ > 0 has

to be an eigenvalue (not necessarily of multiplicity 1) of limn ρn(δ) = ρ(δ) of maximum
modulus. The conclusion follows.

We immediately deduce the following corollary:

Corollary 2.4. Let Γ be a word hyperbolic group and Δ be a quasiconvex and infinite-

index subgroup of Γ such that ∂∞Δ is connected. Let d ≥ 4 and ρ : Γ → SL(d,R) be a

representation. Suppose that there exists a sequence of Pi-Anosov representations {ρn :

Γ → SL(d,R)}n∈N such that limn ρn = ρ. Then for every δ ∈ Δ(2), ∧iρ(δ) is positively
semiproximal.

On the other hand, the images of Anosov representations might contain elements which

are not positively proximal. In fact, this is the case for all Fuchsian representations into

SL(2,R).
For a group H, denote by H(2) =

〈{
ghg−1h−1 : g,h ∈H

}〉
the commutator subgroup

of H.

Lemma 2.5. Let Fk denote the free group on k ≥ 2 generators. Let j : Fk → SL(2,R) be

a quasi-isometric embedding and H be a free subgroup of Fk of rank at least 2. Then for

every a ∈ Fk \H, there exists w ∈H(2) such that λ1(j(wa))< 0.

Proof. Note that j
(
H(2)

)
is discrete in SL(2,R); hence by [9, Lemma 2] (see also [1,

Theorem 1.6]), there exists w0 ∈ H(2) such that λ1(j(w0)) < 0. Then there exists h ∈
GL(2,R) such that

j(w0) = h

[
λ1(j(w0)) 0

0 1
λ1(j(w0))

]
h−1.

Since
{
w+

0 ,w
−
0

}
∩ {a+,a−} is empty and j is P1-Anosov, by transversality we have

that the line j(w0)ξ
j
1 (a

±) = ξj1 (w0a
±) is different from ξj1(a

+) and ξj1(a
−) and hence〈

h−1j(a)he1,e1
〉
is not zero. Then we notice that

lim
n→∞

λ1 (j (w
n
0 a))

λ1 (j (wn
0 ))

=
〈
h−1j(a)he1,e1

〉
and hence we have

lim
n→∞

λ1

(
j
(
w2n+1

0 a
))

λ1 (j (w2n
0 a))

= λ1(j(w0))< 0.
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For large enough n ∈ N, the numbers λ1

(
j
(
w2n

0 a
))

and λ1

(
j
(
w2n+1

0 a
))

have opposite

signs, and the conclusion follows.

We also need the following observation:

Observation 2.6. Let F2 be the free group on {a,b} and ρ : F2 → SL(2,R) be a quasi-

isometric embedding. Set k ∈ N and let φk : F2 → F2 be the monomorphism defined by

φk(a) = bkabk and φk(b) = akbak. Note that |φk(γ)|F2
≥ (2k+1)|γ|F2

for every γ ∈ F2.
Therefore, there exists a constant C > 0 depending only on ρ, such that

�1(ρ(φk(γ))≥ �1(ρ(γ))
Ck

for every γ ∈ F2 and k ∈ N.

We end this section with the following remark showing the necessity of the connected-

ness of the Gromov boundary ∂∞Δ in Lemma 2.3.

We denote by Sg the closed orientable hyperbolic surface of genus g ≥ 2.

Remark 2.7. Let τ2d : SL(2,R) → SL(2d,R), d ≥ 1, be the unique (up to conjugation)
irreducible representation, and fix j : π1 (Sg)→ SL(2,R) a quasi-isometric embedding. For

every deformation ρ of τ2d◦j and every noncyclic free subgroup F of π1 (Sg), ρ(F ) contains

an element whose eigenvalues are all negative. Indeed, by [9, Lemma 2], we may find
w ∈ F with λ1(j(w))< 0. Suppose that {ρt}t∈[0,1] is a continuous path of representations

with ρ0 = τ2d ◦ j and ρ1 = ρ. It follows by Labourie’s work [17] that ρt is Pi-Anosov for

every 0 ≤ t ≤ 1 and 1 ≤ i ≤ d−1. In particular, for every i, the map t �→ λ1

(
∧iρt(w)

)
is

continuous and nonzero, and hence λ1

(
∧iρt(w)

)
λ1

(
∧iτ2d(j(w))

)
> 0. Note that

λ1

(
∧iτ2d(j(w))

)
= λ1(j(w))

i(2d−i)

for every 1≤ i≤ d, and hence λ1

(
∧iρt(j(w))

)
> 0 if and only if i is even. We deduce that

ρt(w) has all of its eigenvalues negative for every 0≤ t≤ 1.

3. The construction

By using Lemmas 2.3 and 2.5, we construct representations of the fundamental group Γg

of a book of I-bundles of Theorem 1.1, which are not limits of Anosov representations

of Γg in SL(d,R) for d ≥ 5. We recall that given a group K and a subgroup H of K, a

homomorphism r :K →H is called a retraction if r(h) = h for every h ∈H.

