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Algebraic Number Theory

The first two sections of this introductory chapter provide a brief overview
of several concepts and results from number theory. A detailed exposition of
this material can be found in the books of Lang (1994) and Weil (1995) (cf.
also Chapters 1–3 of [ANT]). It should be noted that, unlike Weil, we state
the results here only for algebraic number fields, although the overwhelming
majority of them also hold for global fields of positive characteristic, i.e., fields
of algebraic functions over a finite field. In §1.3, we present results about group
cohomology, including definitions and statements of the basic properties of
noncommutative cohomology, that are necessary for understanding the rest of
the book. Sections 1.4–1.5 contain basic results on simple algebras over local
and global fields. Special attention is given to the investigation of the multipli-
cative structure of division algebras over such fields, particularly the triviality
of the reduced Whitehead group. Moreover, in §1.5, we collect useful results
on lattices in vector spaces and orders in semisimple algebras.

Throughout the book, we assume familiarity with field theory, particularly
Galois theory (finite and infinite), as well as with elements of topological
algebra, including the theory of profinite groups.

1.1 Algebraic Number Fields, Valuations, and Completions

1.1.1 Arithmetic of Algebraic Number Fields

Let K be an algebraic number field, i.e., a finite extension of the field Q of
rational numbers, and let OK be the ring of integers of K. The ring OK is a clas-
sical object of interest in algebraic number theory. The analysis of its structural
and arithmetic properties, which was initiated by Gauss, Dedekind, Dirich-
let, and others in the nineteenth century, remains an active area of research.

1

https://doi.org/10.1017/9781139017756.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781139017756.004


2 Algebraic Number Theory

From a purely algebraic point of view, the ring O = OK is easy to describe: if
[K : Q] = n, then O is a free Z-module of rank n. Furthermore, for any nonzero
ideal a⊂O, the quotient ring O/a is finite; in particular, any nonzero prime
ideal is maximal. Rings with such properties (i.e., integral domains that are
noetherian, integrally closed, and in which all nonzero prime ideals are maxi-
mal) are known as Dedekind rings. In such a ring, any nonzero ideal a⊂O can
be written uniquely as the product of prime ideals: a = pα1

1 . . . pαr
r . This prop-

erty generalizes the fundamental theorem of arithmetic on the uniqueness of
factorization of any positive integer into a product of primes. Nevertheless, the
analogy here is only partial: unique factorization of elements of O into prime
elements, generally speaking, does not hold. This fact, which already suggests
that the arithmetic of O can differ significantly from the arithmetic of Z, has
been crucial in shaping algebraic number theory.

The precise degree to which O fails to be a unique factorization domain is
measured by the ideal class group of K, which is defined as follows. Recall
that the fractional ideals of K are O-submodules a of K such that xa⊂O for
a suitable nonzero x in O. Define the product of two fractional ideals a, b⊂O
to be the O-submodule in K generated by the products xy for all x ∈ a, y ∈ b.
Then, with respect to this operation, the set of fractional ideals becomes a
group, called the group of (fractional) ideals of K, which we denote by Id(O).
The principal fractional ideals, i.e., ideals xO where x ∈ K∗, form the sub-
group P(O)⊂ Id(O), and the quotient group Cl(O) = Id(O)/P(O) is called the
ideal class group of K. A classical result of algebraic number theory is that the
group Cl(O) is always finite; its order, denoted by hK , is the class number of
K. Moreover, the factorization of elements of O into primes is unique if and
only if hK = 1. Another classical result (the Dirichlet Unit Theorem) states that
the group of invertible elements O∗ is finitely generated. These two facts are
the starting point for the arithmetic theory of algebraic groups (cf. Preface to
the Russian edition). However, in generalizing classical arithmetic to algebraic
groups, we cannot appeal to ring-theoretic concepts, but rather need to develop
such number-theoretic constructions as valuations and completions, as well as
adeles, ideles, and others.

1.1.2 Valuations and Completions of Algebraic Number Fields

We define a valuation of a field K to be a function | |v : K → R satisfying the
following conditions for all x, y in K:

(1) |x|v ≥ 0, with |x|v = 0 if and only if x = 0;
(2) |xy|v = |x|v|y|v;
(3) |x+ y|v ≤ |x|v + |y|v .
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1.1 Algebraic Number Fields, Valuations, and Completions 3

If, instead of (3), the following stronger condition holds:

(3′) |x+ y|v ≤ max{|x|v , |y|v},

the valuation is called non-Archimedean; otherwise, it is called Archimedean.
As an example of a valuation of an arbitrary field K, one can consider

the trivial valuation, which is defined by setting |x|v = 1 for all x in K∗,
and |0|v = 0. We next consider examples of nontrivial valuations of the field
K = Q. The ordinary absolute value | |∞ is obviously an archimedean val-
uation. Furthermore, to each prime p we can associate a non-Archimedean
valuation | |p called the p-adic valuation. Namely, given any α ∈ Q∗, we write
it in the form α = pr

· β/γ , where r,β, γ ∈ Z and β and γ are not divisi-
ble by p, and then set |α|p = p−r; we also let |0|p = 0. Sometimes, instead of
the p-adic valuation | |p, it is convenient to use the corresponding logarithmic
valuation v = vp, defined by the formula v(α) = r and v(0) = + ∞, so that
|α|p = p−v(α). Axiomatically v is given by the following conditions:

(1) v(x) is an element of the additive group Z of integers (or more generally
any ordered abelian group) for x 6= 0, and v(0) =∞;

(2) v(xy) = v(x)+ v(y);
(3) v(x+ y) ≥ min {v(x), v(y)}.

We shall use both ordinary valuations as well as the corresponding logarith-
mic valuations, and it should be clear from the context to which one we are
referring.

It is worth noting that the examples given earlier actually exhaust all the
nontrivial valuations of Q.

Theorem 1.1 (OSTROWSKI) Any nontrivial valuation of Q is equivalent either
to the archimedean valuation | |∞ or to a p-adic valuation | |p.

(Recall that two valuations | |1 and | |2 on K are called equivalent if they
induce the same topology on K; in this case we have | |1 = | |λ2 for a suitable
real λ > 0.)

Thus, restricting any nontrivial valuation | |v of an algebraic number field K
to Q, we obtain (up to equivalence) either an archimedean valuation | |∞ or a
p-adic valuation (it can be shown that the restriction of a nontrivial valuation
is always nontrivial). This means that any nontrivial valuation of K can be
obtained by extending to K one of the (nontrivial) valuations of Q. On the
other hand, it is known that for any algebraic extension L/K, any valuation | |v
of K can be extended to L, i.e., there exists a valuation | |w of L (denoted w|v)
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4 Algebraic Number Theory

such that |x|w = |x|v for all x in K. In particular, starting with the valuations of
Q, we can obtain all valuations of an arbitrary number field K.

Let us analyze the extension procedure in greater detail. To begin with, it is
helpful to introduce the completion Kv of K with respect to a valuation | |v .
If we consider K as a metric space with respect to the metric arising from
| |v , then its completion Kv is a metric space that, at the same time, is a field
under the natural operations, and is complete with respect to the corresponding
extension of | |v , for which we will use the same notation. It is well known
that if L is an algebraic extension of Kv (and, in general, of any field that is
complete with respect to a valuation | |v), then | |v has a unique extension | |w
to L. Using this, we can derive an explicit formula for | |w, which can be taken
as the definition of | |w. Indeed, since | |v extends uniquely to a valuation of the
algebraic closure K̄v , it follows that |σ (x)|w = |x|w for any x in K̄v and any σ in
Gal(K̄v/Kv). Now let L/Kv be a finite extension of degree n, and let σ1, . . . , σn

be the distinct embeddings of L into K̄v over Kv . Then for the norm NL/K(a) of
an element a ∈ L, we have

|NL/K(a)|v =

∣∣∣∣∣
n∏

i = 1

σi(a)

∣∣∣∣∣
v

=

n∏
i = 1

|σi(a)|w = |a|nw.

As a result, we obtain the following explicit description of the extension | |w:

|a|w = |NL/K(a)|1/nv for any a in L. (1.1)

Now let us discuss the procedure of extending valuations to a finite extension
L/K for a number field K. Let | |v be a valuation of K and | |w its unique exten-
sion to the algebraic closure K̄v of Kv . Then for any embedding τ : L → K̄v
over K (and in fact we have n = [L : K] such embeddings), we can define a
valuation u on L by |x|u = |τ (x)|w, which clearly extends the original valu-
ation | |v of K. In this case, the completion Lu can be identified with the
compositum τ (L)Kv . Moreover, any extension may be obtained in this way,
and two embeddings τ1, τ2 : L → K̄v give the same extension if they are con-
jugate over Kv , i.e., if there exists λ in Gal(K̄v/Kv) with τ2 = λτ1. In other
words, if L = K(α) and f (t) is the irreducible polynomial of α over K, then the
extensions | |u1 , . . . , | |ur of | |v over L are in one-to-one correspondence with
the irreducible factors of f over Kv , viz. | |ui corresponds to the embedding
τi : L→ K̄v that sends α to a root of fi. Further, the completion Lui is the finite
extension of Kv generated by a root of fi. It follows that

L
⊗

K

Kv '
r∏

i = 1

Lui ; (1.2)

in particular, the degree [L : K] equals the sum of the local degrees [Lui : Kv].
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1.1 Algebraic Number Fields, Valuations, and Completions 5

Moreover, one has the following formulas for the norm and the trace of an
element α in L:

NL/K(a) =
∏
u|v

NLu/Kv (a),

TrL/K(a) =
∑
u|v

TrLu/Kv (a).

(1.3)

Thus, the set V K of all pairwise inequivalent valuations of K (or, to put it
more precisely, of the equivalence classes of valuations of K) is the union of
the finite set V K

∞ of the archimedean valuations, which are the extensions to K
of the ordinary absolute value | |∞ on Q, and the set V K

f of non-Archimedean
valuations, obtained as extensions of the p-adic valuation | |p of Q, for each
prime number p. The archimedean valuations correspond to the embeddings
of K into either R or C, in which case they are respectively called real or
complex valuations and the corresponding completions can be identified with
R or C. If v ∈ V K

∞ is a real valuation, then an element α in K is said to
be positive with respect to v if its image under v is a positive number. Let s
(respectively t) denote the number of real (respectively pairwise nonconjugate
complex) embeddings of K. Then s+ 2t = n is the degree of L over K.

Non-Archimedean valuations lead to more complicated completions. More
specifically, if v ∈ V K

f is an extension of a p-adic valuation, then the comple-
tion Kv is a finite extension of the field Qp of p-adic numbers. Since Qp is a
locally compact field, it follows that Kv is locally compact (with respect to the
topology determined by the valuation).1 The closure of the ring of integers O
in Kv is the valuation ring

Ov = {a ∈ Kv : |a|v ≤ 1},

sometimes called the ring of v-adic integers. Then Ov is a local ring with
maximal ideal pv = {a ∈ Kv : |a|v < 1}, called the valuation ideal, and group
of invertible elements

Uv = Ov\ pv = {a ∈ Kv : |a|v = 1}.

It is easy to see that the valuation ring of Qp is the ring of p-adic integers Zp,
and the corresponding valuation ideal is pZp. In general, Ov is a free module
over Zp, whose rank equals the degree [Kv : Qp], making Ov an open compact
subring of Kv . Moreover, the powers pi

v of pv form a fundamental system of

1 Henceforth, completions of a number field with respect to nontrivial valuations are called local
fields. It can be shown that the class of local fields thus defined coincides with the class of
nondiscrete locally compact fields of characteristic zero. We note also that we shall use the term
local field primarily in connection with non-Archimedean completions, and to emphasize this
we will use the term non-Archimedean local field.
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6 Algebraic Number Theory

neighborhoods of zero in Ov . The quotient ring kv = Ov/pv is a finite field
and is called the residue field of v. The ideal pv ⊂Ov is principal; any of its
generators π is called a uniformizer and is characterized by the property that
v(π ) is the (positive) generator of the value group 0 = v(K∗v ) ' Z. Once we
have fixed a uniformizer π , we can write any a in K∗v as a = π ru, for a suitable
u ∈ Uv; this yields a continuous isomorphism K∗v ' Z × Uv , given by a 7→
(r, u), where Z is endowed with the discrete topology. Thus, to determine the
structure of K∗v , we need only describe Uv . It can be shown quite easily that Uv
is a compact group, locally isomorphic to Ov . It follows that Uv ' F × Zn

p,
where n = [Kv : Qp], and F is the group of all roots of unity in Kv . Thus K∗v '
Z× F × Zn

p.
Two important concepts associated with field extensions are the ramifi-

cation index and the residual degree. We introduce these concepts first for
the local case. Let Lw/Kv be a finite extension of degree n. Then the value
group 0v = v(K∗v ) has finite index in 0w = w(L∗w), and the corresponding
index e(w|v) = [0w : 0v] is called the ramification index. The residue field
`w = OLw/PLw for Lw is a finite extension of the residue field kv , and
f (w|v) = [`w : kv] is the residual degree. Moreover, e(w|v)f (w|v) = n. An
extension for which e(w|v) = 1 is called unramified, while an extension for
which f (w|v) = 1 is called totally ramified.

Now let L/K be an extension of degree n of number fields. Then for any
valuation v in V K

f and any extension w to L, the ramification index e(w|v)
and residual degree f (w|v) are defined respectively as the ramification index
and residual degree for the extension of the completions Lw/Kv . (One can also
give an intrinsic definition based on the value groups 0̃v = v(K∗), 0̃w = w(L∗),
and the residue fields

k̃w = OK(v)/pK(v), ˜̀w = OL(w)/PL(w),

where OK(v),OL(w) are the valuation rings of v and w in K and
L, and pK(v),PL(w) are the respective valuation ideals, but in fact
0̃v = 0v , 0̃w = 0w, k̃v = kv , and ˜̀w = `w.) As earlier, [Lw : Kv] = e(w|v)f (w|v).
Thus, if w1, . . . , wr are all the extensions of v to L, then

r∑
i = 1

e(wi|v) f (wi|v) =
r∑

i = 1

[Lwi : Kv] = n.

Generally speaking, e(wi|v) and f (wi|v) do not have to be equal for diffe-
rent i, but in the important case of a Galois extension L/K, they are indeed the
same for all i. To see this, we let G denote the Galois group of L/K. Then all
extensions w1, . . . , wr of v to L are conjugate under G, i.e., for any i = 1, . . . , r,
there exists σi in G such that wi(x) = w1(σi(x)) for all x in L. It follows that
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1.1 Algebraic Number Fields, Valuations, and Completions 7

e(wi|v) and f (wi|v) are independent of i (we will denote them simply by e and
f ); moreover, the number of different extensions r is the index [G : G(w1)] of
the decomposition group G(w1) = {σ ∈ G : w1(σx) = w1(x) for all x in L}.
Consequently, efr = n, and G(w1) is the Galois group of the corresponding
extension Lw1/Kv of the completions.

1.1.3 Unramified and Totally Ramified Field Extensions

Let v ∈ V K
f and assume that the corresponding residue field kv is the finite

field Fq with q elements.

Proposition 1.2 For any integer n ≥ 1, there exists a unique unramified
extension L/Kv of degree n. It is generated over Kv by all the (qn

− 1)-roots
of unity, and therefore is a Galois extension. The correspondence that sends
σ ∈ Gal(L/Kv) to its reduction σ̄ ∈ Gal(`/kv), where ` ' Fqn is the residue
field of L, yields an isomorphism of Galois groups Gal(L/Kv) ' Gal(`/kv).

