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Abstract

Hypotheses based on allocation theory and herbivore selection offer opposite predictions
about how defence levels against herbivores change as the plant tissue grows. The growth
differentiation balance hypothesis (GDBH) assumes that defences will be resource-limited in
immature tissues and predict that defence levels increase as the plant tissue grows. Conversely,
the optimal defence hypothesis (ODH) proposes that plants would have the highest level of
defences in the parts that have the highest value in terms of fitness and/or are more frequently
attacked by herbivores, such as young tissues. We examine whether spinescence in the shrub
Rubus adenotrichos (blackberry) change as the leaf grows, and if this change is consistent with
the GDBH or the ODH. We compare the petiole area occupied by prickles, the prickles density
and the individual prickle area in mature versus young petioles from Rubus adenotrichos. Our
results show that, in R. adenotrichos, young tissues are more protected than mature tissues.
Prickles density and the petiole area occupied by prickles were up to 25% higher in young
petioles than in mature ones. These results support the ODH, reinforcing the idea that extrinsic
factors such as herbivores pressuremight drive the change of structural defences level across leaf
ontogeny.

Introduction

Herbivory can reduce plant fitness and thereby influence the selection of defence traits
(Coley and Barone 1996; Marquis 1992). However, the level and kind of defences against
herbivores often change dramatically through plant development depending on internal and
external constraints (Boege et al. 2007). Several studies have found variation in physical as well
as in chemical plant defences across ontogenetic stages in both individual shoots/leaves or entire
plants (Barton and Koricheva 2010; Kariñho-Betancourt et al. 2015). Understanding why
defences change as plants growmight provide key insights into the role of allocation of resources
and herbivory pressure on the ecology and evolution of plant traits.

Two current hypotheses, based on allocation theory and herbivore selection, attempt to
explain the ontogenetic changes in plant defences against herbivory and offer opposite
predictions about the general directionality of those patterns. The growth differentiation balance
hypothesis (GDBH) assumes that plants need to maintain a balance between resources used for
growth and for differentiation, which includes defence production (Herms and Mattson 1992).
Since defence production is often costly, plants that allocate resources to the defence of young
leaves will grow slower than they otherwise might (Herms 1999; Herms and Mattson 1994).
Consequently, the GDBH assumes that defences will be resource-limited in immature tissues
and predict that defence levels increase as plants grow/leaves mature (Herms andMattson 1992,
1994). In contrast, the optimal defence hypothesis (ODH) proposes that extrinsic factors such as
selection by herbivores are key to determining where and when to assign defences (Bryant et al.
1992; Rhoades 1979). The ODH assumes that plants would have the highest levels of defences in
those parts that have the highest value in terms of fitness and/or are more frequently attacked by
herbivores, such as young tissues (Zangerl and Bazzaz 1992; Zangerl and Rutledge 1996).
Consequently, the ODH predicts that defence levels will decrease as plants or tissues grow
(Bryant et al. 1992). Given that previous research partly supports both predictions (Barto and
Cipollini, 2005; Barton and Koricheva 2010; Cronin and Hay 1996), more studies are still
necessary that include different types of defences to better determine which pattern is more
common and the conditions under which one or the other is favoured.

Ontogenetic changes at the plant level and at chemical defences have beenmore studied than
changes at the organ level and in physical defences. For example, recent works often focus only

https://doi.org/10.1017/S0266467423000202 Published online by Cambridge University Press

https://www.cambridge.org/tro
https://doi.org/10.1017/S0266467423000202
https://doi.org/10.1017/S0266467423000202
mailto:alefarji@yahoo.com
https://orcid.org/0000-0001-7251-3866
https://orcid.org/0000-0001-8029-3875
https://orcid.org/0000-0001-7832-4433
https://orcid.org/0000-0002-7168-373X
https://orcid.org/0000-0001-9449-0079
https://orcid.org/0000-0002-1937-1210
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0266467423000202&domain=pdf
https://doi.org/10.1017/S0266467423000202