Proof of Theorem 1.1. The subgroup Δ = 〈a1,b1, . . . ,a2g,b2g〉 of Γg is isomorphic to
the fundamental group π1 (S2g):

〈a1,b1, . . . ,a2g,b2g|[a1,b1] · · · [a2g,b2g]〉 .

The subgroup F = 〈a1,b1, . . . ,ag,bg〉 of Δ is free on 2g generators. Note that there exists

a retraction of Γg onto the surface subgroup Δ. Moreover, there is a retraction r : Δ→ F
which sends ai �→ ai, bi �→ bi, ag+i �→ bg−i+1, and bg+i �→ ag−i+1 for 1≤ i≤ g. Note that

the retraction r is induced by the topological retraction of S2g onto a compact subsurface

homeomorphic to Sg minus an open disk. We finally obtain a retraction R : Γg → F .
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We first construct reducible examples in all dimensions greater than or equal to 5. By
[8, §4, p. 26], there exists a convex co-compact representation i : Γg ↪−→ SL(2,C) such that

i(Δ) is a subgroup of SL(2,R). Let S : SL(2,C)→ SO0(3,1) be the covering epimorphism

whose kernel is {±I2} so that S
(
diag

(
a, 1a

))
is conjugate to diag

(
a2,1,1, 1

a2

)
for every

a ∈ R∗. We consider the following representations:

(a) ρ0 := S ◦ i : Γg → SL(4,R) is P1-Anosov, and for every γ ∈ Δ, the matrix ρ0(γ) is

positively proximal.

(b) Let τ2 : SL(2,C)→ SL(4,R) be the irreducible representation

τ2(h) =

[
Re(h) −Im(h)

Im(h) Re(h)

]
, h ∈ SL(2,C),

and define ρ1 := τ2 ◦ i : Γ→ SL(4,R). Note that ρ1 is P2-Anosov.

(i) Suppose that d = 5. Note that ρ1(Δ) is a subgroup of τ2(SL(2,R)). By Lemma

2.5, we can find w ∈ F (2) ⊂ Δ(2) such that λ1

(
i
(
wa21

))
< 0. Now we consider a group

homomorphism ε : F → R+ such that ε
(
wa21

)
= ε

(
a21
)
= x with x5/4 > �1

(
i
(
wa21

))
=

�1
(
ρ1
(
wa21

))
. We consider the representation ρ : Γg → SL(5,R) defined as follows:

ρ(γ) =

[
1

4
√

ε(R(γ))
ρ1(γ) 0

0 ε(R(γ))

]
, γ ∈ Γ.

Notice that the eigenvalues of ρ
(
wa21

)
in decreasing order are

x, x−1/4λ1

(
ρ1
(
wa21

))
, x−1/4λ1

(
ρ1
(
wa21

))
,

1

x1/4λ1 (ρ1 (wa21))
,

1

x1/4λ1 (ρ1 (wa21))
.

The matrix ∧2ρ
(
wa21

)
is not positively semiproximal. Since wa21 ∈Δ(2), by Corollary 2.4

the representation ρ cannot be a limit of P2-Anosov representations of Γ into SL(5,R).
Note also that ker(ε)∩Δ(2) contains a free subgroup and i(ker(ε)∩Δ(2)) is a discrete

subgroup of SL(2,R). Hence, by Lemma 2.5, there exists h ∈ Δ(2) with ε(h) = 1 and

λ1(ρ(h)) = λ1(ρ1(h)) = λ1(i(h)) < 0. Therefore, by Corollary 2.4, ρ is not a limit of P1-
Anosov representations of Γ into SL(5,R).
We now assume that d=6. By Observation 2.6 we can find a quasi-isometric embedding

j : F → SL(2,R) such that

�1(j(γ))≥ �1(ρ0(γ))
2

for every γ ∈ F . Now we consider the representation ρ : Γg → SL(6,R), defined as follows:

ρ(γ) =

[
ρ0(γ) 0

0 j(R(γ))

]
, γ ∈ Γg.

By Lemma 2.5, we can find w ∈ F ∩Δ(2) such that λ1(j(w)) < 0. Since �1(j(w)) >

�1(ρ0(w)), we have λ1(ρ(w)) = λ1(j(w)) and

λ1

(
∧2ρ(w)

)
= λ1(j(w))λ1(S(i(w))) = λ1(j(w))λ1(i(w))

2 < 0.
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Moreover, the matrix ∧3ρ(w) has the number λ1(j(w))�1(ρ0(w))< 0 as an eigenvalue of

maximum modulus and multiplicity 2. It follows by Corollary 2.4 that ρ, ∧2 ρ, and ∧3ρ
cannot be limits of P1-Anosov representations. This completes the proof of this case.