In order to define the reduction σ̄ of a given automorphism σ ∈ Gal(L/Kv),
we note that the valuation ring OL and its valuation ideal PL are invariant under
σ . So, σ induces an automorphism of the residue field ` = OL/PL which we
call σ̄ . Furthermore, we observe that Gal(`/kv) is a cyclic group generated
by the Frobenius automorphism ϕ(x) = xq for all x in `; the corresponding
element of Gal(L/Kv) will also be called the Frobenius automorphism (of the
extension L/Kv) and will be denoted by Fr(L/Kv).

The following proposition describes the properties of norms in unramified
extensions.

Proposition 1.3 Let L/Kv be an unramified extension, and let Uv and UL

denote the groups of units in Kv and L, respectively. Then Uv = NL/K(UL);
in particular, Uv ⊂NL/Kv (L

∗).

PROOF: Our argument utilizes the canonical filtration on the group of units,
which is useful in other situations as well. Namely, for any integer i ≥ 1, we
let U (i)

v = 1 + pi
v and U (i)

L = 1 +Pi
L. It is easy to see that these sets are open

subgroups which actually form bases of the neighborhoods of the identity in
Uv and UL, respectively. We have the following isomorphisms:

Uv/U
(1)
v ' k∗v , U (i)

v /U
(i+1)
v ' k+v , for i ≥ 1, (1.4)
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8 Algebraic Number Theory

where the first one is induced by the reduction map a 7→ a (mod pv), and
the second is obtained by fixing a uniformizer π of Kv and then mapping 1 +
π ia 7→ a (mod pv).

Similarly,

UL/U
(1)
L ' `

∗, U (i)
L /U

(i+1)
L ' `+, for i ≥ 1. (1.5)

Since L/Kv is unramified, π is also a uniformizer of L, so in the rest of the
proof we will assume (as we may) that the second isomorphism in (1.5) is
defined by means of π . For a in UL, we have

NL/Kv (a) =
∏

σ∈Gal(L/Kv)

σ (a) =
∏

τ∈Gal(`/kv)

τ (ā) = N`/kv (ā),

where the bar denotes reduction modulo PL.
Thus the norm map induces a homomorphism UL/U

(1)
L → Uv/U

(1)
v , which

in terms of the identifications in (1.4) and (1.5) coincides with N`/kv . Further,
for any i ≥ 1 and any a in OL, we have

NL/Kv (1+ π
ia) =

∏
σ∈Gal(L/Kv)

σ (1+ π ia) ≡ 1+ π iTrL/Kv (a) (mod P(i+1)
v ).

It follows that NL/Kv induces homomorphisms U (i)
L /U

(i+1)
L → U (i)

v /U
(i+1)
v ,

which with the identifications in (1.4) and (1.5) become the trace map Tr`/kv .
But the norm and trace maps are surjective for extensions of finite fields; there-
fore the group W = NL/Kv (UL) satisfies Uv = WU (i)

v for all i ≥ 1. Since U (i)
v

form a base of neighborhoods of identity, the latter condition means that W
is dense in Uv . On the other hand, since UL is compact and the norm map is
continuous, the subgroup W is closed, and therefore W = Uv .

The proof of Proposition 1.3 also yields

Corollary 1.4 If L/Kv is an unramified extension, then NL/Kv (U
(i)
L ) = U (i)

v for
any integer i ≥ 1.

We will need one additional statement about the compatibility of the norm
map in arbitrary extensions with the above filtration.

Proposition 1.5 For any finite extension L/Kv , we have the following:

(1) U (1)
v ∩ NL/Kv (L

∗) = NL/Kv (U
(1)
L );

(2) if e is the ramification index of L/Kv , then for any integer i ≥ 1, we have
NL/Kv (U

(i)
L )⊂U ( j)

v , where j is the smallest integer ≥ i/e.

https://doi.org/10.1017/9781139017756.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781139017756.004


1.1 Algebraic Number Fields, Valuations, and Completions 9

PROOF: We begin with the second assertion. Let M be a Galois extension
of Kv containing L. Then for a in L, NL/K(a) =

∏
σ σ (a), where the product

is taken over all embeddings, σ : L ↪→ M over Kv . As we noted earlier, v
uniquely extends to a valuation w of M , and consequently w(a) = w(σ (a)) for
any a in L and any σ . In particular, if we choose a uniformizer πL in L, we have
σ (πL) = πLbσ for suitable bσ in UM . It follows that for a = 1 + π i

Lc ∈ U (i)
L ,

we have

NL/Kv (a) =
∏
σ

σ (1+ π i
Lc) =

∏
σ

(1+ π i
Lbi
σσ (c)) ∈ (1+ π i

LOM ) ∩ Kv .

But according to the definition of the ramification index, we have pvOL = Pe
L,

so that π i
LOM ∩ Kv = π i

LOL ∩ Kv = Pi
L ∩ Ov ⊂ p

j
v (where j is chosen as

indicated in the statement of the proposition) and NL/Kv (a) ∈ U ( j)
v . In par-

ticular, NL/Kv (U
(1)
L )⊂U (1)

v , so to prove the first assertion, it suffices to show

that U (1)
v ∩NL/Kv (L

∗)⊂NL/Kv (U
(1)
L ). Let a ∈ L∗ be such that NL/Kv (a) ∈ U (1)

v .

Then (1.1) implies that a ∈ UL. The isomorphism in (1.5) shows that U (1)
L is a

maximal pro-p-subgroup in UL for the prime p corresponding to the valuation
v, from which it follows that UL ' UL/U

(1)
L ×U (1)

L . In particular, a = bc where

c ∈ U (1)
L and b is an element of finite order coprime to p. We have

d = NL/Kv (b) = NL/Kv (a)NL/Kv (c)−1
∈ U (1)

v .

We now observe that the order of any torsion element in U (1)
v is a power of p

while the order of d divides that of b, hence is prime to p. It follows that d = 1
and therefore NL/Kv (a) = NL/Kv (c) ∈ NL/Kv (U

(1)
L ).

Let us now return to unramified extensions of Kv . It can be shown that
the composite of unramified extensions is unramified; hence, there exists a
maximal unramified extension Knr

v of Kv , which is Galois, with Gal(Knr
v /Kv)

isomorphic to the Galois group Gal(k̄v/kv) of the algebraic closure of the resi-
due field kv . Thus, it is isomorphic to Ẑ, the profinite completion of the infinite
cyclic group with generator the Frobenius automorphism.

Now, let L/K be a finite extension of a number field K. It is known that
almost all valuations v in V K

f are unramified in L/K, i.e., the corresponding
extension of the completions Lw/Kv is unramified for any w|v; in particular, the
Frobenius automorphism Fr(Lw/Kv) is defined. If L/K is a Galois extension,
then, as we noted earlier, Gal(Lw/Kv) can be identified with the decomposi-
tion subgroup G(w) of the valuation w in the Galois group G = Gal(L/K), so
Fr(Lw/Kv) may be viewed as an element of G.
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10 Algebraic Number Theory

We know that any two valuations w1, w2 extending v are conjugate under
G, from which it follows that the Frobenius automorphisms Fr(Lw/Kv) corre-
sponding to all extensions of v form a conjugacy class F(v) in G. The natural
question arises if all conjugacy classes in G can be obtained in this way. In
other words, for a given σ in G, does there exist a valuation v in V K

f such that
for a suitable w|v, the extension Lw/Kv is unramified with Fr(Lw/Kv) = σ?

Theorem 1.6 (CHEBOTAREV) Let L/K be a finite Galois extension with
Galois group G. Then, for any σ in G, there are infinitely many v in V K

f such
that for suitable w|v, the extension Lw/Kv is unramified and Fr(Lw/Kv) = σ .
In particular, there exist infinitely many v such that Lw = Kv , i.e., L⊂Kv .

In fact, Chebotarev determined a quantitative measure (density) of the set of
v in V K

f such that the conjugacy class F(v) coincides with a given conjugacy
class C⊂G. The density turned out to be |C|/|G| (while the density of the set
V K

f itself is 1). Therefore, Theorem 1.6 (or, more precisely, the correspond-
ing assertion about the density) is called the Chebotarev Density Theorem.
For cyclotomic extensions of K = Q, it is equivalent to Dirichlet’s theorem on
prime numbers in arithmetic progression. We note that the last part of Theorem
1.6 can in fact be proved without using any analytic techniques.

Next, using the geometry of numbers, one proves

Theorem 1.7 (HERMITE) If K/Q is a finite extension that is unramified at all
primes p (i.e., Kv/Qp is unramified for all p and all v|p), then K = Q.

We will not present here a detailed analysis of totally ramified extensions
(in particular, we will not define tamely and wildly ramified extensions), but
rather will limit ourselves to describing them using Eisenstein polynomials.
Recall that a monic polynomial e(t) = tn + an−1tn−1

+ · · · + a0 ∈ Kv[t] is
called an Eisenstein polynomial if ai ∈ pv for all i = 0, . . . , n− 1 and a0 /∈ p2

v .
It is well known that an Eisenstein polynomial is irreducible in Kv[t].

Proposition 1.8 If 5 is the root of an Eisenstein polynomial e(t), then
L = Kv[5] is a totally ramified extension of Kv with uniformizer 5. Con-
versely, if L/Kv is totally ramified and5 is a uniformizer of L, then L = Kv[5]
and the minimal polynomial of 5 over Kv is an Eisenstein polynomial.

Corollary 1.9 If L/Kv is totally ramified, then NL/Kv (L
∗) contains a uni-

formizer of Kv .
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1.2 Adeles and Ideles; Approximation; Local-Global Principle 11

To study ramification in a Galois extension L/K with Galois group G, one
defines certain subgroups Gi for i ≥ −1, called the ramification groups. Given
v ∈ V K

f and w|v, we define G−1 to be the decomposition group G(w) of w,
which can be identified with the local Galois group Gal(Lw/Kv). Next,

G0 = {σ ∈ G−1 : σ (a) ≡ a(mod PLw ) for all a ∈ OLw}

is the inertia group. It is clear that G0 is precisely the kernel of the homomor-
phism Gal(Lw/Kv) → Gal(`w/kv) that sends each automorphism of Lw to its
reduction. Therefore, G0 is a normal subgroup of G−1 and by the surjectivity
of the reduction homomorphism, we have G−1/G0 ' Gal(`w/kv). Moreover,
the fixed field E = LG0

w is the maximal unramified extension of Kv contained
in Lw, and Lw/E is totally ramified. The higher ramification groups are defined
as follows:

Gi = {σ ∈ G−1 : σ (a) ≡ a(mod Pi+1
Lw

) for all a ∈ OLw}.

They are normal in G−1, and Gi = {e} for sufficiently large i. Furthermore,
for i ≥ 1, the quotients Gi/Gi+1 are p-groups, where p is the prime corre-
sponding to v. We note that the groups Gi = Gi(v) defined above depend on
the choice of an extension w|v, and for a different choice of w they would be
replaced by suitable conjugates. In particular, the fixed field LH of the sub-
group H⊂G generated by the inertia groups G0(w) for all extensions w|v, is
the maximal normal subextension in L that is unramified with respect to all
valuations extending v.

1.2 Adeles and Ideles; Strong and Weak Approximation; the
Local-Global Principle

To gain insights into the arithmetic properties of a number field K, rather than
looking at individual valuations, it is often useful to work with families of
valuations (e.g., with the entire set V K) and the corresponding completions
simultaneously. In this section, we introduce constructions that enable us to do
that.

1.2.1 Adeles and Ideles

The set of adeles AK of a number field K is defined to be the subset of the direct
product

∏
v∈VK Kv consisting of x = (xv) such that xv ∈ Ov for almost all v in

V K
f . Clearly, AK is a ring with respect to the natural componentwise operations.

Furthermore, AK can be endowed with a topology, called the adele topology,

https://doi.org/10.1017/9781139017756.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781139017756.004


12 Algebraic Number Theory

by taking sets of the form
∏
v∈S Wv ×

∏
v∈VK\S Ov , where S⊂V K is a finite

subset containing V K
∞ and Wv ⊂Kv are open subsets for each v in S, as a base

of open sets (observe that this topology is stronger than the topology induced
from the direct product

∏
v∈VK Kv). It is easy to see that with respect to the

adele topology, AK is a locally compact topological ring. Next, for any finite
subset S⊂V K containing V K

∞, one defines the subring of S-integral adeles
as

AK(S) =
∏
v∈S

Kv ×
∏
v /∈S

Ov;

if S = V K
∞, then the corresponding ring is called the ring of integral adeles and

denoted AK(∞). It is clear that AK =
⋃

S AK(S), where the union is taken over
all finite subsets S⊂V K containing V K

∞. It is easy to show that for any a in K
and almost all v ∈ V K

f , we have |a|v ≤ 1, i.e., a ∈ Ov . Moreover, if a ∈ K∗,

then, applying this inequality to a−1, we obtain that, in fact, a ∈ Uv for almost
all v ∈ V K

f , i.e., the set V (a) :={v ∈ V K
f : a /∈ Uv} is finite. It follows that we

have a diagonal embedding K → AK , given by x 7→ (x, x, . . .), whose image,
called the ring of principal adeles, will usually be identified with K.

Proposition 1.10 The ring of principal adeles is discrete in AK .

Note that since O =
⋂
v∈VK

f
(K ∩ Ov), the intersection K ∩ AK(∞) is the

ring of integers O⊂K; thus to prove our proposition it suffices to establish
the discreteness of O in

∏
v∈VK

∞
Kv = K ⊗Q R. Let x1, . . . , xn be a Z-basis of

O that is also a Q-basis of K, and consequently also an R-basis of K ⊗Q R.
Thus, O can be identified with a Z-lattice in the space K⊗QR, and the desired
discreteness follows from the discreteness of Z in R. (Incidentally, we note that
K ∩ AK(S) (where S ⊃ V K

∞) is the ring of S-integers

O(S) = {x ∈ K : |x|v ≤ 1 for all v ∈ V K
\ S},

and moreover O(V K
∞) is the usual ring of integers O.)

The multiplicative analog of the ring AK of adeles of K is the group JK

of ideles, which, by definition, consists of x = (xv) ∈
∏
v∈VK K∗v , such that

xv ∈ Uv for almost all v in V K
f . It is clear that JK is a subgroup of the direct

product and in fact is precisely the group of invertible elements of AK . Observe,
however, that JK is not a topological group with respect to the topology induced
from AK (taking inverses is not a continuous operation for this topology). The
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1.2 Adeles and Ideles; Approximation; Local-Global Principle 13

“correct” topology on JK is the pullback of the product topology on AK ×

AK by means of the embedding JK → AK × AK , x 7→ (x, x−1). Explicitly,
this topology can be described by taking for a base of open sets all sets of
the form

∏
v∈S Wv ×

∏
v∈VK\S Uv where S⊂V K is a finite subset containing

V K
∞ and Wv ⊂K∗v are open subsets for v in S. This topology, called the idele

topology, is stronger than the topology induced by the adele topology, and with
respect to the former, JK is a locally compact topological group. (One cannot
help but note the analogy between adeles and ideles. Indeed, both concepts are
special cases of the notion of the group of adeles of an algebraic group and
of the more general construction of a restricted topological product, which we
will consider in Chapter 5.) Continuing the analogy between adeles and ideles,
we can define, for any finite subset S⊂V K containing V K

∞, the subgroup of
S-integral ideles by

JK(S) =
∏
v∈S

K∗v ×
∏
v /∈S

Uv;

in the case where S = V K
∞, this subgroup is called the subgroup of integral

ideles and is denoted by JK(∞). As we noted earlier, if a ∈ K∗, then a ∈ Uv
for almost all v, and consequently we have the diagonal embedding K∗→ JK ,
whose image is called the group of principal ideles.

Proposition 1.11 The group of principal ideles is discrete in JK .