at plant level (Barton and Koricheva 2010; Boege et al. 2007; Boege
and Marquis 2005; Hanley et al. 2007; McCall and Fordyce 2010;
Moreira et al. 2012, 2020; Ochoa-López et al. 2015, 2020; Ohnmeiss
and Baldwin 2000), and in the review of Boege andMarquis (2005),
only one of 17 reviewed papers included a structural component
(Wolfson and Murdock, 1990). Hence, the study of how physical
defences change as the plant tissue grows will help to determine
whether the GBDH or OD hypotheses can explain ontogenetic
changes both at plant and organ level. Moreover, structural plant
defences are not all the same, given that they can differ in their
costs and developmental timing (Armani et al. 2020, 2019;
Coverdale 2019). Sharp projections from plants, commonly known
as spinescence, play a key role in plant defence but can arise from
different plant tissue and/or organ (Cooper & Owen-Smith 1986;
Cornelissen et al. 2003; Crofts, and Stankowich 2021; Gowda 1996;
Hanley et al. 2007; Obeso 1997). Consequently, their emergence
during plant growth and their importance as defence may be
constrained by the development of those plant parts (Armani et al.
2019, 2020; Clark and Burns 2015). Since spines arise from
modified leaves, thorns from twigs or branches, and prickles from
epidermal tissue, spines may emerge earliest in conjunction with
the first growth of leaves, prickles shortly thereafter due to a slightly
longer developmental period, and thorns only after primary stem
growth and branching (Coverdale 2019). Thus, the study of how
different types of spinescence change as tissue growmay contribute
to understand the relationship between plant growth and defence
assignation (Hanley et al. 2007).

The shrub Rubus adenotrichos (blackberry) is a good model to
test how physical defences such as prickles change as plants grow.
First, this species shows high abundance of prickles on petioles and
stems (Hammel et al. 2014). Second, their leaves have high
nutritional value and are preferred forage for several vertebrate
herbivores (Kandylis et al. 2009). Consequently, physical defences
such as prickles might play a key role in reducing foliar damage.
Finally, young and mature petioles that sustain young and mature
leaves are easy to distinguish and are located near each other
allowing comparisons within the same plant. Here, we focus on

within-plant variation in defence (e.g., Barto and Cipollini 2005),
and determine whether the petiole area occupied by prickles and
the prickles density in the shrub R. adenotrichos change as the
leaves grow, and if this change is consistent with the GDBH or with
the ODH.

Material and methods

Study area and species

This study was carried out in the Cuericí Biological Field Station,
Costa Rica (9”33’30” N, 83’39’42” W, Figure 1A). The elevation is
ca 2800 m, the mean annual temperature is 8°C, the mean annual
precipitation is 6500 mm, and the vegetation is classified as
montane wet forest (Holdridge 1967). Sampling was conducted on
Rubus adenotrichos (blackberry) shrubs that surrounded the
Biological Station (Figure 1B). Hybrid Andean blackberries are
native from Mexico to Ecuador and are widely cultivated in the
south of Costa Rica for their edible polyphenolics-rich fruits, which
are eaten fresh or consumed as juice, jelly and wine (Castro and
Cerdas 2005). R. adenotrichos is a shrub up to 5m tall, with copious
hairs and scattered curved prickles in its stems and petioles. Leaves
are compound, with three or five leaflets. Flowers are white or pink,
and fruits are red or black (Hammel et al. 2014, Figure 1C, D). The
main vertebrate herbivores in the region are tapir (Tapirus spp)
and rabbits (Sylvilagus spp) (Kappelle and Horn 2016).

Methods

Sampling
In the summer of 2022 (January and February), we randomly
selected 51 plants of R. adenotrichos with 2 ± 0.5 m in height
(mean ± SE) that were, at least, 5 m apart from each other.
All individuals were located in an open field, receiving full sun.
We covered a total sampling area of approximately 2 ha. In each
individual, we randomly selected one or two young and mature
petioles that emerged from the same stem. Young and mature
petioles and their leaves were easily distinguished because of their

Figure 1. The Cuericí Biological Field Station,
Costa Rica, where the study was carried out (A),
shrub of Rubus adenotrichos (B), mature (C) and
young (D) petioles with their leaves, and a detail
of the spines in the petiole (E).
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colour (light green for young leaves and dark green for mature
leaves (Figure 1C and 1D), form, and location (terminal for young
and more basal for mature). We sampled a total of 144 petioles,
72 young and 72 mature.

Trait measurements
We measured the length and the diameter of each petiole with
callipers, the total number of prickles along the petiole, and the area
of the petiole occupied by each individual prickle. The area of each
petiole was estimated as its length x its perimeter (π * 2r), and the
area of the petiole occupied by each prickle was calculated through
photos with the software ImageJ ® (Rasband 1997), considering the
base of the spine such as a circle (π * r2) (Figure 1E). Finally,
prickles density was calculated as # prickles/petiole length, and the
petiole area covered by prickles was calculated as the ratio of
prickles area versus petiole area. The mean area of an individual
prickle, the petiole area covered by prickles and prickles density
were compared between young and mature petioles using paired
t-tests.

