JFP 23 (6): 701-712,2013. (©) Cambridge University Press 2014 701
doi:10.1017/S0956796813000257

Commercial users of functional programming
workshop report

MICHAEL SPERBER

Active Group GmbH, Hornbergstra Be 49, 70794 Filderstadt, Germany
(e-mail: sperber@deinprogramm.de)

ANIL MADHAVAPEDDY

Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 OFD, UK
(e-mail: anil@recoil.org)

1 Overview

Commercial Users of Functional Programming (CUFP) is an annual workshop that is
aimed at the community of software developers who use functional programming in real-
world settings. This scribe report covers the talks that were delivered at the 2012 workshop,
which was held in association with International Conference on Functional Programming
(ICFP) in Copenhagen, Denmark. The goal of the report is to give the reader a sense of
what went on, rather than to reproduce the full details of the talks. Videos and slides from
all the talks are available online at http://cufp.org.

2 Keynote: adopting functional programming

Kresten Krab Thorup, CTO of Trifork, Aarhus, Denmark delivered the keynote address.
He took us on the voyage he had taken from being an “object head” to “Erlang land.”
Thorup’s foundational training in software development was all in terms of object-oriented
methodologies. He went on to work on Objective C for NeXT, then earned his PhD and
subsequently founded Trifork, an IT services company that currently employs 250 people
and develops software solutions, provides training, and organizes several well-respected
conferences.

While Trifork originally capitalized almost exclusively on its Java expertise, it now suc-
cessfully applies Erlang in large-scale industrial projects. Taking cues from anthropology,
Thorup described how many organizations have not been able to make such transitions
easily. Groups tend to gather around an idea that keeps them together, and try to keep
new ideas at bay. This makes it difficult for long-time OO developers to adopt functional
programming.

Trifork managed to stay flexible by making learning about new ideas and communicating
them as part of their regular operation. Everyone at Trifork is encouraged to spend 10% of
his/her time in the structured exchange of knowledge by giving presentations, organizing
meetings, give training classes, or organizing conferences.

Thorup reviewed object-oriented programming and the ecosystem around it to show
how it had become successful through an intuitive idea — “an object is an independent
encapsulated entity that interprets inputs on its own account” — but also because of the

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

702 M. Sperber and A. Madhavapeddy

availability of thinking tools: graphical notation for design, tools for mapping those designs
to programs, books on common problems akin to “Design Patterns” (Gamma et al., 1995),
analysis methods for producing systems, and standardized qualification processes.

However, Thorup also saw a serious problem with the object-oriented model, as objects
have no coherent model of time and no good way to compose behaviors over time. With the
rise of multicore and distributed computing, these become increasingly important. Erlang,
supporting functional programming and an actor model for concurrency, parallelism, and
distribution, addresses this issue. Thorup stressed that Erlang is not primarily a functional
programming language, but that functional programming helps Erlang meet its goal of
being a language for writing robust distributed applications.

Thorup described large-scale projects done using Erlang, one for managing healthcare
records in Denmark, and another for sharing data among “sometimes connected devices”
such as a cell phones at a music festival.

Thorup concluded by noting that two fundamental classes of problems in software devel-
opment require different classses of solutions: Interactive systems with multiple parties are
fundamentally stateful, and where developers should understand the handling of state — for
those problems, actors are a good model. Transformational systems map input to output,
where developers want to abstract over the details of hardware utilization, the handling of
mutable state and coordination.

3 OCaml: Jane Street status report

Jane Street is a proprietary quantitative trading firm that has been a well-known user and
supporter of OCaml, and was last presented at CUFP in 2006. Yaron Minsky reviewed the
full past decade of OCaml use at Jane Street.

Jane Street has the following three kinds of requirements on their own software:

Correctness. Jane Street trades billions of dollars every day — much more than the com-
pany is worth. Hence, a software error can have disastrous consequences.

Agility. Jane Street needs to be able to adapt the software quickly to exploit new market
opportunities as they are found.

Performance. The software needs to run fast to exploit market opportunities.