The assertion follows from Proposition 1.10 and the fact that the induced
adele topology on JK is weaker than the idele topology.

An alternate proof can be given by using the product formula, which
states that

∏
v∈VK |a|nvv = 1 for any a in K∗, where V K consists of the exten-

sions of the valuations | |p and | |∞ of Q, and nv = [Kv : Qp] (respectively
nv = [Kv : R]) is the local degree. The product formula can be stated more
elegantly as

∏
v∈VK ‖a‖v = 1, where ‖a‖v = |a|

nv
v is the so-called normalized

valuation. The function ‖ ‖v defines the same topology on K as the origi-
nal valuation | |v , and is actually a valuation equivalent to | |v , except for the
case where v is complex. For a non-Archimedean v, the normalized valua-
tion has the following intrinsic description: if π ∈ Kv is a uniformizer, then
‖π‖v = q−1, where q is the number of elements of the residue field kv .

Now let us return to the proof of Proposition 1.11. For archimedean v, we set
Wv =

{
x ∈ K∗v : ‖x−1‖v < 1

2

}
. We claim that the neighborhood of the identity

� =
∏
v∈VK

∞
Wv ×

∏
v∈VK

f
Uv satisfies � ∩ K∗ = {1}. Indeed, if a ∈ � ∩ K∗

and a 6= 1, then we would have
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14 Algebraic Number Theory

∏
v∈VK

‖a− 1‖v <
∏
v∈VK

∞

1

2
·

∏
v∈VK

f

1 < 1,

which contradicts the product formula.
Using normalized valuations, we can define a continuous homomorphism

JK → R+ by (xv) 7→
∏

N ‖xv‖v . Its kernel J1
K is called the group of special

ideles (note that by the product formula J1
K ⊃ K∗). Since K is discrete in AK

and K∗ is discrete in JK , the problem that naturally arises is that of constructing
fundamental domains for K in AK and for K∗ in JK . We are not going to explore
these questions in detail at this point (cf. Lang [1994] or [ANT]), but rather will
consider them later in the more general context of arbitrary algebraic groups.
We just note that the quotients AK/K and J1

K/K
∗ are compact, but the quotient

JK/K∗ is not.
Let us now describe the fundamental isomorphism i between the quotient

JK/JK(∞)K∗ and the ideal class group Cl(K) of K. First, note that there is
a natural bijection between the set V K

f of non-Archimedean valuations of K
and the set P of nonzero prime (maximal) ideals of O defined by sending a
valuation v to the ideal p(v) = O ∩ pv , where pv is the valuation ideal of v.
Then for an idele x = (xv), we define

i(x) =
∏
v∈VK

f

p(v)v(xv).

Note that the product is well defined as v(xv) = 0 for almost all v in V K
f

because x ∈ JK , and belongs to the group Id(K) of fractional ideals of K (cf.
1.1.1). Using the theorem that any fractional ideal in K ( just as any nonzero
ideal in O) factors uniquely as a product of powers of prime ideals, we see
that i : x 7→ i(x) is a surjective homomorphism of JK onto Id(K), whose kernel
is the group JK(∞) of integral ideles. In view of the fact that i(K∗) coincides
with the group of principal fractional ideals, i induces the required isomor-
phism JK/JK(∞)K∗ ' Cl(K). In particular, the index [JK : JK(∞)K∗] is the
class number hK of K. This observation is fundamental to the definition of the
class number of algebraic groups (cf. section 5.1 and Chapter 8 in [AGNT]).

1.2.2 Weak and Strong Approximation

We will need the ring of truncated adeles AK,S , where S is a finite subset of V K ,
which we define as the image of A = AK under the natural projection onto the
direct product

∏
v /∈S Kv . For any finite subset T ⊂V K containing S, we shall

let AK,S(T) denote the image of the ring of T-integral adeles AK(T) in AK,S .
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1.2 Adeles and Ideles; Approximation; Local-Global Principle 15

To simplify the notation, we will write AS and AS(T) rather than AK,S and
AK,S(T), respectively, when the field is clear from the context. In particular,
for S = V K

∞, the ring AK,VK
∞

will be denoted Af and called the ring of finite
adeles. We can introduce a topology on AS in the obvious way by taking sets
of the form

∏
v∈T Wv ×

∏
v /∈S∪T Ov , where T ⊂V K

\S is a subset, and Wv is
an open subset of Kv for each v in T , as a base of open sets. We note the
decomposition A = KS × AS where KS =

∏
v∈S Kv . If KS is given the product

topology, then this decomposition is actually a product of topological rings KS

and AS . Moreover, the diagonal embedding of K into A is the product of the
diagonal embeddings of K into KS and AS , respectively.

It is worth noting that even though the image of the diagonal embedding of
K in A is discrete, each of the embeddings

K ↪→ KS and K ↪→ AS

is dense.

Theorem 1.12 (WEAK APPROXIMATION). The image of K under the diagonal
embedding is dense in KS .

Theorem 1.13 (STRONG APPROXIMATION). If S 6= ∅, then the image of K
under the diagonal embedding is dense in AS .

Observe that while Theorem 1.12 holds for any field K and any finite set S of
inequivalent valuations, Theorem 1.13 (and all concepts pertaining to adeles)
is meaningful only for number fields (or, more generally, global fields). To
clarify the arithmetic meaning of Theorem 1.13, let us consider the case of
K = Q and S = VQ

∞. Since for any adele x ∈ Af = AQ,S we can find a nonzero
integer m such that mx ∈ Af (∞) =

∏
p Zp, it suffices to show that the image

of Z under the diagonal embedding Z ↪→ Af (∞) is dense. Any open subset of
Af (∞) contains a set of the form

W =
r∏

i = 1

(ai + pαi
i Zpi )×

∏
p6=pi

Zp

where {p1, . . . , pr} is a finite collection of primes, αi are positive integers, and
ai ∈ Z. Then showing that Z∩W is nonempty is equivalent to finding an x ∈ Z
that satisfies the system of congruences x ≡ ai (mod pαi

i ) (i = 1, 2, . . . , r),
which can be done by the Chinese Remainder Theorem. Thus, in the case
at hand, the strong approximation theorem is equivalent to the Chinese
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16 Algebraic Number Theory

Remainder Theorem. We refer the reader to [AGNT, Chapter 7] for the analysis
of weak and strong approximation for algebraic groups.

1.2.3 The Local-Global Principle

Investigating arithmetic questions over local fields is a considerably simpler
task than the original problem of analyzing them over number fields. This nat-
urally brings us to the question underlying the so-called local-global method:
when does the fact that a given property holds over all completions Kv of a
number field K imply that it also holds over K? One of the basic results of this
kind is the classical

Theorem 1.14 (HASSE–MINKOWSKI) Let f = f (x1, . . . , xn) be a nondegener-
ate quadratic form over an algebraic number field K. If f is isotropic2 over all
completions Kv , then f is isotropic over K as well.

If, in a particular situation, the transition from local to global is possible, we
say that in this case, the local-global principle (also called the Hasse principle)
holds. As we will see in subsequent chapters, various forms of the local-global
principle are critical to the arithmetic theory of algebraic groups. However, we
would like to point out that the local-global principle does not always hold,
which we illustrate by the following classical example.

First, we need to discuss the connection between the adele ring AK of K and
the adele ring AL of a finite extension L of K. The point is that there is a natural
(algebraic and topological) isomorphism AK⊗KL ' AL, which is obtained from
the local isomorphisms Kv ⊗K L '

∏
w|v Lw in (1.2); all we need to observe is

that for almost all v in V K
f , these induce isomorphisms Ov ⊗OL '

∏
w|v Ow.

Furthermore, (1.3) shows that the norm and trace maps NL/K and TrL/K extend
to the maps

NL/K : AL → AK and TrL/K : AL → AK

defined by

NL/K((xw)) =

∏
w|v

NLw/Kv (xw)


v

 ,

2 I.e., the equation f (x1, . . . , xn) = 0 has a nontrivial solution.
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1.3 Cohomology 17

TrL/K((xw)) =

∑
w|v

TrLw/Kv (xw)


v

 .

One can easily verify that the norm map NL/K thus defined induces a contin-
uous homomorphism of idele groups NL/K : JL → JK . We say that the Hasse
norm principle holds for the extension L/K if

NL/K( JL) ∩ K∗ = NL/K(L∗).

Given a ∈ K∗, for almost all v ∈ V K
f , we have a ∈ Uv and the extension

Lw/Kv is unramified, so it follows from Proposition 1.3 that the condition a ∈
NLw/Kv ( L∗w) is actually equivalent to

a ∈ NL/K

∏
w|v

L∗w

 = NL/K((L⊗K Kv)∗) for all v in V K .

In the language of algebraic geometry, this means that if f (x1, . . . , xn) is the
homogeneous polynomial of degree n = [L : K] giving the norm of an element
x ∈ L in terms of its coordinates x1, . . . , xn with respect to a fixed basis of L/K,
then the equation f (x1, . . . , xn) = a has a solution over each completion Kv . So,
the validity of the Hasse norm principle in this situation means that then the
equation has a solution over K as well. (It would be incorrect to formulate the
norm principle in the form

a ∈ NL/K(L∗) ⇐⇒ a ∈ NLw/Kv (L
∗
w) for all v ∈ V K and all w|v

since, in general, NL/K(L∗) 6⊂NLw/Kv (L
∗
w) if L/K is not a Galois extension.)

The Hasse norm theorem (cf. Hasse [1930] and [AGNT, corollary of The-
orem 6.11]) states that the norm principle always holds for cyclic Galois
extensions. On the other hand, it turns out that the norm principle fails for
K = Q, L = Q(

√
13,
√

17), i.e., when L/K is an abelian Galois extension with
Galois group of type (2,2). To be more precise, by a simple computation with
Hilbert symbols (cf. [ANT, ex. 5.3]) it can be shown that 52 is a local norm
everywhere, but is not a global norm. (See [AGNT, §6.3] for a more detailed
discussion of the Hasse norm principle.)

1.3 Cohomology

1.3.1 Basic Concepts

By and large, cohomological formalism is used in this book in a rather lim-
ited way. A major exception, however, is the Galois cohomology of algebraic
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18 Algebraic Number Theory

groups over local and global fields. This involves noncommutative cohomol-
ogy, which is typically omitted in most books on homological algebra. So, we
recall the relevant definitions, constructions, and results in this section. For
completeness, however, we begin with a quick review of some essential prop-
erties of ordinary (commutative) cohomology, whose proofs may be found in
Cartan and Eilenberg (1956); Serre (1997); Brown (1982), as well as Chapter 4
of [ANT].

Let A be an abelian G-group, i.e., an abelian group on which G acts by auto-
morphisms.3 Then one can define a family of abelian groups {H i(G, A)}i≥0

called the cohomology groups of G with coefficients in A. Namely, define
H0(G, A) = AG to be the subgroup of G-fixed elements of A. To define the
higher cohomology groups, we first introduce the groups Ci(G, A) of cochains,
consisting of all functions f : Gi

→ A (with C0(G, A) = A), together with the
coboundary operators di : Ci(G, A)→ Ci+1(G, A) given by

(dif )(g1, . . . , gi+1) = g1f (g2, . . . , gi+1)

+

i∑
j = 1

(−1)jf (g1, . . . , gjgj+1, . . . , gi+1)

+ (−1)i+1f (g1, . . . , gi).

Then H i(G, A) = ker di/im di−1; the elements of ker di=: Zi(G, A) are called
cocycles and the elements of im di−1=: Bi(G, A) are called coboundaries. A
fundamental property of cohomology groups is that they produce a cohomo-
logical extension (in other words, form a δ-functor) of the fixed point functor
F(A) = H0(G, A). This means that if

0→ A→ B→ C→ 0

is a short exact sequence of G-groups and G-homomorphisms (i.e., homo-
morphisms that commute with the action of G), then there exist connecting
homomorphisms δi : H i(G, C)→ H i+1(G, A) such that the sequence

0→ H0(G, A)→ H0(G, B)→ H0(G, C)
δ0
→H1(G, A)→ · · ·

→ H i(G, A)→ H i(G, B)→ H i(G, C)
δi
→H i+1(G, A)→ · · · (1.6)

is exact. (The remaining homomorphisms are induced naturally by the homo-
morphisms in the original sequence 0→ A→ B→ C→ 0.)

Low-dimensional cohomology groups have concrete interpretations. For
example, H1(G, A) is the quotient group of the group of crossed homomor-
phisms f : G→ A, which are functions satisfying f (g1g2) = f (g1)+ g1 f (g2),

3 It is more common to refer to such an A as a G-module, since giving A the structure of a G-group
is equivalent to giving it the structure of a module over the integral group ring Z[G]. We use the
term “G-group” to be consistent with the terminology used in the noncommutative setting.
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1.3 Cohomology 19

modulo the subgroup consisting of maps of the form f (g) = ga − a for some
a in A. In particular, if G acts trivially on A, then H1(G, A) = Hom (G, A).
On the other hand, if G = 〈σ 〉 is a cyclic group of order n, then for any G-
group A we have H1(G, A) = A0/A1, where A0 is the kernel of the operator
Tr a = a + σa + · · · + σ n−1a, and A1 is the subgroup consisting of elements
of the form σa− a with a in A.

Next, H2(G, A) is the quotient of the group of factor sets, i.e., functions
f : G× G→ A satisfying

g1f (g2, g3)− f (g1g2, g3)+ f (g1, g2g3)− f (g1, g2) = 0,

modulo the subgroup of trivial factor sets, which consists of functions of the
form

f (g1, g2) = ϕ(g1)+ g1ϕ(g2)− ϕ(g1g2)

for some function ϕ : G→ A. Factor sets arise naturally in the study of group
extensions E of G by A, i.e., of exact sequences of the form

1→ A→ E→ G→ 1.

More specifically, using factor sets, one establishes a bijection between the
elements of H2(G, A) and the equivalence classes of extensions that induce the
given action of G on A. In particular, if G acts trivially on A, then H2(G, A)
parametrizes central extensions of G by A. In [AGNT, Chapter 9], one encoun-
ters the group H2(G, J), where J = Q/Z and G acts trivially on J, which is
called the Schur multiplier of G. The following basic facts are needed for the
analysis there.

Lemma 1.15 (1) Let 1→ J −→ E
ρ
−→ G→ 1 be a central extension. Then

for any two subgroups A, B⊂G that commute elementwise, the map

ϕ : A× B→ J, (a, b) 7→ [ã, b̃],

where ã ∈ ρ−1(a), b̃ ∈ ρ−1(b) and [x, y] = xyx−1y−1, is well defined and
bimultiplicative.

(2) If G is a finitely generated abelian group, then the central extension

1→ J→ E→ G→ 1

is trivial (i.e., splits) if and only if E is abelian. In particular, if G is cyclic,
then H2(G, J) = 0.

The first statement is proved by direct computation. The proof of the second
one relies on the divisibility of J and the fact that an abstract group whose
quotient by a central subgroup is cyclic, is necessarily commutative.
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20 Algebraic Number Theory

Let us also mention the computation of H2(Sn, J) for the symmetric
group Sn.

Lemma 1.16 (1) If n≤ 3, then for any subgroup H of Sn, we have H2(H , J)
= 0.

(2) If n ≥ 4, then H2(Sn, J) has order 2 and for any subgroup C⊂ Sn generated
by two disjoint transpositions, the restriction map

H2(Sn, J)→ H2(C, J)

(defined below) is an isomorphism.

PROOF: For any finite group G and any prime p dividing its order, the p-
torsion subgroup of H i(G, A) injects into H i(Gp, A) for each i ≥ 1, where Gp is
any Sylow p-subgroup of G (cf. [ANT], Chapter 4, §6). Therefore, assertion (1)
follows from Lemma 1.15(2) and the fact that for n ≤ 3, the Sylow subgroups
of Sn are all cyclic.