Now suppose d≥ 7. Again, by Observation 2.6, there exists a quasi-isometric embedding

j0 : F → SL(2,R) with the property

�1(j0(γ))≥ �1(ρ0(γ))
2

for every γ ∈ 〈a1,b1〉. There exists w ∈ 〈a1,b1〉(2) such that λ1

(
j0
(
wa21

))
< 0. We consider

group homomorphisms ε1, . . . ,εd−6 : 〈a1,b1〉→R+ such that �1
(
j0
(
wa21

))
> ε1

(
a21
)
> · · ·>

εd−6

(
a21
)
> �1

(
ρ0
(
wa21

))
. Then the representation ρ : Γg →GL(d,R) defined by the blocks

ρ(γ) = diag(ρ0(γ),j0(R(γ)),ε1(R(γ)), . . . ,εd−6(R(γ)))

has the property that ∧iρ
(
wa21

)
is proximal but not positively proximal for every 1≤ i≤

d−4. Corollary 2.4 shows that for every 1≤ i≤ d
2 , the representation

ρ̂(γ) =
1

d
√

det(ρ(γ))
ρ(γ), γ ∈ Γg,

is not a limit of Pi-Anosov representations into SL(d,R).
(ii) Now we construct a strongly irreducible quasi-isometric embedding of Γg into

SL(12,R) which is not a limit of Pi-Anosov representations for 1 ≤ i ≤ 6. We assume
that g ≥ 4. By Observation 2.6, we can find quasi-isometric embeddings ι1 : 〈a1,b1,a2〉 →
SL(2,R) and ι2 : 〈b2,a3,b3〉 → SL(2,R) such that

�1(ι1(h1))≥ �1(ρ0(h1))
6 and �1(ι2(h2))≥ �1(ρ0(h2))

5

for every h1 ∈ 〈a1,b1,a2〉 and h2 ∈ 〈b2,a3,b3〉. By Lemma 2.5, we can find an element w ∈
Γg(2)∩〈a1,b1〉 such that λ := λ1

(
ι1
(
wa22

))
< 0. Let μ= λ1

(
ρ0
(
wa22

))
> 0. Now consider

a homomorphism ε : 〈a1,b1,a2〉 → R+ such that ε(a2) = x with

|λ|> x3 >
|λ|
μ2

> 1>
μ2

|λ|

and the representation ι′1 : 〈a1,b1,a2〉 → SL(3,R) defined as follows:

ι′1(γ) =

[
1√
ε(γ)

ι1(γ) 0

0 ε(γ)

]
, γ ∈ 〈a1,b1,a2〉.

Notice that ε
(
wa22

)
= x2, and by the choice of x> 0, the matrix ι′1

(
wa22

)
is proximal with

eigenvalues (in decreasing order) λ
x ,x

2, 1
λx . By Lemma 2.5 we can also find z ∈ 〈b2,a3〉(2)

such that s := λ1

(
ι2
(
zb23

))
< 0. We consider the representations ι′2 : 〈b2,a3,b3〉→ SL(3,R),

defined as

ι′2(δ) =

[
ι2(δ) 0
0 1

]
, δ ∈ 〈b2,a3,b3〉,
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and A : F → SL(3,R), defined as

A(γ) = ι′1(γ), γ ∈ 〈a1,b1,a2〉,
A(δ) = ι′2(δ), δ ∈ 〈b2,a3,b3〉,

A(〈a4,b4, . . . ,ag,bg〉) is chosen to be Zariski dense in SL(3,R).

We obtain a Zariski dense representation A◦R : Γg → SL(3,R).
We first observe that ρ0 ⊗ (A ◦ R) is strongly irreducible and a quasi-isometric

embedding. For every finite-index subgroup H of Γg, the restriction of the product

ρ0×(A◦R) :H → SO(3,1)×SL(3,R) is Zariski dense (see, e.g., [10]). Note that the tensor
product representation ⊗ : SO(3,1)×SL(3,R)→ SL(12,R), (α,β) �→ α⊗β, is irreducible.

Hence any proper (ρ0⊗ (A ◦R))(H)-invariant subspace V of R12 = R4⊗RR3 has to be

invariant under α⊗β for every α ∈ SO(3,1) and β ∈ SL(3,R). Therefore, V is trivial and
ρ0⊗ (A◦R) is strongly irreducible. Moreover, since ρ0 is P1-Anosov, there exist C,a > 0

such that σ1(ρ0(γ))
σ2(ρ0(γ))

≥Cea|γ|Γ and hence σ1(ρ0(γ))
4 = σ1(ρ0(γ))

σ2(ρ0(γ))
σ1(ρ0(γ))
σ3(ρ0(γ))

σ1(ρ0(γ))
σ4(ρ0(γ))

≥C3e3a|γ|Γ

for every γ ∈ Γg. Note that

σ1(ρ0(γ)⊗A(R(γ))) = σ1(ρ0(γ))σ1(A(R(γ)))≥ σ1(ρ0(γ))≥ C
3
4 e

3a
4 |γ|Γ

for every γ ∈ Γg. It follows that ρ0⊗ (A◦R) is a quasi-isometric embedding.