Jane Street has written OCaml code for a number of application areas: research tools
for investigating trading strategies, trading systems replacing legacy systems written in
VBA/Excel that make trades automatically, order gateways that implement protocols to in-
teract with markets, post-trade software to analyze and clean up completed trades, systems
infrastructure to manage clusters of physical machines, development tools, trading tools,
and tools for managing market-data and desk infrastructure.

Minsky could not remember a single crucial error in the software that was discovered
after deployment. Code at Jane Street generally fails by turning off the system, which is
acceptable in this environment. Jane Street’s user interfaces are all text-based and written
using Curses and OCaml — this “prevents bad UX designers from doing UX.”

Another important task that favors OCaml is how the type system eases large refactoring
projects. Jane Street’s code base is designed to use the OCaml type system to statically

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

Commercial users of functional programming 2012 703

catch most mistakes at compile-time, thus helping trap most common mistakes that oc-
cur in the middle of large-scale refactoring efforts. The type system helps programmers
write readable, explicit code, which is more important than great productivity increases or
extremely concise programs.

Jane Street has developed a number of generally useful libraries for OCaml, many of
which are open source.! In particular, Core is an enhanced “standard library,” meant to sup-
plement the minimalistic libraries that ship with OCaml. Async is a library with monadic
concurrency abstractions, similar to those available in other functional languages such as
F# (Syme et al., 2011). Incremental describes large-scale computations with small updates,
Catalog is a publish/subscribe system, and Nile is a distributed message-passing library.

In summary, Jane Street is fully committed to OCaml, and will continue to do its devel-
opment in OCaml. Jane Street will continue to contribute to open-source projects, and to
collaborate with others working on or in OCaml.

4 Erlang: transmitting customized ads to set-top boxes

Macias Lopez, David Cabrero, and Laura M. Castro from the University of La Corufia
reported on the ADVERTISE project (Lopez et al. 2012a, 2012b). ADVERTISE is a dis-
tributed system for transmission of customized ads to TV set-top boxes via the TV network
of a cable provider. The system — entirely written in Erlang — compiles events, emits “ad-
vertising signals” to set-top boxes, and collects statistics about how many times specific ads
were displayed on consumer boxes. ADVERTISE sends ads to more than 100,000 clients.

Lopez reported on the difficulties of developing and deploying such a large-scale system.
In particular, after the original system implementation, the customer provided hardware
that did not satisfy the original minimum specifications. Moreover, the network exhibited
frequent node failures and netsplits, which disrupted the operation of the original system.
Thus, while Erlang was a good choice for implementing the system, merely using Erlang
did not make a distributed system robust in highly unreliable environments. ADVER-
TISE yielded insights into best practices for implementing distributed systems in such
environments.

Netsplits in particular are problematic, as nodes may incorrectly conclude other nodes
are down, and then compete for control of the network. This may lead to data incon-
sistencies and duplicate implementations of responsibilities assumed to be unique. An
ADVERTISE node, when it loses network connectivity, immediately suspends execution
and waits until it is restored, choosing consistency over availability in such scenarios to
avoid corrupting advertising campaigns.

5 Haskell: used in Citrix XenClient

Matthias Gorgens reported on using Haskell in the XenClient project at Citrix. XenClient
is a virtual machine manager for clients, primarily laptops in corporate and government
environments, where XenClient offers functionality different from the long-established

! http://janestreet.github.io/

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

704 M. Sperber and A. Madhavapeddy

XenServer such as trusted-computing support with hard drive encryption and native graph-
ics performance.

The XenClient management stack consists of many daemons that communicate via D-
Bus and V4V.? Originally many of the daemons were written using Ruby, but a rising bug
count motivated the development team to look for alternatives, particularly statically typed
languages to catch more bugs at development time. Some daemons were then rewritten
in Haskell. By now there are about 25,000 lines of code in Haskell in the system. The
XenClient daemons are typically long-running, perform short bursts of communication
and computation upon a request discovered via polling, do not hold much state, and are
restartable. Haskell is well suited for this kind of application.

As XenServer already uses OCaml for its management toolstack, it is a bit surprising
that XenClient chose Haskell. Gorgens cited personal preferences, the availability of more
libraries, and the fact that Haskell “relieves pressure to share code with XenServer.”