The fact that H2(Sn, J) has order 2 for n ≥ 4 was discovered by Schur (1911)
(cf. also Huppert [1967]). Also, it is not difficult to see that H2(C, J) has order
2. Therefore, it suffices to find a cocycle α in H2(Sn, J) whose restriction to
C is nontrivial. We can construct it as follows: consider the abstract group S̃n

with generators σ , τi (i = 1, . . . , n− 1) and relations

σ 2
= τ 2

i = [τi, σ ] = 1, i = 1, . . . , n− 1,

(τiτi+1)3
= 1, i = 1, . . . , n− 2,

[τi, τj] = σ , i+ 1 < j.

(1.7)

Since Sn is generated by the transpositions (i, i+ 1), for i = 1, . . . , n− 1, with
the defining set of relations

(i, i+ 1)2
= 1, i = 1, . . . , n− 1,

((i, i+ 1)(i+ 1, i+ 2))3
= 1, i = 1, . . . , n− 2,

[(i, i+ 1), ( j, j+ 1)] = 1, i+ 1 < j

(1.8)

(cf. Huppert [1967]), there exists a unique homomorphism S̃n
θ
→ Sn such that

θ (σ ) = 1, θ(τi) = (i, i + 1). It follows from (1.7) and (1.8) that ker θ ⊂ S̃n is
the cyclic central subgroup of order two generated by σ . We identify σ with
1
2 + Z ∈ Q/Z and let α denote the cocycle in H2(Sn, J) corresponding to the
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extension S̃n
θ
→ Sn. In other words, consider an arbitrary section ϕ : Sn → S̃n

and let

α(g, h) = ϕ(g)ϕ(h)ϕ(gh)−1.

Replacing C by a conjugate, we may assume that C is generated by the trans-
positions (12) and (34). If the restriction of α to C were trivial, then by Lemma
1.15(2), θ−1(C) must be abelian. However,

[ϕ((1, 2)),ϕ((3, 4))] = [τ1, τ2] = σ 6= 1,

a contradiction.

The only higher cohomology groups that we will need are the groups
H3(G,Z), where G is a finite group acting trivially on Z, which arise in the
analysis of the obstruction to the Hasse norm principle (cf. [AGNT, §6.3]).
However, as the following lemma shows, their computation reduces to that of
H2(G, J).

Lemma 1.17 Let G be a finite group. Then there exists a natural isomorphism
H3(G,Z) ' H2(G, J), where Z and J are considered as trivial G-modules.

Indeed, it is well known (cf. [ANT, Chapter 4, §6]) that the cohomology
groups H i(G, A) are annihilated by multiplication by |G|. Since the additive
group Q is uniquely divisible, it follows that H i(G,Q) = 0 for all i ≥ 1. As the
exact sequence 0→ Z→ Q→ J→ 0 yields the exact sequence

0 = H2(G,Q)→ H2(G, J)→ H3(G,Z)→ H3(G,Q) = 0,

the desired result follows.
It is clear that H i(G, A) is functorial in the second argument, viz. any G-

homomorphism of abelian G-groups f : A → B induces a homomorphism
of cohomology groups f ∗ : H i(G, A) → H i(G, B). We will now discuss some
aspects of functoriality in the first argument. First, if H is a subgroup of G,
then by restricting cocycles to H we obtain the restriction map

res : H i(G, A)→ H i(H , A).

Next, if N is a normal subgroup of G and A an abelian G-group, then the
group of fixed points AN is a (G/N)-group, and the canonical homomorphism
G→ G/N induces the inflation map

inf : H i(G/N , AN )→ H i(G, A).
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Moreover, in this case one can define an action of G/N on H i(N , A) such that
the image of the restriction map res : H i(G, A)→ H i(N , A) lies in the group of
fixed points H i(N , A)G/N . Lastly, one can define the transgression map

tra : H1(N , A)G/N
→ H2(G, AN )

such that we have an exact sequence

0→ H1(G/N , AN )
inf
→H1(G, A)

res
→ H1(N , A)G/N

tra
→ H2(G/N , AN )

inf
→H2(G, A), (1.9)

which is actually the initial segment of the Hochschild–Serre spectral sequence
corresponding to the extension

1→ N → G→ G/N → 1

(we refer the reader to Koch [1970] for details of the construction).
Let us now recall a method that allows one to replace the cohomology

of a subgroup H ⊂G by that of G. First, given any H-module A, we define
the induced G-module indH

G (A) as the set of all maps f : G → A satisfying
f (hg) = hf (g) for all g ∈ G and h ∈ H ; the G-action on indH

G (A) is given by
(g f )(x) = f (xg). The evaluation map at the identity indH

G (A) → A, f 7→ f (1),
gives rise to a homomorphism

H i(G, indH
G (A))→ H i(H , A). (1.10)

It turns out that this homomorphism is an isomorphism (“Shapiro’s Lemma”).
Now assume that H is of finite index in G and that A is a G-group. Let
π : indH

G (A)→ A be the G-homomorphism given by

π ( f ) =
∑

x∈G/H

xf (x−1).

Passing to cohomology, we obtain the corestriction map

cor : H i(H , A) ' H i(G, indH
G (A))→ H i(G, A),

where' denotes the inverse of the isomorphism in (1.10), and the second map
is induced by π . Note that in dimension zero, cor : AH

→AG coincides with the
trace map Tr(a) =

∑
g∈G/H ga (or, in multiplicative notation, the norm map).

Sometimes one needs to consider continuous cohomology of a topologi-
cal group G with coefficients in a topological abelian group A endowed with
a continuous action G × A → A. These cohomology groups are defined by
considering continuous cochains in place of the usual ones. In this book, we
will deal exclusively with continuous cohomology of a profinite (i.e., compact
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totally disconnected) group G with coefficients in a discrete G-group A. In this
setting, the continuity of the action of G on A means that A =

⋃
U AU , where

the union is taken over all open normal subgroups U ⊂G. A profinite group
G can be described as the projective (inverse) limit G = lim

←−
G/U , where U

runs over a fundamental system of neighborhoods of the identity consisting of
normal subgroups (the basic properties of profinite groups will be reviewed
in §3.2); then the cohomology group H i(G, A) of a discrete G-group A can
be written as the inductive (direct) limit lim

−→
H i(G/U , AU ) taken with respect

to the inflation maps H i(G/U , AU ) → H i(G/V , AV ) for U ⊃ V . An impor-
tant example of a continuous action of a profinite group on a discrete group
is when the absolute Galois group G = G(K̄/K) of a perfect field K (endowed
with the Krull topology) acts on the additive or multiplicative group of K̄ or
on some other object A with a K-structure (cf. §2.2). Then the correspond-
ing cohomology groups H i(G, A) are called Galois cohomology groups and
denoted H i(K, A).

One can easily show that the cohomology of a profinite group G with coef-
ficients in a discrete group A retains all the standard properties of abstract
cohomology. In particular, a short exact sequence of discrete G-groups and
G-homomorphisms 0 → A → B → C → 0 gives rise to the long exact
cohomology sequence (1.6), and an extension 1→ N → G → G/N → 1 of
profinite groups induces the initial segment of the Hochschild–Serre spectral
sequence (1.9).

1.3.2 Non-abelian Cohomology

In the theory of algebraic groups, one often encounters cocycles with values in
the group of points of an algebraic group over some (finite or infinite) Galois
extension of the base field, i.e., generally speaking, in a noncommutative group.
Such noncommutative cocycles arise elsewhere, for example in the study of
crossed products of a noncommutative algebra with a finite group. We refer
the reader to Giraud (1971) for a detailed study of noncommutative cohomol-
ogy and its various applications. In this section, we will briefly review some
basic concepts related to noncommutative cohomology (cf. Serre [1997] for
the details) that we will need in our treatment of the Galois cohomology of
algebraic groups.

Let G be a (discrete or profinite) group that acts on a set A; in the topological
setting, we assume that A is discrete and the action of G is continuous. We then
call A a G-set. If A is a group and G acts on A by group automorphisms, we
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call A a G-group. Given a G-set A, we define H0(G, A) to be the set AG of
G-fixed elements. If A is a G-group, then clearly H0(G, A) is a group.

For a G-group A, a continuous map f : G → A is said to be a 1-cocycle
with values in A if, for any s, t in G, we have f (st) = f (s)s( f (t)). It is often
convenient to treat 1-cocycles as families indexed by elements of G and to write
f as { fs : s ∈ G} where fs = f (s). Sometimes we will use exponential notation
for the action of G, writing sa instead of s(a). With these notations, the 1-
cocycle condition becomes fst = fssft. The set of all 1-cocycles will be denoted
by Z1(G, A). Note that Z1(G, A) is always nonempty as it contains the trivial
cocycle given by fs = e, the identity element of A, for all s in G. Two cocycles
(as) and (bs) are said to be equivalent if there is an element c in A such that
bs = c−1as

sc for all s in G. (One can easily verify that this indeed defines an
equivalence relation on Z1(G, A).) The set of equivalence classes is called the
first cohomology set and is denoted by H1(G, A). If A is an abelian group, then
this definition of H1 is consistent with the one given in §1.3.1; in particular,
H1(G, A) is then an abelian group. In general, H1(G, A) does not have any
natural group structure and is only a pointed set whose distinguished element
is the equivalence class of the trivial cocycle. As in the commutative case, if
G = lim

←−
G/U is a profinite group, then H1(G, A) = lim

−→
H1(G/U , AU ) is the

direct limit of pointed sets taken relative to the inflation maps H1(G/U , AU )→
H1(G/V , AV ) for U ⊃ V , defined in the obvious way. In general, if g : H → G
is a group homomorphism and f : A → B is a homomorphism of a G-group
A into an H-group B compatible with g, i.e., satisfying f (g(s)a) = sf (a) for all
s ∈ H , a ∈ A, then we can define a map Z1(G, A) → Z1(H , B) by sending
(as) to (bs = f (ag(s))), which then induces a map of pointed sets H1(G, A) →
H1(H , B).

We say that a sequence of cohomology sets is exact if it is exact as a
sequence of pointed sets, i.e., if the preimage of the distinguished element
is equal to the image of the preceding map. (The distinguished element in the
zero dimensional cohomology H0(G, A) is the identity element of A.) We now
describe some useful exact sequences that we will need later. Let A be a sub-
group of a G-group B that is invariant under the action of G. Then there is a
natural action of G on B/A which makes B/A into a G-set, and we can con-
sider the set H0(G, B/A), whose distinguished element is the coset A. For any
element of H0(G, B/A) = (B/A)G, choose a representative b in B, and for s in
G let as = b−1 sb. It is easily seen that as ∈ A and (as) ∈ Z1(G, A). Moreover,
the equivalence class of this cocycle does not depend on the choice of b, so we
obtain a map δ : H0(G, B/A)→ H1(G, A).
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Direct computation shows that we have the following exact sequence of
pointed sets

1→ H0(G, A)→ H0(G, B)→ H0(G, B/A)
δ
→H1(G, A)

α
→H1(G, B), (1.11)

where α is induced by the embedding A ↪→ B. Furthermore, if c1, c2 ∈

H0(G, B/A), then δ(c1) = δ(c2) if and only if there exists b in BG with
c2 = bc1. Consequently, the elements of the kernel of the map H1(G, A) →
H1(G, B) are in one-to-one correspondence with the orbits of BG on (B/A)G. If
A is a normal subgroup of B, then (1.11) can be extended by one more term:

· · · → H0(G, B/A)
δ
→H1(G, A)

α
→H1(G, B)

β
→H1(G, B/A). (1.12)

Of special interest is the case where A is a central subgroup of B, as this is
precisely the situation arising in the analysis of universal covers of algebraic
groups. Set C = B/A and let ϕ : B → C be the canonical homomorphism.
Then H1(G, A) is a group and the map δ : H0(G, C) = CG

→ H1(G, A) is
a group homomorphism, which in the sequel will be called the coboundary
map. Using the centrality of A, we can define a natural action of the group
H1(G, A) on the set H1(G, B) as follows: given a = (as) ∈ Z1(G, A) and
b = (bs) ∈ Z1(G, B), we set a·b = (asbs) ∈ Z1(G, B). It turns out that the orbits
of this action are precisely the fibers of the map β : H1(G, B) → H1(G, C).
Furthermore, since A is commutative, the group H2(G, A) is defined, and as we
will now show, there is a map ∂ : H1(G, C)→ H2(G, A) extending (1.12) to an
exact sequence

· · · → H1(G, B)
β
→H1(G, C)

∂
→H2(G, A). (1.13)

Let c = (cs) ∈ Z1(G, C), and for each s in G, let bs in B be such that
ϕ(bs) = cs. Then set as,t = bs

sbtb
−1
st . It is clear that as,t ∈ A and moreover,

one easily checks that the map G × G → A given by (s, t) 7→ as,t is a 2-
cocycle (i.e., an element of Z2(G, A)). It turns out that the cohomology class of
this cocycle depends neither on the choice of the cocycle c in its cohomology
class in H1(G, C) nor on that of the elements bs, so we obtain a well-defined
connecting morphism ∂ : H1(G, C) → H2(G, A). The fact that (1.13) is exact
is verified by direct computation. Note that in the noncommutative case, ∂
may not be related to any group structure; moreover, its image in H2(G, A) is
generally not a subgroup.

In the noncommutative case, the exact sequences described earlier carry
substantially less information than in the commutative case, as information
about the kernel of a map of pointed sets generally does not allow us to draw
any conclusions about other fibers. This difficulty can be partially overcome
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by using a method based on the concept of twisting (cf. Serre [1997], Chap-
ter 1, §5). We now recall some basic definitions. Let A be a G-group and F
be a G-set with a given A-action that is compatible with the action of G, i.e.,
s(a · f ) = s(a) · s( f ) for any s ∈ G, a ∈ A, f ∈ F. Then, given an arbitrary
cocycle a = (as) ∈ Z1(G, A), we can define a new action of G on F by the
formula

s̄( f ) = as(s( f )) for s in G.

We denote F equipped with this action by aF, and say that aF is obtained
from F by twisting using a. It is easy to see that aF depends functorially on
F (with respect to A-morphisms F → F′) and that twisting commutes with
direct products. If a and b are equivalent cocycles, then the G-sets aF and bF
are isomorphic. Moreover, if F has some additional structure (such as that of a
group) that is preserved by the action of A, then aF also inherits this structure.
We will examine a whole series of examples of twists in §2.3, but for now
we will limit ourselves to one example that comes up in the analysis of exact
sequences. Namely, consider the case where A = F acts on itself by inner
automorphisms. Then, for any cocycle a in Z1(G, A) the twisted group aA is
defined, and moreover, the first cohomology sets of A and A′ = aA are related
as follows:

Lemma 1.18 There is a bijection ta : Z1(G, A′) → Z1(G, A) defined by send-
ing a cocycle x = (xs) in Z1(G, A′) to the cocycle y = (xsas) in Z1(G, A).
Passing to cohomology, ta induces a bijection τa : H1(G, A′) → H1(G, A),
which takes the distinguished element of H1(G, A′) to the class of the
cocycle a.