We claim that the tensor product representation ρ0 ⊗ (A ◦R) : Γg → SL(12,R) is not

a limit of Anosov representations. We consider the element wa22 ∈ Γg(2). We have
A
(
R
(
wa22

))
= A

(
wa22

)
= ι′1

(
wa22

)
and the matrix ρ0

(
wa22

)
⊗A

(
wa22

)
is conjugate to

the matrix

c= diag

(
μ2,1,1,

1

μ2

)
⊗diag

(
λ

x
,x2,

1

λx

)
, λ= λ1

(
ι′1
(
wa22

))
< 0.

By the choice of x > 0, since |λ|> x3 > |λ|
μ2 > 1, the first seven eigenvalues, in decreasing

order of their moduli, are

λ

x
μ2, x2μ2,

λ

x
,

λ

x
, x2, x2,

λ

xμ2
.

The matrix ∧ic is proximal for i= 1,2,4,6 but not positively proximal. Thus, by Corollary

2.4, ρ0⊗ (A ◦R) is not a limit of Pi-Anosov representations for i = 1,2,4,6. The matrix

∧5c has the number λ3μ4x < 0 as an eigenvalue of maximum modulus and multiplicity
2. Therefore, ∧5c is not positively semiproximal and ρ0 ⊗ (A ◦R) cannot be a limit of

P5-Anosov representations (again by Corollary 2.4). Now we consider the element zb23 ∈
Γ(2). Note that A

(
R
(
zb23

))
=A

(
zb23

)
= ι′2

(
zb23

)
and ρ0

(
zb23

)
⊗A

(
zb23

)
is conjugate to the

matrix

h= diag

(
ν2,1,1,

1

ν2

)
⊗diag

(
s,1,

1

s

)
, s= λ1

(
ι2
(
zb23

))
< 0, ν = λ1

(
ρ0
(
zb23

))
.

Since |s|> ν4, the first five eigenvalues of h, in decreasing order of their moduli, are

sν2, s, s,
s

ν2
, ν2.
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We notice that ∧3h is proximal, with first eigenvalue s3ν2 < 0. It follows that ρ0⊗ (A◦R)

is not a limit of P3-Anosov representations.
We obtain the following generalization of Theorem 1.1 for d≥ 6:

Theorem 3.1. Let Γ be an one-ended word hyperbolic group which admits a convex co-
compact representation into SO(3,1) and is not virtually isomorphic to a free group or a

surface group. Suppose that Γ retracts onto a free subgroup of rank at least 8. Then for

every d≥ 6, there exists a quasi-isometric embedding ψ : Γ→ SL(d,R) which is not a limit
of Anosov representations of Γ into SL(d,R). Moreover, if d= 12, ψ can be chosen to be

strongly irreducible.

The proof of this theorem is similar to the proof of Theorem 1.1 for d≥ 6.

4. Additional examples

By following similar arguments as in Theorem 1.1(ii) and increasing the number of

surface groups of the fundamental group of the I-bundle, it is possible to obtain strongly
irreducible quasi-isometric embeddings for infinitely many odd dimensions such that every

nontrivial element is semiproximal.

Theorem 4.1. Let g ≥ 3 and n≥ 5. For 0≤ i≤ 2n−3, let

Γgi =

〈
a1i,b1i, . . . ,a(2g)i,b(2g)i,
c1i,d1i, . . . ,c(2g)i,d(2g)i

∣∣∣∣[a1i,b1i] · · ·
[
a(2g)i,b(2g)i

]
,[c1i,d1i] · · ·

[
c(2g)i,d(2g)i

]
,

[a1i,b1i] · · · [agi,bgi] · [c1i,d1i] · · · [cgi,dgi]

〉
be a copy of the word hyperbolic group Γg from Theorem 1.1, and consider the word

hyperbolic group

Δn =

〈
Γg0,Γg1, . . . ,Γg2n−3

∣∣∣∣rel (Γgj),[a10,b10] · · · [ag0,bg0] · ([a1j,b1j ] · · · [agj,bgj ])−1

j = 0,1, . . . ,2n−3

〉
.

For every odd n ≥ 5, there exists a strongly irreducible quasi-isometric embedding τn :

Δn → SL(3n,R) which is not a limit of Anosov representations of Δn into SL(3n,R), and
for every γ ∈Δn, τn(γ) has all of its eigenvalues of maximum modulus real.

Let us recall some useful facts. The Lie algebra of SO(m+1,1) is

so(m+1,1) =

{[
A u

ut 0

]
:A+At = 0m+1, u ∈ Rm+1

}
.

The subalgebra so(m,1) ⊂ so(m+1,1) contains all matrices in so(m+1,1) having zeros

in the first row and column. For 1≤ i,j ≤m+2, let Eij be the (m+2)× (m+2) matrix

having 1 in the (i,j)-entry and 0 in the remaining entries. For an (m+2)×(m+2) matrix
Y, Yij denotes the (i,j)-entry of Y. For two square matrices X and Y, their commutator

is defined as (X,Y ) =XY −Y X.