Gorgens also cited a few problems with using Haskell. XenClient found it difficult to
handle I0-heavy workloads, make Haskell compile with the OpenEmbedded build sys-
tem used in XenClient, and successfully train developers not yet familiar with functional
programming.

6 OCaml: functional programming @ Ghent IT Valley

Romain Slootmaekers and Nicolas Trangez of Incubaid Research Lab reported on using
OCaml for implementing a distributed storage service. Incubaid Research Lab is an incu-
bator laboratory for startup companies.

In 2009, Amplidata — one of those spinoffs — was working on a dispersed storage system
(DSS). The system consists of a multi-stage pipeline involving metadata storage, encoding
and decoding, storage management, and the backend disks. At the time, development on
the storage-management component, written in C++, had stalled: There were problems
with resource management and threads, the software had many bugs, and its object model
had poor locality, which led to poor performance. Slootmaekers was able to correctly
reimplement the storage component in OCaml within two days, which led to Amplidata
considering using languages other than C++ for system development.

The original re-implementation of the storage component had to be done quickly, and
was able to leverage OCaml’s object-oriented substrate to duplicate the architecture of the
C-++ original. Also, the existence of precise specifications and a test suite helped speed
the rewrite.

The successor version of the system was then re-implemented mostly in OCaml, and
involved more leisurely and more complete refactoring. The rewrite used the Lwt (Vouillon,
2008) library, and was delightfully painless. Performance improved more than twofold, and
Amplidata was able to preserve code size while adding significant features. In particular,
the newly written Arakoon? distributed key-value store was developed to hold the system’s
metadata.

2 a VM-to-VM communications protocol.
3 http://arakoon.org

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

Commercial users of functional programming 2012 705

OCaml helped developers through type inference, a fast compiler that produces suffi-
ciently fast code, the convenient C FFI, and the help the type system gives when refactor-
ing. Downsides are poor tool support, a scarce and fragmented library landscape, problems
with multicore support, and that the object-oriented model does not always fit well with
the rest of the language. Slootmacekers also cited as notable problem the lack of visual tools
to talk about system architecture.

In conclusion, Slootmaekers noted that any sufficiently large project should be ready to
use more than one language, and that functional programming and distributed systems are
a good match.

7 Star: from streams to functions (and back again)

Frank McCabe of Starview Inc. reported on Star, a new programming language, that is
part of Starview’s event-processing platform.* The purpose of Starview’s platform is to
provide operational intelligence: to notice when a significant business event happened,
and to decide what to do about it, in real time. The Star language was developed to express
this intelligence. It started out as “StarRules,” a simple language based on an “on pattern
do something” construct. It could perform straightforward statistical processing and infer
significant events from event data.

StarRules’s first application was scheduling in the semiconductor industry. In this do-
main, it is not enough for software to make simple inferences from the data — it needs to
make complex decisions in the face of an ever-changing environment where machines fre-
quently break, thereby invalidating any long-term plans. The software needed here did not
fit StarRules’ “on pattern do” construct. Consequently, Starview decided to turn StarRules
into a general-purpose language and renamed it to Star.

A number of requirements shaped Star’s design, and it needed to support different
programming styles in use at Starview. The scheduling application for semiconductor
fabrication plant demanded safety, as errors in the deployed software can be extremely
costly. Moreover, it needed to satisfy modest real-time requirements.

McCabe then formulated basic design requirements for Star: to strongly support certain
safety properties, but also to build tooling and serve as a communication medium in teams.
The language also has automatic type inference to avoid the bureaucracy of dealing with
types in Java. The type system is based on algebraic types rather than objects and has no
null. This decision was controversial within Starview, which is still in many ways a “Java
house.”