This enables us to “multiply” cocycles, although the result has values in the
twisted group. By this method, replacing the groups in sequences (1.11)–(1.13)
by the corresponding twisted groups (i.e., by twisting these sequences), one
can describe the fibers of all the maps in the original sequences. For example,
take a ∈ Z1(G, A), and let us describe the fiber α−1(α(a)) in the sequence
(1.11), where a is also used to denote the corresponding cohomology class in
H1(G, A). For this, we need to pass to the twisted groups A′ = aA and B′ = aB
and examine the corresponding exact sequence:

1→ H0(G, A′)→ H0(G, B′)→ H0(G, B′/A′)
δ
→H1(G, A′)

α′

→H1(G, B′).
(1.11′)

Then the bijection τa of Lemma 1.18 gives rise to a bijection between the ele-
ments of ker α′ and those of the fiber α−1(α(a)). On the other hand, it follows
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from (1.11′) that the elements of ker α′ are in one-to-one correspondence with
the orbits of (B′)G on (B′/A′)G.

We will next give a criterion for the class of a cocycle b ∈ Z1(G, B) to lie
in the image of α. For this, we consider the action of B on the homogeneous
space B/A by left translations; then one can define the twisted space b(B/A)
for any b in Z1(G, B).

Lemma 1.19 b ∈ imα ⇔ H0(G, b(B/A)) 6= ∅.

The fibers of ∂ in the sequence (1.13) are computed in a similar way. Namely,
let c = (cs) ∈ Z1(G, C). Since A is a central subgroup of B, the conjugation
action of B descends to an action of C that is trivial on A. Twisting the exact
sequence 1→ A→ B→ C→ 1 by means of c, we obtain the exact sequence
1 → A → cB → cC → 1, which gives rise to a new connecting morphism
∂c: H1(G, cC)→ H2(G, A). Direct computation shows that this map interacts
with the bijection τc : H1(G, cC)→ H1(G, C) from Lemma 1.18 as follows:

∂(τc(x)) = ∂c(x)∂(c),

where the product is taken in H2(G, A). It follows that the elements of the fiber
∂−1(∂(c)) are in one-to-one correspondence with the elements of ker ∂c, which
in turn correspond bijectively to the orbits of H1(G, A) on H1(G, cB).

If H is a normal subgroup of G (which we assume to be closed in the top-
ological setting), then, as in the commutative case, the quotient group G/H
acts on AH , so one can define the set H1(G/H , AH ) and the inflation map
H1(G/H , AH ) → H1(G, A). If H1(G, A) → H1(H , A) is the restriction map,
then the sequence

1→ H1(G/H , AH )→ H1(G, A)→ H1(H , A),

which is the noncommutative analog of the Hochschild–Serre spectral
sequence (1.9), is exact.

We conclude this section by considering induced sets and a noncommuta-
tive version of Shapiro’s lemma. Since these topics are not treated in Serre
(1997), we provide all the details. Let H be a (closed) subgroup of G. Then for
any H-set (respectively H-group) B we can define the G-set (respectively G-
group) A = indH

G (B) consisting of all (continuous) maps a: G → B satisfying
a(ts) = ta(s) for all t ∈ H , s ∈ G, on which G acts by ra(s) = a(sr) for r in G.
The G-set (respectively G-group) A, or any G-set (G-group) that is isomorphic
to A, is said to be induced. The map A→ B given by a 7→ a(1) is compatible
with the inclusion H ⊂G, hence it induces maps

ϕi : H i(G, A)→ H i(H , B) for i = 0, 1.
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Proposition 1.20 (SHAPIRO’S LEMMA, NONCOMMUTATIVE VERSION). The
maps ϕi are bijections.

PROOF: We will consider the cases i = 0 and i = 1 separately. First, let i = 0.
If a ∈ H0(G, A), then a is a map G → B, which is fixed by the action of
G, i.e., a = ra for all r ∈ G. The definition of the G-action on A shows that
the latter is equivalent to a(s) = a(sr) for all s, r ∈ G, so setting s = 1 we see
a is a constant map. By construction ϕ0(a) = a(1) ∈ BH

= H0(H , B), hence
ϕ0(a) = ϕ0(b) implies a = b, proving that ϕ0 is injective. On the other hand,
for any c in H0(H , B), the constant map a : G→ B given by a(s) = c lies in A;
moreover, it is clear that a ∈ H0(G, A) and ϕ0(a) = c. Thus, ϕ0 is surjective,
hence bijective.

Now let i = 1. To show that ϕ1 is injective, suppose we have cocycles
a = (ar) and b = (br) ∈ Z1(G, A) such that ϕ1 takes the same value on the
corresponding cohomology classes. This means that there exists c ∈ B such
that

ar(1) = c−1br(1) rc for all r ∈ H .

Then, letting d be an element of A such that d(1) = c and replacing b by the
equivalent cocycle b′ = (d−1br

rd), we may assume that

ar(1) = br(1) for all r ∈ H . (1.14)

The definition of a 1-cocycle yields the following identities for all r, s, t ∈ G:

ars(t) = ar(t)ras(t) = ar(t)as(tr),

brs(t) = br(t)rbs(t) = br(t)bs(tr).

Plugging in r = t−1 in (1.14), we obtain

at−1 s(t)bt−1 s(t)−1
= at−1 (t)bt−1(t)−1 (1.15)

for all s in H . Let us define a function c : G→ B by

c(t) = bt−1 (t)at−1 (t)−1.

Then (1.15) implies that for all s ∈ H we have

c(st) = bt−1s−1 (st)at−1s−1 (st)−1

= s(bt−1s−1 (t)at−1s−1(t)−1) = s(bt−1(t)at−1(t)−1) = s(c(t)),

proving that c ∈ A. On the other hand, one easily verifies that ar = c−1br
rc for

all r in G, so a and b are equivalent cocycles. This proves that ϕ1 is injective.
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To prove surjectivity, let us take an arbitrary cocycle b = (br) ∈ Z1(H , B).
Let v : H\G→ G be a (continuous) section such that v(H) = 1. For s in G, set
w(s) = sv(Hs)−1

∈ H . We define as : G→ B for s ∈ G by

as(t) = w(t)bw(v(t)s).

Direct computation shows that as ∈ A and the family a = (as) is a cocycle in
Z1(G, A) such that ϕ1(a) = b. This establishes surjectivity and completes the
proof of the proposition.

The following simple statement is often useful:

Lemma 1.21 Suppose H is of finite index in G. Then a G-group A is induced
(with respect to H) if and only if there exists an H-subgroup B⊂A such that
A is the direct product of the translates sB, where s runs over some system of
right coset representatives modulo H .

For example, if L is a finite Galois extension of a number field K with Galois
group G, and we fix an extension u of v ∈ V K to L and let H = G(u) denote
the corresponding decomposition group, then it follows from (1.2) that the
G-module L⊗K Kv is isomorphic to indHG (Lu).

1.4 Simple Algebras over Local Fields

1.4.1 Simple Algebras and the Brauer Group

Let A be a finite-dimensional central simple algebra over a field K. By the
Artin–Wedderburn Theorem, A is isomorphic to a matrix algebra Mn(D)
over a unique (up to isomorphism) central division K-algebra D, and then
dimK A = n2 dimK D. In turn, one shows that dimK D is the square of a pos-
itive integer d, called the index of D (and also of A). It is well known that
if K is finite or algebraically closed, then necessarily d = 1, in other words,
there are no noncommutative finite-dimensional central division algebras over
K. If K = R and d > 1, then D is isomorphic to the division algebra H of
Hamilton quaternions. Over non-Archimedean local fields and number fields,
there exist division algebras of arbitrary index. To describe them we will need
several results from the theory of simple algebras (cf., for example, Farb and
Dennis [1993]; Gille and Szamuely [2017]; Herstein [1994]; Pierce [1982]).

One of the basic results is the Skolem–Noether Theorem: if B1 and B2 are
simple subalgebras of a central simple K-algebra A, then any isomorphism
σ : B1 → B2 of K-algebras extends to an inner automorphism of A. To analyze
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the structure of a division algebra D, one often employs maximal subfields
P⊂D. Any maximal subfield P contains K, the degree [P : K] equals d, the
index of D, and D⊗K P ' Md(P) (i.e., P is a splitting field of D). Conversely,
any field P ⊃ K such that [P : K] = d and D⊗K P ' Md(P) is isomorphic to
a maximal subfield of D.

Now consider an arbitrary splitting field P of a simple algebra A (for exam-
ple, one could take an algebraic closure K̄ of K), and fix an isomorphism
ϕ : A ⊗K P ' Mr(P). Then the map NrdA/K(x) = detϕ(x ⊗ 1), called the
reduced norm, is multiplicative and moreover can be shown to be independ-
ent of P and ϕ. The reduced norm is given by a homogeneous polynomial of
degree r with coefficients in K, in terms of the coordinates of x with respect to
a given basis A over K; in particular, NrdA/K(A∗)⊂K∗. An important prop-
erty of the reduced norm is that for any x in D and any maximal subfield
P⊂D containing x, the reduced norm NrdD/K(x) coincides with the usual
norm NP/K(x). The study of the multiplicative group A∗ essentially reduces
to the study of the image NrdA/K(A∗) and the corresponding special linear
group SL1(A) = {x ∈ A∗ : NrdA/K(x) = 1}. The structure of SL1(A) (partic-
ularly when A = Mn(D) with n > 1, cf. [AGNT, §7.2]) in turn depends on
whether or not SL1(A) coincides with the commutator subgroup [A∗, A∗] (the
inclusion [A∗, A∗]⊂ SL1(A) is clear from the multiplicativity of the reduced
norm). The question of whether equality always holds, which is obviously
equivalent to the question of the triviality of the reduced Whitehead group
SK1(A) = SL1(A)/[A∗, A∗] from algebraic K-theory, was raised by Tannaka
and Artin in 1943 (see [AGNT, §7.2] regarding the connection between these
problems and the well-known Kneser–Tits conjecture in the theory of algebraic
groups). In 1975, Platonov showed that the Tannaka–Artin problem in general
has a negative solution. In a series of papers, he developed reduced K-theory,
which in many cases makes it possible to compute SK1(A) and establishes its
connections with other important problems (cf. [AGNT, Chapter 7]). Never-
theless, we should point out that for central simple algebras over local and
global fields, which are the main cases of interest for us, the group SK1(A) is
always trivial. This was proved for local fields by Nakayama and Matsushima
(1943) and for number fields by Wang (1950). Since this result will be used
repeatedly in the sequel, we will give a new proof that is substantially shorter
and more conceptual than the original argument (see Theorem 1.35).

One introduces an equivalence relation for central simple K-algebras by
defining A1 = Mn1 (D1) ∼ A2 = Mn2 (D2) if the division algebras D1 and
D2 are isomorphic; in the sequel, we let [A] denote the equivalence class
of A. Furthermore, one defines the product of two equivalence classes by
[A1] · [A2] = [A1 ⊗K A2]. (Note that the tensor product over K of two simple

https://doi.org/10.1017/9781139017756.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781139017756.004


1.4 Simple Algebras over Local Fields 31

K-algebras, one of which is central, is also a simple K-algebra.) This opera-
tion makes the set of equivalence classes of finite-dimensional central simple
K-algebras into an abelian group, with the inverse of [A] being the class of the
opposite algebra A◦ obtained from A by defining a new product a · b = ba,
where the product in the right-hand side is the original product in A. This
group is called the Brauer group of K and is denoted by Br(K). For any exten-
sion L/K, the equivalence classes of central simple K-algebras that split over
L form a subgroup of Br(K), which we denote by Br(L/K). The order of an
element [A] in Br(K) is always finite and is called the exponent (or period)
of A. Note that the exponent of A divides the index, but, in general, the two
numbers may be different. An important result in the theory of central simple
algebras is that the exponent and index coincide over local and global fields.
There is a conjecture due to M. Artin (1982) that this property also holds for
the so-called C2-fields; an important partial result was obtained by A. J. de
Jong (2004). For a connection between the exponent and index over general
Cm-fields, see Matzri (2016). Let us also note that Br(K) has a cohomological
interpretation, namely, associating to a simple algebra its factor set yields an
isomorphism Br(K) ' H2(K, K̄∗).

1.4.2 Simple Algebras over Local Fields

Throughout this section, K will denote a non-Archimedean local field with val-
uation v; we let O, p, and U denote the corresponding valuation ring, valuation
ideal, and group of units. Now, let D be a central division K-algebra of index
n. The valuation v uniquely extends to D by the formula

ṽ(x) =
1

n
v(NrdD/K(x)) for x ∈ D, (1.16)

and one can show that D is complete with respect to the metric defined by ṽ.
Let

OD = {x ∈ D : ṽ(x) ≥ 0} and PD = {x ∈ D : ṽ(x) > 0}

be the valuation ring and the valuation ideal of ṽ, respectively. Clearly, every
element a ∈ OD\PD is invertible in OD, so the quotient D̄ :=OD/PD is a
division algebra, called the residue algebra. For an element a ∈ OD, we typi-
cally write ā to denote its image in D̄. Let f = [D̄ : k] (where k is the residue
field of K) and let e = [0̃ : 0] be the corresponding ramification index (where
0 = v(K∗) and 0̃ = ṽ(D∗) are the respective value groups of v and ṽ). Then,
as in the commutative case (cf. §1.1.2), we have ef = dimK D = n2. On the
other hand, being a finite division ring, D̄ is commutative, and consequently
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D̄ = k(α) for a suitable α in D̄. Let β ∈ OD be an element such that β̄ = α.
Then for the field L = K(β) and its corresponding residue field `, we have

f = [D̄ : K̄] = [` : k] ≤ [L : K] = n.

It follows from (1.16) that n0̃⊂0, so since 0 ' Z, we see that

e = [0̃ : 0] ≤ n.

Thus e = f = n and D̄ coincides with the residue field ` of a suitable subfield
L⊂D, which is automatically a maximal subfield of D and is unramified over
K. Since the value group 0̃ is 1

nZ, there exists an element 5 in D∗, called a
uniformizer, such that ṽ(5) = 1

n . Then we have PD = 5OD = OD5, and any
other uniformizer 5′ ∈ OD is of the form 5′ = 5u, for some u ∈ UD = O∗D.
Similarly, for any i ≥ 1 we have Pi

D = 5
iOD = OD5

i.
Let us now fix an unramified maximal subfield L⊂D. (We note that any

other unramified maximal subfield L′⊂D is isomorphic to L over K, hence
is conjugate to L by the Skolem–Noether Theorem.) Then L is cyclic Galois
extension of K with Galois group Gal(L/K) generated by the Frobenius auto-
morphism ϕ (cf. §1.1.3). Again by the Skolem–Noether Theorem, there exists
an element g in D∗ such that

ϕ(x) = gxg−1
∀x ∈ L. (1.17)

Then ṽ(g) ∈ 1
nZ⊂Q/Z is well defined; it is called the invariant of D and

will be denoted invKD. The invariant invK A of a central simple K-algebra
A = Mn(D) is then defined to be the invariant of D.

Theorem 1.22 The map A 7→ invK A defines an isomorphism Br(K) ' Q/Z.
Moreover, if P/K is a finite extension of degree m, then we have the following
commutative diagram, where [m] denotes multiplication by m:

Br(K)
invK //

[A]
↓

[A⊗K P]

��

Q/Z

[m]

��

Br(P)
invP // Q/Z.

(1.18)

It follows from the commutativity of (1.18) that given a central division
algebra D over K of index n, for any field extension P/K of degree n, we have
D ⊗K P ' Mn(P), and consequently P is isomorphic to a maximal subfield
of D. Another important observation is that the exponent and index of any
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central division algebra over K coincide. To prove this, we need to show that
if ṽ(g) = a

n , then gcd(a, n) = 1. First, note that it follows from (1.16) that OD

and PD are invariant under conjugation in D and therefore any element h ∈ D∗

induces an automorphism σh : x̄ 7→ hxh−1 of D̄ over k. Set σ = σ5. Since D̄
is commutative, it follows that σu = id for u in UD, hence σ is independent of
the choice of5. As we noted earlier, D̄ coincides with the residue field ` of an
unramified maximal subfield L⊂D, so actually σ ∈ Gal(`/k). Now, g = 5au
for a suitable u ∈ UD, so ϕ = σ a, where the Frobenius automorphisms of L/K
and of `/k are both denoted by ϕ. Since ϕ generates Gal(`/k), we necessarily
have gcd(a, n) = 1. As a by-product, we have shown that σ = σ5 generates
Gal(`/k), a fact to be used later.