We shall use the following fact:

Fact 4.2. For m≥ 3, so(m,1) is a self-normalizing maximal subalgebra of so(m+1,1).
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Proof. Suppose that X ∈ so(m+ 1,1) such that (X,so(m,1)) ⊂ so(m,1). Note that

E2(m+1) + E(m+1)2 ∈ so(m,1) and
(
X,E2(m+2)+E(m+2)2

)
12

= X1(m+2). It follows

that X1(m+2) = X(m+2)1 = 0. Moreover, we have
(
X,E2i−Ei2

)
12

= −X1i and(
X,E2i−Ei2

)
1i

= X12 for every 3 ≤ i ≤ m+ 1. We conclude that X1i = Xi1 = 0 for
2≤ i≤m+1 and hence X ∈ so(m,1).

Set Y ∈ so(m+1,1)\so(m,1) and let g be the subalgebra generated by Y and so(m,1).

Looking at the commutators (Y ,Z) and
(
Y ,Ei(m+2)+E(m+2)i

)
for Z ∈ so(m)⊂ so(m,1)

and 2≤ i≤m+1, it is not hard to deduce that g has to contain all matrices in so(m+1,1)

with nonzero first row. The conclusion follows.

For our construction we shall use the following lemma, which follows from work of

Johnson and Millson [14]:

Lemma 4.3. Let Δ= G1 ∗g1=g2 G2 be the amalgamated product of two torsion-free word

hyperbolic groups G1 and G2 along the maximal cyclic subgroups 〈g1〉 and 〈g2〉 of G1 and G2,

respectively. Suppose that ρ : Δ→ SO(m,1) is a convex co-compact representation such that

ρ(Gi) is Zariski dense in SO(m,1) for i=1,2 and ρ(g1) = ρ(g2) lies in a copy of SO0(2,1)⊂
SO(m,1). Then there exists a Zariski dense and convex co-compact representation ρ′ : Δ→
SO(m+1,1).

Proof. The representation ρ′ is obtained by applying a Johnson–Millson deformation

[14] for the representation diag(1,ρ). We briefly explain the construction (see also [16,

Lemma 6.3]): Let X be a vector in so(m+1,1) \ so(m,1) such that ρ(g1)Xρ(g1)
−1 =

ρ(g2)Xρ(g2)
−1 = X. Then consider the family of representations ρt : Δ → SO(m+1,1)

where

ρt(γ) = ρ(γ), γ ∈ G1,

ρt(γ) = exp(tX)ρ(γ)exp(−tX), γ ∈ G2.

For small enough t > 0, the Lie algebra of the Zariski closure of ρt, gt, strictly contains
so(m,1), and hence Fact 4.2 shows that gt = so(m+1,1). It follows that ρt is Zariski dense

in SO(m+1,1). By the stability of convex co-compact representations into SO(m+1,1),

established by Thurston [23, Proposition 8.3.3] (see also [7, Theorem 2.5.1]), ρt is convex

co-compact for t > 0 small enough.

Proof of Theorem 4.1. The group Δn is isomorphic to the amalgamated product of

{Γgi}2
n−3

i=0 with respect to the monomorphisms ϕi : 〈t〉 → Γgi, ϕi(t) = [a1i,b1i] · · · [agi,bgi].
For every i, ϕi(t) is a maximal cyclic subgroup of Γgi, and hence Δn is word

hyperbolic by the Bestvina–Feighn combination theorem [3]. For the rest of the proof we

identify Γgi with the subgroup 〈{aji,bji,cji,dji : 1≤ j ≤ 2g}〉 of Δn. We set b = ϕ0(t) =
[a10,b10] · · · [ag0,bg0] ∈ Γi for every i.

For our construction of τn, we will first exhibit a strongly irreducible representation of

Δn into SL(n,R) and then consider the tensor product with a representation of Δn into
SL(3,R).
Notice that Δ0 =

〈
a10,b10, . . . ,a(2g)0,b(2g)0

〉
⊂ Γg0 is isomorphic to π1 (S2g). By [8], there

exists a convex co-compact representation ρ1 : Δn → SO(3,1) such that ρ1|Δ0
is Fuchsian
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– that is, ρ1|Δ0
= S ◦ ρ0 for some convex co-compact representation ρ0 : Δ0 → SL(2,R),

and S : SL(2,C) → SO0(3,1) is the covering epimorphism. Notice that since Γg is not a

surface group, ρ1 (Γgi) is a Zariski dense subgroup of SO(3,1) for every 0 ≤ i ≤ 2n−3.
By Lemma 4.3 we can find a convex co-compact representation ρ2 : Δn → SO(4,1) such

that for every 0 ≤ i ≤ 2n−4 − 1, ρ2
(〈
Γg(2i+1),Γg(2i+2)

〉)
is a Zariski dense subgroup

of SO(4,1) and ρ2(γ) = diag(1,ρ1(γ)) for all γ ∈ Δ0. Now we may view Δn as the
amalgamated product of Γg0 with 〈Γg1,Γg2〉, . . . ,