Star amalgamated influences from various languages: in particular functions as an or-
ganizing principle from other functional languages, macros from April (McCabe & Clark,
1995) and Lisp to support syntactic extensibility, as well as the Concurrent ML substrate for
parallelism and concurrency (Reppy, 1999). The type system borrows much from Haskell,
as Star’s type contracts are a variant of Haskell’s type classes (Wadler & Blott, 1989). Star
also includes influences from Prolog and SQL. Moreover, its actors are based on speech
actions (Searle, 1969) and provide a mechanism for implementing agent-like entities. Star

4 Star is open-source and available at www.star-lang.com

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

706 M. Sperber and A. Madhavapeddy

is designed to be readable rather than concise: this makes its texture distinct from other
functional languages such as Haskell or ML.

The combination of functions, macros, and overloading provides a coherent methodol-
ogy for implementing domain-specific languages (DSLs) in Star. A developer can start with
an ontological commitment in his/her problem domain, provide appropriate syntax, which
is translated into a macro invocation, which is turned into function invocations, which are
often backed by contracts. In particular, actors are implemented this way, as is higher level
functionality for analytics and event processing.

8 OCaml: functional big-data genomics

Ashish Agarwal reported on the Genomics Sequencing Core used to enable entry, storage,
and analysis of genomic sequencing data. This was a joint work with Sebastien Mondet,
Paul Scheid, Avid Madar, Richard Bonneau, Jane Carlton, and Kristin C. Gunsalus at New
York University. The software that Agarwal described is implemented in
OCaml.

Since the sequencing of the human genome in 2000, modern sequencing equipment has
been getting faster quickly. The data that accumulates in genome sequencing double in vol-
ume every five months, while storage costs per amount of data are halving every 14 months.
This places high demands on the computational infrastructure used to process sequencing
data. In particular, where the sequencing itself — performed by custom machines — used to
dominate the time spent in a typical genome-related project, the emphasis is migrating to
experimental design and datastream analysis.

The project described by Agarwal provides computational infrastructure for accepting
and storing sequencing data and sequencing, and making it accessible to distributed com-
putations on a compute cluster. In particular, the Genomics Sequencing Core provides
an application server for managing the overall functioning of the system, a job queue
for computations that interfaces to the compute cluster, and a web front end for
the entire system. The system maintains metadata for racking samples, libraries, and
protocols.

The data that accumulates in the system is characterized by high volume and also a
high variety of different formats. The velocity at which it arrives is not yet a problem,
but may become a challenge in the future. Agarwal and his colleages have developed a
DSL embedded into OCaml that is used to generate multiple system functionalities, among
them serialization, SQL schemas, query scripts, and OCaml code for performing reads in
inserts, web widgets, and diagrams. This enables rapid development of functionality and
easy migration between formats.

The Genomics Sequencing Core also maintains a virtual filesystem that distinguishes
between “original” and “derived” data, recomputing “derived” data on the fly.

The entire system is implemented in OCaml, using a wide variety of libraries — in
particular the Ocsigen (Balat et al., 2009) web framework, the Core and Batteries libraries,
and the Biocaml, PG’OCaml, Xmlm, and OCamlNet libraries. Developers having at their
disposal about 1.3 full-time-equivalents of time built the system and delivered the first
version in production within two months. The experience with OCaml has been mostly
positive. Agarwal cited OCaml’s industrial-strength implementation, the availability of

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

Commercial users of functional programming 2012 707

needed libraries, and the excellent performance. Agarwal mentioned the complications
maintaining a build system and the lack of “blessed libraries” as factors that could still be
improved.

Agarwal closed by summarizing the standing of functional programming in biology.
Functional programming is becoming a recognized term, and thus the field is developing
demand for software engineers who can acquire domain knowledge and build software fast.
He noted that this profile is different from that of data analysts, who need more in-depth
knowledge of the field and statistics.

9 Using F# to prove stabilization of biological networks

Samin Ishtiaq reported on the Bio Model Analyzer or BMA (Benque et al., 2012) (available
online at http://biomodelanalyzer.research.microsoft.com/) and developed by
an interdisciplinary team at Microsoft Research. The BMA analyzes models from System
Biology, which are program-like descriptions of networks that describe systems like skin
or blood.

Particularly important to BMA are stability properties. For example, healthy skin should
grow as many cells as it sheds. If it sheds more than it grows, sores develop and wounds
do not heal well. Growing more than it sheds is the definition of cancer.