The preceding results on the structure of division algebras over p-adic
fields go back to Hasse (1931) and Witt (1937). Subsequently, structure the-
orems were obtained for a broad class of division algebras over arbitrary
Henselian fields (cf. Platonov and Yanchevskiı̆ [1987], the survey article by
Wadsworth [2002], and the book by Tignol and Wadsworth [2015]).

1.4.3 Multiplicative Structure of Division Algebras over Local
Fields

We first establish that for any finite-dimensional central division algebra D over
a local field K, we have NrdD/K(D∗) = K∗ and that SL1(D) coincides with the
commutator group [D∗, D∗]. (A more thorough analysis of D∗, based on the
filtration by congruence subgroups, will be given in the next section.)

As we have already seen, there exists an unramified maximal subfield L⊂D,
so the group of units U is contained in NL/K(L∗)⊂NrdD/K(D∗) (cf. Proposition
1.3). It remains to show that NrdD/K(D∗) also contains a uniformizer π ∈
K. For this, we observe that tn + (−1)nπ (where n is the index of D) is an
Eisenstein polynomial (cf. §1.1.3), and therefore defines an extension P/K of
degree n for which π ∈ NP/K(P∗). But as we noted earlier, P is isomorphic to
a maximal subfield of D, and therefore NP/K(P∗)⊂NrdD/K(D∗), implying that
π ∈ NrdD/K(D∗). Thus,

NrdD/K(D∗) = K∗.

Proving that SL1(D) (which for simplicity we will denote by D(1)) coincides
with [D∗, D∗] requires somewhat more work. First, we note that

L(1) :=L ∩ D(1)
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is contained in [D∗, D∗]. Indeed, since L(1)
= {t ∈ L∗ : NL/K(t) = 1}, by

Hilbert’s Theorem 90 (cf. Lang [2002, Chapter VI, §6], and §2.2.2), any ele-
ment x ∈ L(1) can be written in the form x = ϕ(y)y−1 for suitable y in L∗.
So, by (1.17) we have x = gyg−1y−1

∈ [D∗, D∗]. Hence the assertion that
D(1)
= [D∗, D∗] is a consequence of the following result.

Theorem 1.23 (PLATONOV AND YANCHEVSKIĬ [1973b]) The normal sub-
group of D(1) generated by L(1) coincides with D(1).

PROOF: Let x ∈ D(1). Then its residue x̄ lies in

`(1)
= {a ∈ `∗ : N`/k(a) = 1}.

Indeed, due to the fact that D̄ = `, we can write x = ab, with a contained in the
group of units UL of L and b ∈ 1+PD. Then x̄ = ā. On the other hand,

NL/K(a) = NrdD/K(a) = NrdD/K(b−1) = NM/K(b)−1

for a maximal subfield M ⊂D containing b. But b ∈ (1+PD)∩M = 1+PM ,
so by Proposition 1.5, NM/K(b−1) ∈ 1+ p, where p is the valuation ideal in K.
Therefore,

N`/k(ā) =
n−1∏
i = 0

ϕi(ā) =
n−1∏
i = 0

ϕi(a) = NL/K(a) = 1.

Since the group `(1) is cyclic, there exists an element z ∈ `(1) such that x̄z is
a generator of `(1), and consequently ` = k(x̄z). But z = ȳ for a suitable y in
L(1). Indeed, by Hilbert’s Theorem 90 we can write z = ϕ(s)/s for some s ∈ `∗;
then, if u ∈ UL is such that ū = s, the element y = ϕ(u)/u is as required. Fur-
thermore, note that the extension P :=K(xy) is an unramified maximal subfield
of D, since

n ≥ [P : K] ≥ [k(xy) : k] = [` : k] = n,

hence [P : K] = [k(xy) : k] = n. Thus, P ' L over K and consequently, by the
Skolem–Noether Theorem, P = sLs−1 for some s ∈ D∗. Taking into account
that NL/K(L∗) = UK∗n (Proposition 1.3) and that gcd(v(NrdD/K(g)) , n) = 1
for g (as in (1.17) – cf. §1.4.2), we see that NrdD/K(s) = NrdD/K(gic) for
suitable i ∈ Z and c ∈ L. Letting t = s(gic)−1, we will have

P = tgicLc−1g−it−1
= tLt−1 and NrdD/K(t) = 1.

Consequently, x ∈ P(1)y−1
⊂ t−1L(1)tL(1).
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An interesting consequence of the proof of Theorem 1.23 is that any element
of D(1) is the product of at most two commutators. It is not known, however, if
every element of D(1) is, in fact, a single commutator.

1.4.4 Filtrations on D∗ and D(1)

The material of this section is needed only in [AGNT, §9.5], and therefore may
be skipped on the first reading.

As before, let D be a division algebra of index n over a local field K. We will
continue using the notations introduced in §1.4.2–1.4.3. In addition, we set

Ui = 1+Pi
D and Ci = Ui ∩ D(1) for i ≥ 1,

letting U0 = UD = O∗D and C0 = D(1). It follows from (1.16) that Ui and Ci

are normal subgroups of D∗ (called the congruence subgroups of D and D(1)

respectively, of level Pi
D or simply of level i). Since UD and D(1) are clearly

compact groups, and Ui and Ci are open in UD and D(1) respectively (and, in
fact, constitute a base of neighborhoods of the identity), the indices [U : Ui]
and [D(1) : Ci] are finite. We begin by describing the structure of the quotients
Ui/Ui+1 and Ci/Ci+1.

Proposition 1.24 There are natural isomorphisms

ρ0 : U0/U1 → `∗, and

ρi : Ui/Ui+1 → `+ for i ≥ 1,

where `+ denotes the additive group of `. Moreover,

ρ0(C0) = `(1) :={x ∈ `∗ : N`/k(x) = 1}

and ρi(Ci) = ` if i 6≡ 0(mod n) and

ρi(Ci) = `(0) :={x ∈ ` : Tr`/k(x) = 0}

if i ≡ 0(mod n).

PROOF: As above, for a in OD, we denote by ā its image in ` = OD/PD. Then
ρ0 is induced by a 7→ ā and ρi (i ≥ 1) is induced by 1+ a5i

7→ ā. (Note that
the map ρi for i ≥ 1 depends on the choice of a uniformizer 5.) We computed
the image ρ0(C0) in the proof of Theorem 1.23. To compute ρi(Ci) (i ≥ 1), we
need the following.

Lemma 1.25 For i ≥ 1, we have NrdD/K(1 + Pi
D) = 1 + p j, where j is the

smallest integer ≥ i/n.
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The proof easily follows from Proposition 1.5.

Now, given x ∈ `, pick a ∈ OD so that ā = x. Let z = 1 + a5i. Then
t :=NrdD/K(z)∈ 1 + p j, where j is the smallest integer ≥ i/n. If i 6≡ 0
(mod n), then j ≥ i+1

n , and by Lemma 1.25, there exists y ∈ Ui+1 satisfying
NrdD/K(y) = t. Then, for z1 = zy−1, we have NrdD/K(z1) = 1, hence z1 ∈ Ci,
and ρi(z1) = x. It follows that ρi(Ci) = ` for i 6≡ 0(mod n).

Next, suppose that i = jn. Since OD = OL +PD, we have

Pi
D = OLπ

j
+PDπ

j
= p

j
L +Pi+1

D

(where OL, PL are, respectively, the valuation ring and the valuation ideal of
L; note that PL = OLπ for the uniformizer π ∈ K since L/K is unramified). It
follows that

Ui ∩ L∗ = 1+ p
j
L and Ui = (Ui ∩ L∗)Ui+1.

Then, if z ∈ Ci is written in the form z = st, where s ∈ Ui ∩ L∗, t ∈ Ui+1, we
have NL/K(s) = NrdD/K(t)−1

∈ 1 + p j+1. On the other hand, if s = 1 + rπ j

with r ∈ OL, then

NL/K(s) =
n−1∏

m = 0

ϕm(1+ rπ j) ≡ 1+ TrL/K(r)π j (mod p j+1).

Thus, TrL/K(r) ≡ 0 (mod p), and hence Tr`/k(r̄) = 0 and ρi(Ci)⊂ l(0). Con-
versely, if TrL/K(r) ≡ 0 (mod p), then for s = 1 + rπ j we have NL/K(s) ∈

1+ p j+1, so there is a t ∈ 1+ p
j+1
L such that

NL/K(s) = NL/K(t).

Then the element z = st−1
∈ L(1)

∩ (1+ p
j
L) satisfies ρi(z) ≡ r̄.

Corollary 1.26 For any i ≥ 0, the quotients U0/Ui and C0/Ci are finite
solvable groups. Consequently, the groups U0 and C0 are pro-solvable.

The solvability of the quotients U0/Ui and C0/Ci immediately follows from
the proposition. As we have noted above, Ui and Ci for i ≥ 1 constitute a base
of neighborhoods of the identity in U0 and C0 respectively, and therefore (cf.
§3.3)

U0 = lim
←−

U0/Ui and C0 = lim
←−

C0/Ci

are prosolvable groups.
Now, following Riehm (1970a), we will identify the commutator groups

[C0, Ci] and [C1, Ci] (i ≥ 1). For this, we need the following computation.
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Lemma 1.27 Let x = 1 + a5i, y = 1 + b5j, where a, b ∈ OD and i, j ≥ 1.
Then the commutator [x, y] = xyx−1y−1 is of the form 1+ c5i+j with

c̄ = āσ i(b̄)− σ j(ā)b̄,

where σ is the automorphism of ` over k given by d̄ 7→ 5d5−1 (cf. §1.4.2). In
particular, [Ui, Uj]⊂Ui+j.

PROOF: We will write (s, t) to denote st − ts. One easily verifies that

[x, y] = 1+ (x− 1, y− 1)x−1y−1,

and consequently

[x, y] = 1+ (a5ib5j
− b5ja5i)x−1y−1

= 1+ c5i+j,

where

c = (a5ib5−i
− b5ja5−j)(5i+jx−1y−15−(i+j)).

Passing to the residues and taking into account that x̄ = ȳ = 1, we obtain the
required result.

Theorem 1.28 Let n > 2. Then

(1) [C1, Ci] = Ci+1 for any i ≥ 1;

(2) [C0, Ci] =
{

Ci, if i 6≡ 0(mod n),
Ci+1, if i ≡ 0(mod n).

In particular, [C0, C0] = C1.

PROOF: First, we will show that ρi+1([C1, Ci]) = ρi+1(Ci+1). Indeed, it fol-
lows from Lemma 1.27 and Proposition 1.24 that the image ρi([C1, Ci]) is
generated as an abelian group by elements of the form

ασ (β)− σ i(α)β,

where α ∈ `, and β ∈ ` or `(0), depending on whether or not i is divisible by
n. We leave it to the reader to verify that since n > 2, these elements generate
` when i+ 1 6≡ 0(mod n) and `(0) otherwise, which coincides with ρi+1(Ci+1)
in all cases. Thus, for any i ≥ 1 we have

[C1, Ci]Ci+2 = Ci+1. (1.19)

Let us now show that actually [C1, Ci] = Ci+1. We can either argue directly, as
Riehm does, or use Theorem 3.10, which implies that any noncentral normal
subgroup of D(1) is open (we should emphasize that the proof of Theorem 3.10
does not rely on Theorem 1.28). Then for a suitable j, we have [C1, Ci] ⊃ Cj,
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and we may take j to be the smallest integer with this property. Suppose that
j > i+ 1; then j− 2 ≥ i, so that by (1.19), we have

[C1, Ci] ⊃ [C1, Cj−2]Cj = Cj−1,

which contradicts the definition of j. Thus, j = i+1, proving the first assertion.
It follows from (1) that [C0, Ci] ⊃ [C1, Ci] = Ci+1, so to prove (2), we only

need show that

ρi([C0, Ci]) =
{
`, if i 6≡ 0 (mod n),
0, if i ≡ 0 (mod n).

(1.20)

Direct computation shows that for x ∈ UD and y = 1 + a5i, where i ≥ 1, we
have ρi([x, y]) = (x̄σ i(x̄)−1

− 1)ā. If i ≡ 0(mod n), then clearly ρi([x, y]) = 0.
On the other hand, if i 6≡ 0(mod n), then, using the structure of finite
fields, one can easily establish the existence of an element α in `(0) such that
σ i(α) 6= α. Choosing an element x from D(1) such that x̄ = α and varying y
(i.e., a), we obtain the first equality in (1.20). To complete the proof of The-
orem 1.28, we only need to observe that in all cases, we have the inclusion
[C0, C0]⊂C1 = [C0, C1], and therefore [C0, C0] = C1.

Remark Some refinement of the preceding argument enables one to consider
also the case n = 2. The results due to Riehm (1970a) are as follows:

If p = char k is 6= 2, then all the assertions of Theorem 1.28 still hold; for
n = p = 2, the analog of assertion (1) assumes the form

[C1, C2i+1] = C2i+2 if either |k| > 2 or i ≥ 1;

[C1, C2i] = C2(i+1) for all i.

If |k| = 2, then [C1, C1] contains C4 but not C3. The second assertion of
Theorem 1.28 holds in all cases; in particular, we always have [C0, C0] = C1.

Corollary 1.29 C0 = L(1)[C0, C0], where L is an unramified maximal subfield
of D.

For n > 2 (respectively, n = 2), this follows from Theorem 1.28 and Propo-
sition 1.24 (respectively, from the above remark and Proposition 1.24). Another
proof, which does not distinguish between the cases n > 2 and n = 2, can be
easily obtained from Theorem 1.23.

In [AGNT, §9.5], one needs information about the structure of the quo-
tients F(i) = Ci/Ci+1 for (i ≥ 1) as modules over the group 1 = C0/C1 for
the action induced by the conjugation action of C0 (we note by Theorem 1.28
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the group C1 acts trivially on F(i)). Using the maps ρ0 and ρi from Propo-
sition 1.24, we can identify 1 and F(i) respectively with `(1) and `(0) or `
depending on whether or not i is divisible by n. Then a simple computation
shows that the 1-module structure on F(i) is given by

δ · x = δσ i(δ)−1x for δ ∈ 1 and x ∈ F(i) (1.21)

(we note that the product in the right-hand side is taken in `).

Proposition 1.30 If i 6≡ 0 (mod n), then F(i) is a simple 1-module, except
when `/k is F9/F3 or F64/F4 (where Fq denotes the finite field with q ele-
ments). In the latter case, the 1-submodules of F(i) ' F64 correspond to the
vector subspaces of F64 over F8.

PROOF: Let m denote the subfield of ` generated over the prime subfield by
elements of the form δσ i(δ)−1 with δ ∈ `(1). Then the assertion is clearly
equivalent to the fact that m = ` if `/k is different from F9/F3 or F64/F4, and
m = F8 if `/k is F64/F4. The proof is elementary and is left to the reader.

Using Proposition 1.30, Riehm obtained a complete description of the nor-
mal subgroups of C0. Since we will not need these results in the sequel, we
will limit ourselves to stating the result in the “generic” situation and omitting
the information about exceptional cases. For this we set Er = (K∗ ∩C0)Cr and
say that a normal subgroup N ⊂C0 has level r if N ⊂Er but N 6⊂Er+1. Since⋂

r

Er = K∗ ∩ C0,

any noncentral normal subgroup in C0 has a certain (finite) level.