〈
Γg(2n−3−1),Γg2n−3

〉
(each of which is

isomorphic to Γg ∗〈b〉 Γg along 〈b〉). Since ρ2
(〈
Γg(2i+1),Γg(2i+2)

〉)
is Zariski dense for

every i, by Lemma 4.3 we can find a convex co-compact representation ρ3 : Δn → SO(5,1)
such that ρ3

(〈
Γg(4i+1),Γg(4i+2),Γg(4i+3),Γg(4i+4)

〉)
is Zariski dense in SO(5,1) for 0 ≤

i ≤ 2n−5 − 1 and ρ3(γ) = diag(1,1,ρ1(γ)) for all γ ∈ Δ0. By continuing similarly, we

obtain a Zariski dense convex co-compact representation ρn−3 : Δn → SO(n− 1,1) with

ρn−3(γ) = diag(In−4,ρ1(γ)) for all γ ∈Δ0.
Let F be the free subgroup of Δ0 generated by the elements a10,b10, . . . ,ag0,bg0 and let

R : Δn → F be a retraction. We may choose a P1-Anosov representation A : F → SL(3,R)
such that A(〈a30,b30, . . . ,ag0,bg0〉) is Zariski dense in SL(3,R) and A(γ) = diag(ρ0(γ),1) for
γ ∈ 〈a10,b10,a20,b20〉. Let φk : 〈a20,b20〉 → 〈a20,b20〉 be the map defined as in Observation

2.6 and k ∈ N be large enough that

�1(ρ0(φk(γ))≥ �1(ρ1(γ))
10

for every γ ∈ 〈a20,b20〉. We modify A by considering Ak : F → SL(3,R) such that

Ak(γ) = diag(ρ0(φk(γ)),1),γ ∈ 〈a20,b20〉
Ak(γ) =A(γ), γ ∈ 〈a10,b10,a30,b30, . . . ,ag0,bg0〉 .

The image Ak(F ) is a P1-Anosov subgroup of SL(3,R).
Now we consider the representation τn : Δn → SL(3n,R) defined as follows:

τn(γ) = ρn−3(γ)⊗Ak(R(γ)), for all γ ∈Δn.

Similarly as in the proof of Theorem 1.1(ii), τn is strongly irreducible, since the Zariski
closures of ρn−3 and Ak ◦R are two nonlocally isomorphic simple Lie groups. Moreover, all

elements of the group τn(Δn) have all of their eigenvalues of maximum modulus real, since

Ak|F and ρn−3 are P1-Anosov into SL(3,R) and SL(n,R), respectively. To see that τn is not
a limit of Anosov representations, we may first find w ∈Δn(2)∩〈a10,b10〉 such that s :=

λ1(ρ0(w))< 0. Then c := ρn−3(w)⊗Ak(w) is conjugate to diag
(
s2,In−2,

1
s2

)
⊗diag

(
s,1, 1s

)
.

The first 2n−1 eigenvalues of the matrix c, in decreasing order, are

s3, s2, s, . . . ,s︸ ︷︷ ︸
n−1

, 1, . . . ,1︸ ︷︷ ︸
n−2

.

Since n is odd and s < 0, we see that ∧iτn(w) is not positively semiproximal when i is

even and i≤ n+1 and when n+1≤ i≤ 2n−1. We may also find w′ ∈Δn(2)∩〈a20,b20〉
such that q = λ1(ρ0(φk(w

′)) < 0. Let p = λ1(ρ(w
′)) and note that |q| > p10. The matrix

h := ρn−3(w
′)⊗Ak(w

′) is conjugate to the matrix diag
(
p2,In−2,

1
p2

)
⊗diag

(
q,1, 1q

)
. The

https://doi.org/10.1017/S1474748021000645 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000645


2510 K. Tsouvalas

first n+1 eigenvalues of this matrix, in decreasing order, are

qp2, q,q, . . . ,q︸ ︷︷ ︸
n−2

,
q

p2
,p2.

Since n is odd and q < 0, the matrix ∧iτn(w
′) is not positively semiproximal when i is

odd and i≤ n+1. The conclusion follows by Corollary 2.4. �
In contrast with the previous examples, in order to construct quasi-isometric embed-

dings of surface groups which are not limits of Anosov representations we need to find

elements whose eigenvalues are nonreal.

Proposition 4.4. For every g ≥ 4, there exist quasi-isometric embeddings ψ : π1 (Sg)→
SL(4,R) and ρ : π1 (Sg) → SL(6,R) which are not limits of Anosov representations of
π1 (Sg) into SL(4,R) and SL(6,R), respectively. Moreover, ρ is strongly irreducible.