The programs describing such biological networks are asynchronous dataflow diagrams
with typically tens of thousands of variables. Each variable has an associated update func-
tion that computes a new value from the values of other variables connected with it in the
network. The objective of BMA is not just to simulate a network but also to prove general
stability-related properties independent of a particular starting state, such as the existence
of a unique fixpoint, several fixpoints, or cycles. This may be useful for developing new
drugs.

Traditional program analysis tools do not scale or do not work for programs with this
many variables. Consequently, BMA uses newly developed techniques. In particular, it
attempts to prove lemmas for small subnetworks and propagate them through the entire
network in the hope that enough lemmas propagate to prove stability. The prover core
does not just report on the success of the proof search but also allows interactive stepping
through the lemma propagation process. The designers in the BMA team have targeted
the user interface (UI) at systems biologists, which use visualizations different from those
familiar to computer scientists.

BMA consists of three parts: the prover core written in F#, Microsoft’s Z3 SMT solver
written in C++, and the user interface written in C#. The “debugging functionality” in
the prover provides propagation steps in a lazy sequence. This is very natural in F#.
The UI is not written in F#. In particular, it benefits from the better tool support
for C#.

Ishtiaq had previously worked in OCaml using Emacs, and offered some thoughts on
the transition to F# in Visual Studio: In particular, Visual Studio offers interactive type
checking and thus supports exploratory programming he had not seen in Emacs. On the
other hand, OCaml still offers some higher level abstraction mechanisms such as GADTs,
modules, and functors, which F# still lacks.

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

708 M. Sperber and A. Madhavapeddy

10 Developing an F# bioinformatics application with HTMLS5 visualization

Adam Granicz reported on joint work between University of Nebraska Medical University
and IntelliFactory on the functional genomics explorer (or fgx), which visualizes the ge-
netic structure of a Methicillin-Resistant Staphylococcus Aureus (MRSA). MRSA cause
more deaths in the United States annually than HIV/AIDS.

The fgx software is a web application written in F# using IntelliFactory’s WebSharper
web framework. WebSharper contains a transpiler from F# to JavaScript, which allows
the complete application — with all client and server code — to be written in F#. The fgx
software uses an HTMLS canvas for drawing, and interfaces to the Krona JavaScript visu-
alization library (Ondov et al., 2011) through an F# wrapper. The data that £gx visualizes
is too large to transport to the web browser in its entirety. Hence, fgx uses a combination
of RPC calls and streaming via WebSockets to transfer it incrementally.

Plans are underway to extend the software to a full Laboratory Information Manage-
ment System, which would track and manage sequencing experiments, samples, tools, and
resources used.

11 Developing medical software in Scala and Haskell

Stefan Wehr reported on software developed by factis research in Freiburg for managing
electronic patient records. Doctors can access and enter patient information on tablets,
which synchronize with a central server.

The software needs to deal with significant amounts of data — a hospital department
with 170 patients generates about five laboratory reports per patient per day and 20 reports
in intensive care. The department also produces about 150 images per day, growing to
more than 1,000 if CTs or MRI scans are made. The hospital’s IT systems also produce
34,000 HL7 messages.> All in all, the software needs to synchronize about 13 Megabytes
per patient per day and be very reliable and fault-tolerant.

The tablets serve as simple data viewers and entry points, with little domain-specific
knowledge of the healthcare application domain itself. They are able to function offline,
with periodic synchronization with a synchronization server, written in Haskell. The syn-
chronization server generates documents from standardized import data, and regenerates
them if the input data changes. It then transfers the documents and images to the tablets,
and receives and processes data from them, keeping track of the synchronization state.
These server components also contain only little domain-specific code.

The domain-specific code resides in a separate data server, written in Scala, which
connects to the hospital’s IT systems using various protocols and application programming
interfaces (APIs) such as HL7, SQL, and DICOM SAP. It communicates with synchro-
nization server via the roundtrip library, based on invertible syntax descriptions (Rendel &
Ostermann, 2010). factis developed roundtrip for Haskell and then ported it to Scala.

