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This study conducts direct numerical simulations of free-streaming turbulence passing
over individual fixed particles and particle arrays of different number densities. The
purpose is to investigate the changes in the mean particle drag due to turbulent
environments and the responsible mechanisms. It is confirmed that turbulent environments
significantly enhance the particle drag relative to the standard drag in a uniform flow, and
the nonlinear dependency of the drag force on the instantaneous incoming flow velocity
is insufficient to explain the enhancement. Two mechanisms of particle–turbulence
interactions are found to be responsible for the particle drag enhancements. The first
mechanism is the enlarged pressure drops on the particle surface, mainly governed by
the large scales in turbulent flows. The second mechanism is the increased viscous stresses
on the particle surface, dominated by the small scales that enhance the mixing of the
low- and high-speed fluids across the particle boundary layer. In terms of quantitative
drag enhancement predictions, more general models accounting for the anisotropy of the
turbulence are proposed, which fit well with both the simulation data generated in this
study and those reported in the literature. Finally, by measuring the drag forces of laminar
and turbulent flows passing over arrays of particles, it is found that the overall particle drag
increases with decreasing particle–particle relative gap distance. However, the relative
enhancement due to turbulence decreases with the particle–particle relative gap distance.
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1. Introduction

The sedimentation of heavy particles is a commonly observed phenomenon in both
nature and engineering applications. Accurately predicting the settling velocity of particles
in viscous fluids is essential in many fields that are not limited to soil preservation,
particulate matter control, fluidized beds design and COVID-19 transmission containment
(Balachandar & Eaton 2010; Bourouiba 2021). In the simplest scenario of a spherical
particle settling in quiescent fluid, the particle reaches its terminal velocity when the
gravitational force is balanced by the buoyancy force and the particle drag. The terminal
velocity can be explicitly computed from the balance. When the surrounding flow is
turbulent, however, the prediction of the terminal settling velocity becomes a lot more
complex. Not only do the mechanisms of turbulence affecting particle sedimentation need
further exploration, but models to predict the particle settling speed in turbulent flows are
also under development.

Most of the previous efforts to understand the influence of turbulence on the particle
settling speed were devoted to point particles whose sizes are negligible compared with the
size of the turbulent eddies. Depending on the particle and fluid parameters, both enhanced
and reduced terminal velocities can be observed (Good et al. 2014; Rosa et al. 2016).
When the inertia is small, particles tend to ride on the downward flow side of vortices
in a turbulent field and reach a higher settling speed than their counterparts in laminar
flows (Wang & Maxey 1993). This phenomenon is now known as ‘preferential sweeping’,
which has been widely observed in both experiments and numerical simulations (e.g.
Wang & Maxey 1993; Yang & Lei 1998; Aliseda et al. 2002; Yang & Shy 2003). With
greater particle inertia, reductions in the settling speed in turbulent fields can also be
observed. The primary mechanism contributing to these reductions is ‘loitering’, which
refers to the fact that particles stay statistically longer in the upward flow regions than
in the downward flow regions (Nielsen 1993). The loitering is closely related to the
nonlinear drag under finite particle Reynolds numbers. In direct numerical simulations,
the reductions in the particle settling speed were observed only when the nonlinear
drag correction was considered (Good et al. 2014). Through a series of experimental
and direct numerical simulations, Good et al. (2014) concluded that the settling number
τpg/u′, where τp is the particle response time, g is the gravitational acceleration and
u′ is the turbulent root-mean-square (r.m.s.) velocity, is a crucial parameter to predict
enhancements or reductions of the particle settling speed due to turbulence. For particles
with finite Reynolds numbers, the settling speed can be accelerated by turbulence when the
settling number is above unity. Otherwise, deceleration of the settling speed should still be
expected (Good et al. 2014). Aside from homogeneous isotropic turbulence (HIT), there
are some recent efforts to extend the investigations of the turbulence effect on the settling
speed of inertial particles to more realistic wall-bounded turbulence (e.g. Lee & Lee 2019;
Bragg, Richter & Wang 2021). Compared with HIT, the non-zero shear rate of the mean
flow, the non-uniform distribution of turbulent kinetic energy and the anisotropic near-wall
flow structures in the wall-bounded turbulence could all greatly complicate the picture of
turbulence–particle interactions. Generalizing mechanisms and control parameters for the
turbulent effect on the particle settling speed becomes much more difficult.