Theorem 1.31 Suppose D is not a quaternion algebra over a finite extension
of Q2. If N ⊂C0 is a normal subgroup of level r, then

Cr+1⊂N ⊂Er.

If n - r and the 1-module F(r) is simple, then the stronger condition
Cr⊂N ⊂Er holds.

Note that the inclusion Cr⊂N ⊂Er means that N may differ from a con-
gruence subgroup only by a central subgroup, which provides a complete
description of the normal subgroups.

We will also use Proposition 1.30 for a different purpose, namely to describe
the space B = B(F(1), F(r)) of 1-invariant bilinear maps
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b : F(1)× F(r)→ Fp,

where p = char k and 1 acts on Fp = Z/pZ trivially.

Theorem 1.32 (PRASAD AND RAGHUNATHAN [1988])

(1) If r 6≡ −1 (mod n), then B = 0.
(2) If r ≡ −1 (mod n), n > 2, then B consists precisely of all maps of the form

b(λ)(x, y) = Tr`/Fp (λxσ (y)) with λ ∈ ` (1.22)

in the case where `/k is different from F64/F4, and of maps of the form

b(λ,µ)(x, y) = Tr`/Fp (λxσ (y)+ µxσ (y)8) with λ,µ ∈ ` (1.23)

in the case where `/k ' F64/F4.

(The appearance of the trace map in (1.22) and (1.23) is not accidental.
Indeed, for any finite separable field extension P/M , one has the nondegenerate
bilinear form

f (x, y) = TrP/M (xy),

so any M-linear functional ϕ : P → M can be written in the form
ϕ(x) = TrP/M (ax) for a suitable a ∈ P.)

PROOF: Let r, s > 0 be such that r + s ≡ 0(mod n). Then, for any λ ∈ `, the
bilinear form given by

br(λ)(x, y) = Tr`/Fp (λxσ r(y)) (1.24)

is 1-invariant. Indeed, by (1.21), for any δ in 1 we have

br(λ)(δ · x, δ · y) = Tr`/Fp (λ(δσ r(δ)−1)xσ r(δσ s(δ)−1y))

= Tr`/Fp (λ(δσ r+s(δ)−1)xσ r(y)) = br(λ)(x, y),

since r + s = 0(mod n). If, moreover, r 6≡ 0(mod n), then both F(r) and
F(s) can be identified with ` and br(1) yields a nondegenerate bilinear pair-
ing F(r) × F(s) → Fp, hence defines an isomorphism between F(r) and the
dual module F̂(s) = Hom(F(s),Fp). In the case where r ≡ 0(mod n), both
F(r) and F(s) are trivial 1-modules, and therefore F(r) ' F(s). Since clearly
B(F(r), F(s)) = Hom1(F(r), F̂(s)), to prove the first assertion of the theorem,
it suffices to show that

Hom1(F(r), F(s)) = 0

if r 6≡ s(mod n).
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Suppose ϕ ∈ Hom1(F(r), F(s)), ϕ 6≡ 0. Then, for any a in F(r) and any δ in
1, we have

ϕ(δ(σ r(δ))−1a) = δ(σ s(δ))−1ϕ(a). (1.25)

Let F1 and F2 denote the additive subgroups of ` generated by elements of the
form δ(σ r(δ))−1 and δ(σ s(δ))−1 respectively. Picking a ∈ F(r) so that ϕ(a) 6= 0
and using (1.25), we obtain that for δi ∈ 1, the condition

∑
δi(σ r(δi))−1

= 0
implies

∑
δi(σ s(δi))−1

= 0. It follows that the correspondence

ψ : δ(σ r(δ))−1
7→ δ(σ s(δ))−1

extends to an additive homomorphism from F1 to F2. Moreover, F1 and F2 are
clearly closed under multiplication, i.e., in effect are finite fields, and the exten-
sion of ψ is actually an isomorphism of F1 onto F2. It follows that ψ(x) = xpl

for a suitable integer l. So, (1.25) becomes

(δ(σ r(δ))−1)pl
= δ(σ s(δ))−1 (1.26)

for any δ in 1. Suppose that k = Fpa . Then 1 = {xpa
−1 : x ∈ `∗} and

σ (x) = xpab
for a suitable integer b. Then (1.26) yields

x−pl(pabr
−1)(pa

−1)
= x−(pabs

−1)

for all x in `∗, whence

pl(pabr
− l)(pa

− 1) ≡ pabs
− 1 (mod pan

− 1).

It was shown in Prasad and Raghunathan (1983, appendix to §7), that the last
equation implies that br ≡ bs(mod n), hence r ≡ s(mod n) as gcd(b, n) = 1.
This proves the first assertion.

To prove the second assertion, we first suppose that `/k is different from
F64/F4, so that F(r) is a simple 1-module as n > 2. Let b = b(x, y) ∈ B. Then
x 7→ b(x, 1) is an Fp-linear map from ` to Fp, and hence b(x, 1) = Tr`/Fp (λx)
for a suitable λ ∈ `. Consider b0 = b − b1(λ), where b1(λ) is given by (1.24).
Since b and b1(λ) are 1-invariant, the set

F(1)⊥ :={y ∈ F(r) : b0(x, y) = 0 for all x ∈ F(1)}

is a1-submodule of F(r) containing 1. Thus, F(1)⊥ = F(r), hence b0 = 0 and
b = b1(λ), as required.

It remains to consider the case where ` = F64 and k = F4. Here the 1-
submodules of F(r) correspond to vector subspaces of ` over F8, and the only
nontrivial automorphism of F64/F8 has the form x 7→ x8. Let z ∈ `\F8. Then,
arguing as above, we obtain that there exist θ ,ω ∈ ` such that
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b(x, 1) = Tr`/Fp (θx),

b(x, z) = Tr`/Fp (ωx)

for all x in `. Since z8
6= z, one can find λ,µ in ` satisfying the equations

λ+ µ = θ ,

λσ (z)+ µσ (z)8
= ω.

In our situation, δ(σ r(δ))−1
∈ F8 for all δ ∈ `(1), which implies that the bilinear

map b(λ,µ) defined by (1.23) is 1-invariant. Then

b0 := b− b(λ,µ)

is also 1-invariant. It follows that the subspace F(1)⊥ introduced earlier is a
1-submodule of F(r), containing 1 and z, hence F(1)⊥ = F(r). Thus b0 = 0
and b = b(λ,µ).

1.5 Simple Algebras over Number Fields

1.5.1 The Brauer Group

Let A be a central simple algebra over a number field K. Then, for any v ∈
V K , the algebra Av :=A ⊗K Kv remains simple, so in the notations of §1.4.1,
the correspondence [A] → [Av] defines a homomorphism of Brauer groups

Br(K)
θv
−→ Br(Kv). To describe Br(K), we consider the product

θ =
∏
v∈VK

θv : Br(K)→
∏
v∈VK

Br(Kv).

In §1.4.2 we saw that, for v ∈ V K
f , there is a canonical isomorphism

invKv : Br(Kv)→ Q/Z. To treat all the valuations in a unified manner, we will
define the invariant of the algebra of Hamiltonian quaternions over Kv = R to
be the class 1

2 + Z ∈ Q/Z. Then, the homomorphism invKv : Br(Kv)→ Q/Z
is defined for all v and is injective.

Theorem 1.33 (ALBERT, BRAUER, HASSE, NOETHER) The map θ is an injec-
tive homomorphism, and its image consists of a = (av) ∈

∏
v Br(Kv) such that

av = 0 for almost all v and
∑
vinvKv av = 0.

Thus, any finite-dimensional central division algebra D over K is determined
up to isomorphism by the invariants invKv [Dv] of the algebras Dv = D⊗K Kv ,
which, for simplicity, we will denote by invv D. Conversely, for any choice of
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invariants, almost all of which equal 0 and the sum of which also equals 0,
there is a central division algebra over K having these invariants.

The injectivity of θ has several important consequences. First, it follows
from §1.4.1 that, given a central division algebra D over K of index n, a field
extension P/K of degree n is isomorphic to a maximal subfield of D if and
only if Dv ⊗Kv Pw is the matrix algebra for all v ∈ V K and all w|v (which
is equivalent to the condition that the local degrees [Pw : Kv] are divisible by
the index of Dv for all v in V K and all w|v). Then, by applying the Grunwald–
Wang theorem from class field theory (cf., for example, Artin and Tate [2009]),
one can conclude that D contains a maximal subfield L⊂D, which is a cyclic
extension of K.

Taking into account the structure of division algebras over local fields, it
is natural to ask the more subtle question of whether there always exists a
maximal subfield L⊂D, which is a cyclic extension of K and for which the
local extensions Lv/Kv are unramified extensions for all v in V K

f such that Dv
is a division algebra. Unfortunately, an extension L with these properties does
not always exist, and in fact one can construct counterexamples even over Q.
However, such an L does exist if D satisfies some minor additional restrictions
(cf. Platonov and Rapinchuk [1984]).

Theorem 1.33 also enables one to show that over number fields, just as
over local fields, the exponent of a simple algebra coincides with is its index,
and, in particular, the only division algebras of exponent 2 are the algebras of
generalized quaternions.

1.5.2 Multiplicative Structure

Let D be a central division algebra of index n over a number field K. In this
section, we will describe the image of the reduced norm NrdD/K(D∗) and also
show that the group

SL1(D) = {x ∈ D∗ : NrdD/K(x) = 1}

coincides with the commutator group [D∗, D∗] of the multiplicative group D∗.

Theorem 1.34 (EICHLER) The group NrdD/K(D∗) coincides with the set of
elements of K∗ that are positive with respect to all real valuations v ∈ V K

∞

such that Dv 6' Mn(Kv).

PROOF: See Weil (1995), pp. 279–284 (cf. also [AGNT, §6.7]).
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Theorem 1.35 (WANG [1950]) SL1(D) = [D∗, D∗].

Wang’s original proof of this theorem is quite complicated and relied on
deep results from number theory. We will present a modified argument (cf.
Platonov [1976a], Yanchevskiı̆ [1975]) that uses only Eichler’s theorem.

First, we will reduce the proof of Theorem 1.35 to division algebras of
prime power index. For this, we will need some results about the Dieudonné
determinant (cf. Artin [1988], Dieudonné [1971]). Let GLm(D) be the group
of invertible elements of a matrix algebra A = Mm(D). Then there exists a
surjective group homomorphism

δ : GLm(D) −→ D∗/[D∗, D∗],

called the Dieudonné determinant, for which

δ


a1 0

. . .
0 am


 = a1 · · · am[D∗, D∗].

Furthermore, it is well known that in all cases except when m = 2 and D = F2,
the kernel of δ coincides with the commutator subgroup [GLm(D), GLm(D)].
In particular, δ induces an isomorphism SK1(A) ' SK1(D), and therefore for
any field P (different from F2 when m = 2), the group SLm(P) is precisely the
commutator subgroup of the group GLm(P).

Lemma 1.36 Let a ∈ SL1(D) and suppose that

a ∈ [(D⊗K B)∗, (D⊗K B)∗],

where B is an associative m-dimensional K-algebra with identity. Then am
∈

[D∗, D∗].

PROOF: The regular representation B → Mm(K) induces an embedding D ⊗
B→ Mm(D), under which an element x ∈ D is mapped to the matrixx 0

. . .
0 x

 .

Now, if a ∈ SL1(D) and a ∈ [(D⊗K B)∗, (D⊗K B)∗], then clearlya 0
. . .

0 a

 ∈ [GLm(D), GLm(D)].
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Applying the Dieudonné determinant, we obtain that am
∈ [D∗, D∗], as

required.

Lemma 1.36 yields

Corollary 1.37 For a central division algebra D of index n, the group SK1(D)
has exponent dividing n.

Indeed, pick a maximal subfield L⊂D. Then

[L : K] = n and D⊗K L = Mn(L).

Applying Lemma 1.36 to B = L and using the preceding remark that
SLn(L) = [GLn(L), GLn(L)], we obtain our claim.

Furthermore, it is well known (cf. Herstein [1994], Theorem 4.4.6) that, if
n = pα1

1 . . . pαr
r , then

D = D1 ⊗K · · · ⊗K Dr,

where Di is a division algebra of index pαi
i . In these notations, we have

Corollary 1.38 If SK1(Di) = 1 for all i = 1, . . . , r, then SK1(D) = 1.

For the proof, we let Bi denote the tensor product
⊗

j 6=i D◦j of the corre-

sponding opposite algebras. Then Bi is a K-algebra of dimension n2
i , where

ni = n/pαi
i ; moreover, D⊗K Bi ' Mn2

i
(Di) for all i = 1, . . . , r. It follows from

the properties of the Dieudonné determinant and the triviality of SK1(Di) that
SLn2

i
(Di) = [GLn2

i
(Di), GLn2

i
(Di)]. Invoking Lemma 1.36, we see that for any

a in SL1(D) we have an2
i ∈ [D∗, D∗] for all i = 1, . . . , r. But the numbers

n2
i (i = 1, . . . , r) are relatively prime, so we have uin2

i + · · · + urn2
r = 1 for

suitable integers ui, whence

a = (an2
1 )u1 · · · (an2

r )ur ∈ [D∗, D∗],

as required.
Thus, we only need prove Theorem 1.35 in the case of a division algebra D

having index pα , where p is a prime and α ≥ 0. We will do this by induction
on α, noting that the assertion clearly holds for α = 0. Now, let us assume that
SK1(1) = 1 for any central division algebra 1 of index pα−1 over any number
field. We will then show that SK1(D) = 1 for a central division algebra D of
index pα over any number field as well.

Let D be a central division algebra of index pα with center K, and let a ∈
SL1(D). It suffices to find an extension F/K of degree coprime to p such that

a ∈ [(D⊗K F)∗, (D⊗K F)∗]. (1.27)
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Indeed, by Lemma 1.36, we would then have a[F : K]
∈ [D∗, D∗]. At the same

time, apα
∈ [D∗, D∗] by Corollary 1.37. Since p and [F : K] are relatively prime,

we can find s, t ∈ Z such that s[F : K]+ tpα = 1, and then

a = (a[F:K])s(apα )t
∈ [D∗, D∗],

as required. In order to construct such an F, let us consider a maximal sub-
field L⊂D containing a. Let P be the normal closure of L over K, and let
G = Gal(P/K) be the corresponding Galois group. Fix a Sylow p-subgroup
Gp⊂G, and set F = PGp . Then the degree [F : K] is clearly coprime to p, and
it remains to establish (1.27).

The Galois group Gal(P/F) is Gp. Let H⊂Gp be the subgroup correspond-
ing to the subfield LF⊂P. It follows from the properties of p-groups that there
exists a normal subgroup N ⊂Gp of index p, containing H. Then the corre-
sponding fixed field M = PN is a cyclic extension of F of degree p, which is
contained in LF.

If α = 1, then M = LF is itself a cyclic extension of F of degree p. The
fact that a ∈ SL1(D) implies that NM/F(a) = 1, so that by Hilbert’s Theorem
90, we can write a = σ (b)/b for a suitable b ∈ (LF)∗, where σ is a generator
of Gal(M/F). But by the Skolem–Noether Theorem, there exists an element
g ∈ (D ⊗K F)∗ such that σ (b) = gbg−1 (where we identify LF with L ⊗K

F⊂D⊗K F), and consequently

a = gbg−1b−1
∈ [(D⊗K F)∗, (D⊗K F)∗],

as required. (Note that in this argument, we never used the hypothesis that K
is a number field, and thus SK1(D) = 1 for any division algebra D of a prime
index p over an arbitrary field K.)