Generally, the experience with using functional programming for this project has been
positive. factis — with four employees and six freelancers — has been working on the

5 HL7 is a set of interoperability standards for healthcare IT systems.

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

Commercial users of functional programming 2012 709

application since 2010. As of late 2012, the synchronization server had about 55,000 lines
of code, and the data server had about 37,0000 lines of code.

Wehr cited as Haskell’s advantages the expressive and rich static type system, fine-
grained control over side effects, “immutability by default,” very good support for test-
ing, the excellent support for concurrency as well as an active and helpful community.
Haskell’s laziness occasionally proved problematic, with space profiling providing only
partial solutions. Also, cabal proved problematic. Wehr also reported that Haskell had a
steep learning curve for developers new to Haskell.

Factis research chose Scala for the data server because many Java APIs were avail-
able that were helpful in integrating existing hospital IT infrastructure. Scala also has a
very expressive, rich static type system, favors immutability, good support for testing, a
powerful yet simple build system (sbt), and direct access to the Java API, and monitoring
facilities through the Java ecosystem. Java programmers find it quite easy to adopt Scala.
On the other hand, Scala provides no static control over side effects. Subtyping makes
Scala’s type system quite complex, which occasionally makes the type system difficult
to control. Also, the easy migration path for Java programmers is a double-edged sword,
as Scala programmers coming from Java do not always adopt functional programming as
completely as they should.

All in all, Wehr concluded that both Haskell and Scala are excellent languages for
commercial software development.

12 Erlang/F#: functional programs connected to the power grid

Sebastian Egner of Entelios AG, Berlin, reported on Entelios’s project on coordinated
reduction of electrical loads at industrial production facilities. Entelios is a venture captial-
funded startup founded in 2010 and had 20 employees as of late 2012.

In order to maintain stability in the German electrical system, companies called Trans-
mission System Operators (TSOs) maintain the network itself and balance supply and de-
mand of electricity. This is increasingly becoming a challenge with the advent of electricity
from renewable sources, particularly solar and wind energy. While these sources were able
to provide 20% of Germany’s electricity demands on a single day in 2012, their supply is
subject to fluctuations and complex regulation.

Entelios provides operating reserve power — the electricity reserve needed to maintain
stability — to the network by demand-response management, particularly by cooperating
with big consumers of electricity in the 100—-100 MW range such as arc furnaces or paper
mills. These consumers can be switched off for limited time periods, thus providing “neg-
ative consumption” equivalent to positive production of electricity. Entelios is currently
pre-qualified to provide operating-reserve power to all four TSOs.

As consumers, Entelios installs “EBoxes,” small embedded systems connected to the
Internet that interface with the control systems of the consumers. The software at Entelios’s
office controls the EBoxes. In particular, Entelios maintains two redundant Network Oper-
ation Centers at its two offices, with back-office software for maintaining communication
with the EBoxes and front-office software for user interaction. Both components are subject
to frequently changing requirements as the regulatory framework and market environment
change.

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

710 M. Sperber and A. Madhavapeddy

The back-office software was originally written in Python, which was available on the
embedded systems at the heart of the EBoxes. While Python worked well enough at first,
software had difficulty keeping up with changing requirements, however, especially with
unanticipated changes in the sampling rate. Python’s threading facilities had trouble keep-
ing up with the soft real-time requirements. As a result, the back-end software has been
rewritten in Erlang.

The front office software is a rich client running on Windows, written in F# using the
WPF framework. Development of the front office was outsourced to a company whose pro-
grammers are experts in functional-reactive programming (Elliott, 2009), which became
the paradigm of the software for managing time-series data.

Experience with using functional programming has generally been positive and enabled
Entelios to roll out new features and react to changing requirements quickly — in particu-
lar, moving from Python to Erlang showed a striking contrast. Whereas Python required
substantial work going from prototype to production-ready software, prototypes in Erlang
were usually quite close to production already. Moving from Python to Erlang required
moderate deployment effort. Entelios filed two bug reports for the Erlang system that have
since been pushed upstream.