With the developments of experimental techniques and interface-resolved direct
numerical simulations (IR-DNSs), investigations of the particles settling speed in turbulent
environments have been successfully extended to finite-size particles (e.g. Byron 2015;
Fornari, Picano & Brandt 2016a; Fornari et al. 2016b; Chouippe & Uhlmann 2019).
Here, finite-size particles refer to particles whose diameters are comparable to or larger
than the Kolmogorov length in turbulence that could introduce significant disruptions,
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Drag enhancement by turbulent flows

distortions and discontinuity to the flow field (Eaton 2009). Unlike point particle cases,
turbulence seems to consistently reduce the settling speed of finite-size particles. Byron
(2015) found that when the size of the particle was comparable to the Taylor microscale
of a HIT, the settling speed was reduced by 40 % to 60 % due to turbulence with a settling
number around unity. These reductions were much higher than those reported by Good
et al. (2014) with similar settling numbers. Fornari et al. (2016a) simulated sedimentation
of individual and multiple particles in a quiescent fluid and HIT. The average settling
speed of multiple particles was 4 % below its counterpart associated with individual
particles in quiescent fluid and 12 % in HIT. These reductions were attributed to the
hindering effect, which means that, when a large number of finite-size particles settle
downwards, the fluid is pushed upwards due to the incompressibility of the flow field,
and this upward moving fluid would hinder the sedimentation of particles (Yin & Koch
2007). Fornari et al. (2016b) also investigated the influences of the Galileo number, a
non-dimensional number measuring the relative importance of the gravitational force and
viscous force, and the particle volume fraction on the settling speed of finite-size particles
in HIT. More significant reductions in the settling speed were observed in cases with
more intense turbulence and less-heavy particles. Fornari et al. (2016b) explained this
phenomenon as an effect of nonlinear particle drag. Particles with moderate density ratios
in turbulence could yield more significant motions relative to their ambient fluids in the
plane perpendicular to the settling direction. These relative motions eventually enhanced
the drag force due to its nonlinear dependence on the relative velocity. Chouippe &
Uhlmann (2019) investigated the settling of large numbers of particles in a HIT using direct
numerical simulations in large computational domains. They found that when the particle
volume fraction increased, the turbulent effect became weaker, while the hindering effect
and the particle interactions dominated the settling speed. Due to particle aggregation
and conglomeration, the settling speed of a large group of particles could surpass its
counterpart for individual particles (Chouippe & Uhlmann 2019). Due to the complexity
of the interactions between the turbulent carrier flows and the dispersed particle phases,
there are still significant gaps to overcome before the general principles of turbulent effects
on the settling speed of finite-size particles can be generalized.

In order to reach a better understanding of how turbulence modifies the settling speed of
finite-size particles, it is crucial to answer questions such as how the mean drag coefficient
of a particle changes in turbulent environments and what mechanisms are responsible
for this modification. Most of the studies to address the first question were conducted
through experiments, and their focused particle Reynolds numbers were mainly above the
critical point, i.e. the Reynolds number at which the particle drag coefficient experiences
a sudden jump (Torobin & Gauvin 1961; Clamen & Gauvin 1969). These experimental
studies generally reported forward-shifted critical points due to turbulence, but the efforts
of modelling the particle drag coefficients in turbulence seemed to conflict with each other,
as summarized in Crowe et al. (2011, Chap. 4). For moderate particle Reynolds numbers,
the only experimental effort to model the drag coefficient in turbulence was contributed
by Uhlherr & Sinclair (1971), who predicted linearly increased drag coefficients with the
turbulence intensity.

Besides experimental studies, DNSs were also employed to generate data and build
reliable models to predict particle drag in turbulence (Bagchi & Balachandar 2003;
Homann, Bec & Grauer 2013). Due to the Reynolds number constraints, those studies
focused on moderate particle Reynolds numbers much lower than the critical points.
Bagchi & Balachandar (2003) conducted DNS for the case of frozen free-stream
turbulence passing over fixed particles. The diameters of the particles were 1.5 to 10 times
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Figure 1. The configuration of the flow studied in the present study.

the Kolmogorov length, and the turbulence intensity was between 10 % and 25 %. It was
reported that turbulence had little effect on the time-averaged drag coefficient, and the
standard drag correlation was sufficient to predict the drag force. Homann et al. (2013),
on the other hand, measured the drag forces on the particles in real-time HIT superposed
with a constant velocity. It was found that, even considering the nonlinear drag effect, the
standard drag correlation still significantly underestimated the time-averaged drag forces.
Aside from these conflicting overall observations in the literature, the mechanisms through
which turbulence modifies the mean drag force are also not fully clear. Homann et al.
(2013) attributed their observed particle drag enhancements to the interactions between
the small-scale turbulent eddies and the particle boundary layer, but more details on these
interactions are yet to be revealed.

In this work, we use IR-DNSs based on the lattice Boltzmann approach to investigate
the overall effects of turbulence on the mean particle drag and the associated mechanisms.
Unlike the study of Homann et al. (2013), where the particles were directly placed
in HIT, a different physical setting of free-streaming turbulence passing over the fixed
particles is adopted. The remaining article is structured as follows. The flow configuration
and the numerical approach are introduced in § 2. Then, a grid-independence study is
reported in § 3 to serve validation purposes and to find the optimal mesh that balances
the computational cost and numerical accuracy. Through systematic comparisons of the
particle drag in laminar and turbulent flows, the modifications of the particle drag due
to turbulence are discussed in § 4, and the associated mechanisms are analysed. Models
are also proposed to quantify the mean drag of individual particles and particle arrays in
turbulent flows. Finally, the main conclusions of the present work are given in § 5.