If α > 1, we let 1 denote the centralizer of M in D ⊗K F. By the Dou-
ble Centralizer Theorem (cf. Herstein [1994], Theorem 4.3.2), 1 is a central
division algebra of index pα−1 over M . Clearly a ∈ 1, and moreover

1 = Nrd(D⊗K F)/F(a) = NLF/F(a)

= NM/F(NLF/M (a)) = NM/F(Nrd1/M (a)).

So, by Hilbert’s Theorem 90, the element t :=Nrd1/M (a) can be written in the
form

t = σ (s)/s (1.28)

for some s ∈ M∗, where σ is a generator of Gal(M/F). Again, by the Skolem–
Noether Theorem there exists g ∈ (D ⊗K F)∗ such that σ (b) = gbg−1 for all
b in M . Since 1 is the centralizer of M , we easily see that g1g−1

= 1, and
moreover
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Nrd1/M (gxg−1) = g Nrd1/M (x)g−1 for all x ∈ 1.

Now assume that we have been able to choose an element s in (1.28), which is
defined up to multiplication by an element of F∗, from the image Nrd1/M (1∗)
of the reduced norm. Then, writing s = Nrd1/M (z), with z ∈ 1∗, we obtain

Nrd1/M (gzg−1z−1) = σ (s)/s = Nrd1/M (a),

and therefore a′ := a(gzg−1z−1)−1
∈ SL1(1). By induction,

SL1(1) = [1∗,1∗]⊂ [(D⊗K F)∗, (D⊗K F)∗],

and (1.27) follows.
It remains to show that s in (1.28) can indeed be found in Nrd1/M (1∗). For

this we will use Theorem 1.34. If p is odd, then 1w = 1⊗M Mw is the matrix
algebra for all w in V M

∞ , so Nrd1/M (1∗) = M∗, and there is nothing to prove.
Now let p = 2. In this case, M is a quadratic extension of F, and Nrd1/M (1∗)
consists of those m ∈ M that are positive with respect to all real w in V M

∞ such
that1w is not the matrix algebra. We let S denote the set of all such w’s, and let
S0 be the set of restrictions of the valuations w ∈ S to F. Then each v ∈ S0 has
two extensions w′, w′′ ∈ S with w′′ = w′ ◦ σ and Mw′ = Mw′′ = Fv . If s ∈ M∗

is an arbitrary element satisfying (1.28), then since t = σ (s)/s ∈ Nrd1/M (1∗),
the element s has the same sign with respect to w′ and w′′, and therefore there
exists fv ∈ K∗v such that sfv is positive with respect to both w′ and w′′. Using
Theorem 1.12 on weak approximation, we can choose an element f ∈ K∗ so
that f and fv have the same sign in Kv for all v in S0. Now, setting s1 = sf ,
we obtain t = σ (s)/s = σ (s1)/s1, i.e., (1.28) holds with s replaced by s1. At
the same time, it follows from our construction that s1 ∈ Nrd1/M (1∗), as
required. This completes the proof of Theorem 1.35.

1.5.3 Lattices and Orders

Let K be a number field with ring of integers O. A lattice (or, more precisely, an
O-lattice) in a finite-dimensional vector space V over K is a finitely generated
O-submodule L⊂V that contains a basis of V over K. A lattice L⊂V is said
to be free if it is a free O-module, i.e., possesses an O-basis. When O is a
principal ideal domain or, equivalently, the class number of K equals 1, any
lattice is free. In general, any lattice L⊂V has a pseudobasis, i.e., there exist
x1, . . . , xn ∈ V , where n = dimK V , such that

L = Ox1 ⊕ · · · ⊕Oxn−1 ⊕ axn

for some ideal a⊂O (cf. O’Meara [2000]).
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An order in a finite-dimensional K-algebra A is an O-lattice B⊂A that is
simultaneously a subring containing the identity element of A. An order is said
to be maximal if it is not properly contained in any larger order.

The study of lattices and orders essentially reduces to the study of their local
counterparts. More precisely, by a (local) lattice in a finite-dimensional Kv-
vector space VKv , where v ∈ V K

f , we mean a finitely generated Ov-submodule
Lv ⊂VKv containing a basis of VKv . Since Ov is a principal ideal domain, any
local lattice has an Ov-basis. One defines orders and maximal orders in the
obvious way. Clearly, if L is a lattice in a finite-dimensional vector space V
over K (respectively, if B is an order in a finite-dimensional K-algebra A),
then Lv :=L ⊗O Ov (respectively, Bv :=B ⊗O Ov) is a lattice in the space
VKv :=V ⊗K Kv (respectively, in the algebra AKv :=A ⊗K Kv). Thus, to each
lattice L⊂V one can associate the set of localizations {Lv ⊂VKv : v ∈ V K

f }.
So, a natural question to ask is the extent to which L is determined by its
localizations Lv .

Theorem 1.39 (1) L =
⋂
v (V ∩ Lv), in particular a lattice is uniquely deter-

mined by its localizations;
(2) for any two lattices L, M ⊂V, we have Lv = Mv for almost all v;
(3) if L⊂V is a lattice and {Nv ⊂VKv } is an arbitrary set of local lattices such

that Nv = Lv for almost all v, then there exists a lattice M ⊂V such that
Mv = Nv for all v ∈ V K

f .

PROOF: Let L, M be two lattices, let x1, . . . , xn be a basis of V contained in L,
and let y1, . . . , yr be a finite system of generators of M as an O-module. Then
we can write yi =

∑n
j = 1 aijxj for some aij ∈ K. If we choose an integer m 6= 0

so that maij ∈ O for all i, j, then mM ⊂L. By interchanging L and M , we can
likewise find an integer l 6= 0 so that lL⊂M , hence L⊂ 1

l M . If now v /∈ V (lm)
(notation as in §1.2.1), then Lv = Mv , proving the second assertion.

To prove assertions (1) and (3), we embed V into the associated adele space
VAf = V ⊗K Af , where Af is the ring of finite adeles of K. It follows from the
strong approximation theorem (cf. Theorem 1.13) that

LAf (∞) :=L⊗O Af (∞) =
∏
v∈VK

f

Lv

(where Af (∞) =
∏
v∈VK

f
Ov is the ring of integral finite adeles) coincides with

the closure of L in VAf . Therefore

L′ :=
⋂
v∈VK

f

Lv
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is the closure of L in V in the topology induced from VAf . So, to prove the first
assertion, we only need to establish that L is closed. To do this, let us take a
basis x1, . . . , xn of V in contained L, and set

M = Ox1 + · · · +Oxn.

Since O =
⋂
v∈VK

f
(K ∩ Ov), we see that M =

⋂
v∈VK

f
(V ∩ Mv). But∏

v∈VK
f

Mv , just as
∏
v∈VK

f
Lv , is open in VAf , so M is open in V , and

consequently L⊂V is open and closed.
Finally, if a collection of local lattices Nv ⊂VKv satisfies Nv = Lv for almost

all v, then
∏
v∈VK

f
Nv is an open compact subgroup in VAf and therefore is

commensurable with
∏
v∈VK

f
Lv (i.e., their intersection has finite index in each

of them). It follows that

M :=
⋂

v∈VK
f

(V ∩ Nv)

is commensurable with L =
⋂
v∈VK

f
(V ∩ Lv), implying that M is a lattice, as

needed.

We will now review some facts about orders in algebras. Our account will
only include results about the existence of maximal orders and embedding an
arbitrary order into a maximal one, as these are precisely the questions that
arise in the study of maximal arithmetic and maximal compact subgroups of
algebraic groups. First, we note the following consequence of Theorem 1.39.

Proposition 1.40 An order B⊂A is maximal if and only if for each v in V K
f ,

the order Bv ⊂AKv is maximal.

Elementary examples show that an arbitrary algebra may not contain any
maximal orders. Our goal is to prove that maximal orders always exist in
finite-dimensional semisimple algebras. Recall that a semisimple K-algebra
is the direct sum of a finite number of simple (but not necessarily central)
K-algebras. Thus, by the Artin–Wedderburn Theorem, a finite-dimensional
semisimple algebra can be written in the form A =

⊕r
i = 1 Mni (Di), where Di

is a finite-dimensional division algebra over K. In characteristic zero, a finite-
dimensional K-algebra A is semisimple if and only if A⊗K K̄ '

⊕r
i = 1 Mmi (K̄)

for some integers mi (cf. Pierce [1982]). We therefore begin by consider-
ing maximal orders in the matrix algebra A = Mn (Kv). Our treatment will
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be based on the study of the natural action of A on V = Kn
v , in conjunction

with some elementary topological considerations involving compactness. For
a lattice L⊂V , we let

AL
= { g ∈ Mn(Kv) : g(L)⊂L }

denote the stabilizer of L. We note that by choosing a basis of L, we may
identify the stabilizer AL with Mn(Ov), which implies in particular that AL is
an order and an open compact subring (we note that these characterizations are
in fact equivalent).

Proposition 1.41 (1) For any compact subring B⊂A, there is a lattice L⊂V
such that B⊂AL;

(2) the ring AL is a maximal order in A, for any lattice L⊂V;
(3) any order B⊂A is contained in some maximal order, and there exist only

finitely many (maximal) orders containing B.

PROOF: Let L0 = On
v be the lattice spanned by the standard basis vectors of

V = Kn
v . Since AL0 is open and B is compact, there exists a finite collection

of elements x1, . . . , xr ∈ A such that B⊂
⋃r

i = 1(xi + AL0 ). It follows that the
Ov-submodule L⊂V generated by B(L0) =

⋃
x∈B x(L0) is actually generated

by L0 ∪ x1(L0) ∪ · · · ∪ xr(L0), hence is a lattice. On the other hand, it is clear
that B(L)⊂L, which proves the first assertion.

Now assume that AL is contained in some order B⊂A. Since any order is
clearly an open compact subring, by part (1) we have B⊂AM for a suitable
lattice M ⊂V . Thus, AL

⊂AM and our goal is to show that AL
= AM . Since

replacing M with a lattice of the form αM for α ∈ K∗v does not change the sta-
bilizer AM , we may assume that M ⊂L, but M 6⊂πL, where π is a uniformizer
of Kv . We can then choose a basis e1, . . . , en of L so that M has a basis of
the form e1,πα2e2, . . . ,παnen for some nonnegative integers α2, . . . ,αn. For
i > 1, consider the transformation gi ∈ AL that interchanges the vectors e1

and ei and fixes all ej, for j 6= 1, i. Since AL
⊂AM we have gi ∈ AM , whence

gi(e1) = ei ∈ M and αi = 0. Consequently L = M , so AL
= AM , proving the

second assertion.
It follows from parts (1) and (2) that any order B⊂A is contained in some

maximal order C = AL, so it remains to show that the set {Cl} of maximal
orders in A containing B is finite. We can pick a lattice Ml and a nonnegative
integer α so that Cl = AMl and B ⊃ παC. Then for any l we have Cl ⊃ B ⊃
παC. Let us show that in this case, we have the inclusion παCl⊂C. Without
loss of generality, as in the proof of (2), we may assume that the lattices L and
Ml have bases of the form e1, e2, . . . , en and e1,πα2e2, . . . ,παnen for αi ≥ 0,
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respectively. Since Cl ⊃ π
αC, we have C(Ml)⊂π−αCl (Ml) = π−αMl. Again,

using the transformations gi ∈ C introduced earlier, we obtain αi ≤ α, hence
παL⊂Ml. Then παCl (L)⊂Cl (Ml) = Ml⊂L, so παCl⊂C. Thus, for any l
we have the inclusions

παC⊂Cl⊂π
−αC.

Since the index [π−αC : παC] is finite, the number of distinct Cl’s is also finite.
This completes the proof of the proposition.

Remark The description of maximal orders in Mn(Kv) as stabilizers of lattices
L ⊂ V implies that any two maximal orders in A = Mn(Kv) are conjugate.

The techniques employed in the proof of the proposition easily yield anal-
ogous assertions about maximal compact subgroups of G = GLn(Kv). For
a lattice L⊂V , we let GL denote the group of automorphisms of L, i.e.,
GL
= {g ∈ G : g(L) = L} (more generally, for any subgroup 0⊂G we set

0L
= {g ∈ 0 : g(L) = L} and call 0L the stabilizer of L in 0). Clearly, using

a basis of L, one can identify GL
= (AL)∗ with GLn(Ov), so GL is an open

compact subgroup of G and det g ∈ Uv for any g ∈ GL.

Proposition 1.42 (1) Given a compact subgroup B⊂G, there is a lattice
L⊂V such that B⊂GL;

(2) GL is a maximal compact subgroup of G for any lattice L⊂V; in
particular, any compact subgroup is contained in a maximal compact
subgroup;

(3) all maximal compact subgroups of G are conjugate.

The proof follows easily from Proposition 1.41.

One also derives from Proposition 1.41 the following fundamental result
about orders in semisimple algebras over local fields.

Theorem 1.43 Let A be a semisimple algebra over Kv . Then any order B⊂A
is contained in a maximal order, and there exist only finitely many (maximal)
orders containing B.

PROOF: Writing A as the direct sum of simple algebras, one reduces the proof
to the case where A is simple. Let F be the center of A and let OF be the
corresponding valuation ring. Then, for any Ov-order B⊂A, the product OFB
(of Ov-submodules) is simultaneously an Ov-order and an OF-order in A. So,
it follows that we only need consider the case where F = Kv . Clearly, to prove
the theorem it suffices to show that the set {Bi} of all orders in A containing B is
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finite. For this, we pick a finite extension P of Kv such that A⊗Kv P ' Mn(P),
and set

B̃ = B⊗Ov
OP, B̃i = Bi ⊗Ov

OP.

Then B̃ and B̃i are orders in Mn(P), and B̃⊂ B̃i. But by Proposition 1.41, among
the orders B̃i there are only finitely many distinct orders. So, it suffices to
show that B̃i = B̃j can hold only if Bi = Bj. Indeed, pick Ov-bases x1, . . . , xn2

and y1, . . . , yn2 of Bi and Bj respectively. Then xl =
∑n2

m = 1 almym and

yl =
∑n2

m = 1 blmxm for suitable alm, blm ∈ Kv . Since x1, . . . , xn2 and y1, . . . , yn2

are also OP-bases of B̃i = B̃j, then actually alm, blm ∈OP ∩ Kv = Ov , whence
Bi = Bj.

Combining Theorem 1.43 with Proposition 1.41, we obtain the existence of
maximal orders in semisimple algebras over number fields.

Theorem 1.44 Let A be a semisimple algebra over a number field K. Then any
order B⊂A is contained in some maximal order.

PROOF: As above, the proof reduces to the case of a central simple K-algebra
A. It suffices to show that the set {Bi} of orders in A containing B is finite.
We first prove this assertion for a matrix algebra A = Mn(K). It follows from
Propositions 1.40 and 1.41 that the order C = Mn(O) is maximal in A. Then
according to Theorem 1.39(2), Bv = Cv is a maximal order in AKv = Mn(Kv)
for almost all v ∈ V K

f . On the other hand, by Theorem 1.43, for the remaining
v, the number of orders in AKv containing Bv is finite. Combining this with
Theorem 1.39(1), we obtain the required result. To reduce the general case to
that of a matrix algebra, we choose a finite extension P/K satisfying A⊗K P '
Mn(P), and replace the orders B and Bi with the orders B̃ = B ⊗O OP and
B̃i = Bi⊗O OP in Mn(P). Then there exist only finitely many distinct B̃i’s, and
therefore only finitely many distinct Bi’s (as by considering localizations and
arguing as in the proof of Theorem 1.43 we see that B̃i = B̃j implies Bi = Bj).

Remark Even though it can be shown that over Kv all maximal orders are
conjugate for any semisimple algebra, over K there may, in general, exist
nonconjugate maximal orders.
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