The experience of F# was more mixed — while F# is an effective language for developing
Windows Presentation Foundation (WPF) applications, new developers found it difficult to
start working on the code base. F#’s notational density and rich interface to .NET often
make it difficult to see the language feature that is exercised by a particular piece of code.
Also, differences between production and debugging environments made it difficult to
weed out some time and space leaks, which required withdrawing and redoing several
releases.

13 Clojure: iPad analytics dashboard in the energy sector

Kevin Lynagh of Keming Labs described the approach his consultancy has been taking
toward visualizing data. Keming Lab’s mission is to make data formats that are not imme-
diately fit for human understanding accessible for non-technical people.

Lynagh demonstrated two visualization applications that he had implemented: The 08
framework,® done for the Harvard School for Public Health, provides a web-based plat-
form to interactively explore and analyze human variation data. The other application was
an analytics dashboard for a farm of wind turbines, which visualizes the status of wind
turbines in a form easily accessible for maintenance personnel.

Both of these applications were implemented using Lynagh’s C2 data visualization
library,” which is written in Clojure and ClojureScript. C2 enables developers to deploy
their visualization applications either on the web server or on the client. For the client,
ClojureScript compiles the code to JavaScript that runs in the browser.

Using a browser for visualization has a number of advantages: scalable vector graph-
ics, CSS, a scenegraph encoded in the DOM, and many tools, all platform-independent.
ClojureScript allows working around JavaScript’s quirks and provides rich data structures,

6 https://github.com/chapmanb/o8
7 http://keminglabs.com/c2/

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

Commercial users of functional programming 2012 711

namespaces, and consistency. Clojure’s design was an important factor in the designing of
C2 itself, as all data structures are immutable by default, and thus encourage the developer
to think explicitly about state.

In the case of the wind-turbine farm, the essential state is just that of wind turbines.
C2 allows transforming this state to a visualization by a pure function generating DOM
fragments. The C2 framework then synchronizes the generated HTML code with the actual
DOM in the browser, keeping the visualization consistent with the state. This decouples
the specification of the underlying application from visualization. It also couples markup
and software development, which may not be compatible with all design/development
workflows. C2 thus provides a clear dataflow in one direction, which makes development
easier than with direct manipulation of the DOM. C2’s method is inherently slower than
direct DOM manipulation, but the difference is irrelevant for many applications.

14 The awesome Haskell FPGA compiler

Peter Braams of Parallel Scientific described the benefits of using the Haskell Hardware
Description Language (HHDL) for programming field programmable gate arrays (FPGAs).
HHDL? is a DSL embedded in Haskell. HHDL programs can either run directly in the
Haskell run-time environment or be compiled to Verilog code and deployed on FPGAs.
Using HHDL instead of Verilog directly allows FPGA programmers to design at the con-
ceptual level, and shorten the test/design cycle significantly. HHDL provides a rich set of
types, and the ensuing type safety helps assure the correctness of HHDL programs. The
initial version of HHDL took merely five months to develop.

Parallel Scientific uses HHDL to program an Arista Ethernet switch, which contains an
FPGA directly connected to eight 10-GB Ethernet ports. As the FPGA sits directly in the
data path, it can receive and thus process the Ethernet traffic faster than a separate CPU over
a traditional bus. The data rate on the ports exceeds the bandwidth on a PCle, for example.
HHDL allows building combinators to parse and build packets, which can be layered to
build complex algorithms. In particular, Parallel Scientific is using HHDL on the switch
to build a ticker plant for financial exchanges, which aggregates and then normalizes and
maintains market data from multiple sources. For ticker plants, performance is crucial.
Parallel Scientific’s solution uses both the regular CPU in the switch for command and
control and the FPGA to receive and normalize financial data. The resulting application is
able to keep up with the port traffic in real time.

15 Conclusions

This year’s CUFP workshop covered a broad spectrum of general-purpose languages —
Scala, Haskell, OCaml, Erlang, Clojure, and F# — but also an emerging breed of domain-
specific languages such as Star and HHDL that are designed for a specific industry, but
heavily inspired by the functional programming literature. There was also a strong surge of

8 Designed by Serguey Zefirov, available at http: //hackage .haskell.org/package/HHDL

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

712 M. Sperber and A. Madhavapeddy

submissions from biological sciences this year, with five talks covering scientific comput-
ing from very different angles: data visualization, data processing, and complete systems
for cutting-edge research in sectors such as genomics and systems biology.