Results

Young and mature petioles differed in their area covered
by prickles and prickles density, but individual prickles
showed similar area (Figure 2). The area of petiole covered by
prickles (proportion) was higher in young than in mature tissues
(0.31 ± 0.0 vs. 0.23 ± 0.02, t= 2.8, P< 0.001). Accordingly, prickles
density was higher in young than in mature tissues (3.9 ± 0.2 vs.
2.8 ± 0.1 prickles /cm2, respectively, t= 4.6, mean ± SE, P< 0.001).
Finally, the mean area of an individual prickle was similar between
young and mature tissues (0.085 ± 0.006 vs. 0.083 ± 0.006 cm2,
mean ± SE, t= 0.3, P= 0.78).

Discussion

Internal restrictions, such as the need for growth or differentiation,
and external factors, such as natural enemies, can both affect
how anti-herbivory defences change as the plant tissue grows.
As explained before, the ODH predicts that young tissues should
be more defended relative to older tissues because the former are
more vulnerable and more valuable to plant fitness. In contrast, the
GDBH predicts that young tissues should be less defended than
mature tissues because growth processes precede differentiation
processes. Here, we found evidence that supports the ODH,
illustrating how herbivory pressure might drive the assignation of
plant defences.

Our comparative results suggest that, in R. adenotrichos, young
tissues are more protected than mature tissues because prickles
density and the petiole area occupied by prickles were up to 25%
higher in young than in mature petioles. Since the area of petiole
occupied by an individual prickle was similar between young and
mature petioles, our results suggest that the production of prickles
precedes the elongation of the petiole, resulting in higher prickles
density in earlier stages of petiole development. Several compar-
ative and experimental studies demonstrated that spinescence are
an effective defence against vertebrate herbivores that often prefer
younger plant tissues (Fenner et al. 1999; Hanley et al. 2007,). For
example, in East Africa, the large thorns of Acacia tortilis protect
young leaves and axillary meristems from herbivory by goats
(Gowda 1996; Gowda and Palo 2003), and shrubs of Ilex
aquifolium with exceptionally spiny leaves are much less likely
to suffer herbivory by ungulates than neighbouring less

spiny plants (Obeso 1997). It is known that herbivores choice
not only is driven by spines but also relies on many other
plants traits. However, and given that the large body of evidence
from previous works, it seems logical to assume that young tissues
of R. adenotrichos could more preferred by herbivores and that
prickles could be an effective anti-herbivory defence.

A higher prickles density in early stages of leaf development is
also documented in other plant species and in similar physical
defences, like trichomes (Kellogg et al. 2011). For example,
young leaves of Verbascum thapsus show higher hair density and
are less eaten than mature leaves (Woodman and Fernandes,
1991). Similarly, a high initial trichrome density in Aristolochia
californica helps protect its emerging leaves from herbivory
(Fordyce and Agrawal, 2001), and trichome density decreased with
age in two Japanese Birch species (Matsuki et al. 2004). Taken
together, all this evidence suggests that structural defences such as
spinescence may play a relevant role against vertebrate herbivore in
young leaves, in which the loss of photosynthetic tissue represents a
higher cost than in mature ones (Barton and Koricheva 2010;
Hanley et al. 2007; Ochoa-López et al. 2015, 2020). Moreover, this
structural defence in young tissues could also reduce the herbivory

Figure 2. Petiole area occupied by spines (proportion), spine density (#/cm2), and
individual spine area (cm2) in mature and young petioles. Different letters imply
statistical significant differences (paired t-test; see text for more details).
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of the entire plant. Shrubs like blackberry tend to privilege lateral
growth over height growth. Consequently, the plant forms a
structure so that younger, softer tissues are also in the external part
of the plant and therefore more exposed to vertebrates. A higher
density of spinescence in younger tissues not only can protect the
more exposed new leaves but could also act as a spinescence shield
protecting the most internal part of the shrub (Archibald and
Bond 2003).

Despite the fact that vertebrate herbivores have been considered
a key selective force driving the evolution of spinescence (Charles-
Dominique et al. 2017; Cooper and Owen-Smith 1986; Coverdale
2019; Hanley et al. 2007), structural plant defences and ontogenetic
changes at organ level have been less studied than chemical
defences and changes at plant level (Barton and Koricheva 2010;
Hay et al. 1994; Mithöfer and Boland 2012). Therefore, the study of
how less known structural defences like prickles change as plant
tissues grow will help to better understand the relationship
between ontogeny and the assignation of anti-herbivore defences.
Our single-species study provides additional support to the ODH,
suggesting that herbivore pressure can drive the assignation of
plant structural defences as tissues grow.
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