Proof. Let ρ1 : π1 (Sg) → SL(2,R) be a quasi-isometric embedding and consider π :

π1 (Sg) → 〈a1,a2,a3,a4〉 a retraction of π1 (Sg) onto the free subgroup 〈a1,a2,a3,a4〉 of

rank 4. Define λ := λ1(ρ1(a1)) and μ := λ1(ρ1(a2)) and fix θ /∈ πQ.
We consider x,y > 0 such that x2 > |λ|, |μ| > y2 > 1

|μ| , and a homomorphism ε :

〈a1,a2,a3,a4〉 → R+ with ε(a1) = x and ε(a2) = y. Let Rθ : 〈a1,a2,a3,a4〉 → SL(2,R) be
a homomorphism such that Rθ(a1) and Rθ(a2) are conjugate to an irrational rotation of

angle θ. We consider the representation ψ defined as follows:

ψ(γ) =

[ 1
ε(π(γ))ρ1(γ) 0

0 ε(π(γ))Rθ(π(γ))

]
, for every γ ∈ π1 (Sg) .

By the choice of x > 0 and y > 0, the matrices ψ(a1) and ∧2ψ(a2) have the numbers

xeiθ,xe−iθ, and μeiθ,μe−iθ, respectively, as their eigenvalues of maximum modulus.
Corollary 2.4 implies that ψ is not a limit of Anosov representations of π1 (Sg) into

SL(4,R). Moreover, since ρ1 is P1-Anosov and σ1(ψ(γ))
σ4(ψ(γ)) ≥

σ1(ρ1(γ))
σ2(ρ1(γ))

for every γ ∈ π1 (Sg), it
follows that ψ is a quasi-isometric embedding. The claim follows.

Now we construct the representation ρ. We consider s,t,θ ∈ R satisfying s > |λ|2/3,
|μ|−2/3 < t < 1, and a representation js,t,θ : 〈a1,a2,a3,a4〉 → SL(3,R) such that

js,t,θ(a1) =

⎡
⎣scosθ −ssinθ 0
ssinθ scosθ 0

0 0 1
s2

⎤
⎦, js,t,θ(a2) =

⎡
⎣tcosθ −tsinθ 0
tsinθ tcosθ 0

0 0 1
t2

⎤
⎦,

and js,t,θ(〈a3,a4〉) is Zariski dense in SL(3,R). By arguing as in the proof of Theorem
1.1(ii), the tensor product ρ := ρ1 ⊗ (js,t,θ ◦π) is a strongly irreducible quasi-isometric

embedding of π1 (Sg) into SL(6,R). By the choice of s > 0, the eigenvalues of the matrix

g := ρ1(a1)⊗ js,t,θ(π(a1)), in decreasing order of their moduli, are

λseiθ, λse−iθ,
s

λ
eiθ,

s

λ
e−iθ,

λ

s2
,

1

λs2
.

The matrices g and ∧3g have their eigenvalues of maximum modulus nonreal, hence ρ is

not a limit of P1- or P3-Anosov representations of π1 (Sg) into SL(6,R). The eigenvalues
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of the matrix h := ρ1(a2)⊗ js,t,θ(π(a2)), in decreasing order of their moduli, are

μ

t2
, μteiθ, μte−iθ,

1

μt2
,

t

μ
eiθ,

t

μ
e−iθ.

The matrix ∧2ρ(a2) has its eigenvalues of maximum modulus nonreal, and therefore ∧2ρ is

not a limit of P1-Anosov representations of π1 (Sg). Moreover, we have σ1(ρ(γ))
σ6(ρ(γ))

≥ σ1(ρ1(γ))
σ2(ρ1(γ))

for every γ ∈ π1 (Sg), and hence ρ is a quasi-isometric embedding, since ρ1 is. It follows

that ρ has the required properties.

Remark 4.5.

(i) The construction in Proposition 4.4 also works for finitely generated free groups of

rank at least 4.

(ii) We note that it is possible to describe the proximal limit set of the irreducible

examples we have constructed. For a proximal subgroup H of SL(n,R), the proximal
limit set ΛP

H is defined to be the closure of the attracting fixed points of proximal

elements of H in P(Rn). Let Δ be a nonelementary word hyperbolic group and

suppose that φ1 : Δ→ SL(n,R) and φ2 : Δ→ SL(m,R) are two irreducible represen-
tations such that φ1⊗φ2 is irreducible, φ1 is P1-Anosov, and φ2 is either nonfaithful

or nondiscrete. We claim that ΛP

(φ1⊗φ2)(Δ) is homeomorphic to ΛP

φ1(Δ) ×ΛP

φ2(Δ).

We may assume that e1 ⊗ e1 is in ΛP

(φ1⊗φ2)(Δ) and [e1] ∈ P(Rn) is the attracting
eigenline of φ1(w1). Let w0 ∈Δ be a nontrivial element such that φ2(w0) = Im. For

x,y ∈ ∂∞Δ with {x,y}∩
{
w+

0 ,w
−
0 ,w

+
1 ,w

−
1

}
empty, we may find a sequence (γn)n∈N of

elements of Δ with x= limn γn and y= limn γ
−1
n . Then limn

(
γnw0γ

−1
n

)
w+

1 = x, and
hence limn(φ1⊗φ2)

(
γnw0γ

−1
n

)
[e1⊗ e1] = [ux⊗ e1], where ξ1φ1

(x) = [ux]. It follows

that ΛP

(φ1⊗φ2)(Δ) contains the set
{
[uz ⊗ e1] : ξ

1
φ1
(z) = [uz], z ∈ ∂∞Δ

}
. Now since

(φ1⊗φ2)(Δ) and φ2(Δ) act minimally on ΛP

(φ1⊗φ2)(Δ) and ΛP

φ2(Δ), respectively (see

[1, Lemma 2.5]), we conclude that ΛP

(φ1⊗φ2)(Δ) =
{
[u1⊗u2] : [ui] ∈ ΛP

φi(Δ), i= 1,2
}
.