We would like to thank Simon Thompson and Duncan Coutts for helping to organize
CUFP tutorials — which covered Erlang, F#, Haskell, Clojure, Scala, and OCaml, and
were well-attended — and Ashish Agarwal for organizing evening BoF sessions. We thank
Kresten Krab Thorup and Yaron Minsky for providing notes on their talks. Also, we thank
Peter Thiemann and Fritz Henglein and the whole ICFP/CUFP team for their assistance in
Copenhagen.

References

Balat, V., Vouillon, J. & Yakobowski, B. (2009) Experience report: Ocsigen, a web programming
framework. In Proceedings of the 14th ACM SIGPLAN International Conference on Functional
Programming (ICFP '09). New York, NY: ACM, pp. 311-316.

Benque, D., Bourton, S., Cockerton, C., Cook, B., Fisher, J., Ishtiaq, S., Piterman, N., Taylor, A.
& Vardi, M. Y. (2012) BMA: Visual tool for modeling and analyzing biological networks. In
Proceedings of the 24th International Conference on Computer Aided Verification (CAV ’12).
Berlin, Germany: Springer-Verlag, pp. 686—692.

Elliott, C. M. (2009) Push-pull functional reactive programming. In Proceedings of the 2nd ACM
SIGPLAN Symposium on Haskell (Haskell 09). New York, NY: ACM, pp. 25-36.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995) Design Patterns: Elements of Reusable
Object-Oriented Software. Boston, MA: Addison-Wesley.

Lépez, M., Castro, L. M. & Cabrero, D. (2012a) Declarative distributed advertisement system for
iDTV: An industrial experience. In Proceedings of the 14th Symposium on Principles and Practice
of Declarative Programming. (PPDP ’12). New York, NY: ACM, pp. 185-194.

Lépez, M., Castro, L. M. & Cabrero, D. (2012b) Failover and takeover contingency mechanisms
for network partition and node failure. In Proceedings of the 11th ACM SIGPLAN Workshop on
Erlang (Erlang ’12). New York, NY: ACM, pp. 51-60.

McCabe, F. & Clark, K. (1995) April — Agent Process Interaction Language. In Intelligent Agents,
Lecture Notes on Artificial Intelligence, Jennings, N. & Wolldridge, M. (eds), vol. 890. Berlin,
Germany: Springer-Verlag, pp. 324-340.

Ondov, B. D., Bergman, N. H. & Phillippy, A. M. (2011) Interactive metagenomic visualization in a
web browser. BMC Bioinformatics 12(385).

Rendel, T. & Ostermann, K. (2010) Invertible syntax descriptions: Unifying parsing and pretty
printing. In Proceedings of the 3rd ACM Haskell Symposium on Haskell (Haskell *10). New York,
NY: ACM, pp. 1-12.

Reppy, J. H. (1999) Concurrent Programming in ML. Cambridge, UK: Cambridge University Press.

Searle, J. (1969) Speech Acts: An Essay in the Philosophy of Language. Cambridge, UK: Cambridge
University Press.

Syme, D., Petricek, T. & Lomov, D. (2011) The F# asynchronous programming model. In
Proceedings of the 13th International Conference on Practical Aspects of Declarative Languages
(PADL ’11). Berlin, Germany: Springer-Verlag, pp. 175-189.

Vouillon, J. (2008) Lwt: A cooperative thread library. In Proceedings of the 2008 ACM SIGPLAN
Workshop on ML (ML ’08). New York, NY: ACM, pp. 3-12.

Wadler, P. & Blott, S. (1989) How to make Ad-Hoc polymorphism less Ad-Hoc. In Proceedings of
the 16th Annual ACM Symposium on Principles of Programming Languages. Austin, TX: ACM
Press, pp. 60-76.

https://doi.org/10.1017/50956796813000257 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796813000257