We work similarly when φ2 is nondiscrete. In particular, we deduce the following:

(a) In the construction of ρ in Theorem 1.1(ii), the representation A : F → SL(3,R)
can be chosen to be nondiscrete, and hence the proximal limit set of ρ(Γ) in

P
(
R12

)
is homeomorphic to ∂∞Γ×P

(
R3
)
.

(b) In Theorem 4.1, the proximal limit set of τn(Δn) in P
(
R3n

)
is homeomorphic

to ∂∞Δn×C, where C is a Cantor set.

(c) In Proposition 4.4, for s,t > 0 generic, the representation js,t,θ is nondiscrete

with dense image in SL(3,R). The proximal limit set of ρ(π1 (Sg)) in P
(
R6
)
is

homeomorphic to S1×P
(
R3
)
.

5. Concluding remarks

Let G and G′ be two semisimple real algebraic Lie groups of real rank at least 2 and ι :

G ↪−→G′ be an injective Lie group homomorphism. For an Anosov representation ρ : Γ→G,

the composition ι ◦ ρ need not be Anosov into G′ with respect to any pair of opposite
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parabolic subgroups of G′. The failure to be Anosov under composition with a Lie group

embedding has already been exhibited by Guichard and Wienhard [13, §4, p. 22]. Our

examples are not limits of Anosov representations of their domain group into the bigger
special linear group SL(d,R), but are Anosov (with respect to a suitable pair of opposite

parabolic subgroups) when considered as representations into their Zariski closure G.

Following the lines of the proof of Theorem 4.1, we construct examples of discrete
and faithful representations which are not quasi-isometric embeddings (and hence cannot

be Anosov into their Zariski closure) and are not a limit of Anosov representations of

their domain group into SL(15,R). Let M3 be a closed orientable hyperbolic 3-manifold
which is a surface bundle over the circle (with fibers homeomorphic to S ) and contains

a totally geodesic closed surface S′. By using the Klein combination theorem, we may

find a convex co-compact representation ρ : π1

(
M3

)
∗F2 → SO(4,1) whose restriction to

the free factor F2 is Zariski dense and ρ|π1(M3) = diag(1,ρ0); here ρ0 : π1

(
M3

)
→ SO(3,1)

denotes the holonomy representation associated to M3. Since the quotient of π1

(
M3

)
by

the normal subgroup π1(S) is cyclic, the intersection H = π1(S)∩π1(S
′) is a noncyclic,

normal free subgroup of π1(S
′). Let F = 〈a1, . . . ,ar〉 be a free subgroup of H of rank r≥ 4.

We may find a finite cover Ŝ of S such that F ⊂ π1

(
Ŝ
)

and there exists a retraction

R : π1

(
Ŝ
)
→ F [18, Theorem 1.6], which we extend to a retraction R : π1

(
Ŝ
)
∗F2 → F .

Since S′ is totally geodesic in M3 and F is quasiconvex in π1(S
′), there exists a convex

co-compact representation ρ1 : F → SL(2,R) such that ρ0|F = S ◦ρ1. As in Theorem 4.1,

we consider k very large and Ak : F → SL(3,R) a Zariski dense representation, such that

Ak(γ) = diag(1,ρ1(γ)) for γ ∈ 〈a1,a2〉 and Ak(γ) = diag(1,ρ1(φk(γ))) for γ ∈ 〈a3,a4〉. The
representation ρ′ : π1

(
Ŝ
)
∗F2 → SL(15,R),

ρ′(γ) = ρ(γ)⊗Ak(R(γ)), γ ∈ π1

(
Ŝ
)
∗F2,

is discrete and faithful (since ρ is) and not in the closure of Anosov representations of

π1

(
Ŝ
)
∗F2 into SL(15,R). We note that since Ak ◦R is not faithful and π1(S) is normal

and of infinite index in π1

(
M3

)
, the representations Ak ◦R and ρ|π1(Ŝ) are not quasi-

isometric embedings into SO(4,1) and SL(3,R), respectively. In particular, ρ× (Ak ◦R) is
not Anosov with respect to any pair of opposite parabolic subgroups of SO(4,1)×SL(3,R).
The Zariski closure of ρ′ is SO(4,1)⊗SL(3,R) = {g1⊗g2 : g1 ∈ SO(4,1), g2 ∈ SL(3,R)} and

it follows (see, e.g., [13, Corollary 3.6]) that ρ⊗ (Ak ◦R) is not Anosov in its Zariski
closure in SL(15,R).
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