2. Problem description and numerical method

In the previous study of Homann et al. (2013), HIT was generated in a cuboid domain
with a superposed mean flow speed, and the particle was placed directly in the flow. In
the present study, however, a different flow configuration is adopted. As shown in figure 1,
a computational domain with a size of Lx × Ly × Lz = 3L × L × L is divided into two
regions, region A and region B. Region A is a periodic cube with a size of L3, where HIT
with different intensities is generated. Region B is a cuboid domain of 2L × L × L with an
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Case N3 ν σ 2
f Tf 〈E〉 〈u′〉 〈ε〉 〈l〉

LB, BT1 2563 0.0945 12.0 0.004 11.20 ± 0.21 2.73 ± 0.03 15.35 ± 0.34 1.406 ± 0.009
LB, BT2 2563 0.0945 20.0 0.01 31.12 ± 0.53 4.55 ± 0.04 62.71 ± 1.29 1.264 ± 0.011
LB, BT3 2563 0.0945 50.0 0.012 67.95 ± 0.87 6.73 ± 0.04 184.67 ± 3.28 1.185 ± 0.008
LB, BT4 2563 0.0945 100.0 0.02 153.13 ± 1.73 10.10 ± 0.06 583.37 ± 7.90 1.126 ± 0.008
LB, BT5 2563 0.0945 200.0 0.03 298.81 ± 3.31 14.10 ± 0.08 1527.63 ± 18.53 1.094 ± 0.007
LB, BT5 5123 0.0945 200.0 0.03 292.23 ± 3.64 13.94 ± 0.09 1508.94 ± 25.23 1.095 ± 0.006
PS, BT5 2563 0.0945 200.0 0.03 294.53 ± 3.45 14.00 ± 0.08 1530.15 ± 22.03 1.081 ± 0.009

Case 〈Reλ〉 〈η〉 〈S〉 〈F〉 〈Te〉
LB, BT1 24.01 ± 0.24 0.0863 ± 0.0005 −0.4879 ± 0.0047 3.677 ± 0.034 0.4879 ± 0.0048
LB, BT2 33.02 ± 0.33 0.0607 ± 0.0003 −0.4887 ± 0.0043 4.029 ± 0.034 0.3319 ± 0.0038
LB, BT3 42.03 ± 0.31 0.0463 ± 0.0002 −0.4909 ± 0.0029 4.132 ± 0.021 0.2462 ± 0.0024
LB, BT4 53.30 ± 0.41 0.0347 ± 0.0001 −0.4987 ± 0.0019 4.420 ± 0.016 0.1757 ± 0.0017
LB, BT5 64.25 ± 0.43 0.0273 ± 0.0001 −0.4992 ± 0.0013 4.615 ± 0.016 0.1308 ± 0.0010
LB, BT5 63.27 ± 0.43 0.0274 ± 0.0001 −0.5019 ± 0.0014 4.666 ± 0.016 0.1299 ± 0.0012
PS, BT5 63.32 ± 0.51 0.0273 ± 0.0001 −0.5079 ± 0.0012 4.665 ± 0.016 0.1290 ± 0.0012

Table 1. Statistics of HIT. The LBM results are converted from the LB units, i.e. �xLBM = 1, �tLBM = 1 to
the spectral units of Lspectral = 2π and �tspectral = 0.00004 to make direct comparisons with the benchmark
results from the PS simulation. Unless otherwise specified, the results are presented in spectral units throughout
the entire article.

inlet, an outlet and four periodic sides, where the fixed particle or particle array confronts
the incoming turbulent flow. The time-dependent velocity field on a given slide of region
A is abstracted and superposed with a constant velocity U to define the velocity at the
inlet of region B. A convective condition of ∂u/∂t + Uout∂u/∂x = 0 is given to the outlet
of region B, where Uout is the local streamwise velocity. A particle with a diameter dp is
placed at the centre of the y–z plane 2dp away from the inlet, i.e. xc = (L + 2dp, L/2, L/2),
where xc is the particle centre. As shown later in table 1, the distance from the particle to
the inlet of region B is roughly equal to the longitudinal integral length scale of the HIT
generated in region A. A similar configuration was also adopted in some previous studies,
such as those of Xu & Subramaniam (2010) and Botto & Prosperetti (2012).

Unlike the Homann et al. (2013) setting, the current setting isolates the particle from its
wake. Although Homann et al. (2013) showed that the mean flow speed after the particle
was quickly restored within a short distance, this study does not fully eliminate the chance
of the particle meeting its wake due to the periodic boundary condition in the streamwise
direction. Some vortices generated from the particle surface could be very persistent and
require a very extended period to decay. In a study on the sensitivity of the turbulent
statistics on the pipe length by Chin et al. (2010), it was reported that the periodic boundary
effects on the high-order turbulent statistics needed a pipe length up to 18.5 times the
pipe diameter to decay completely. Another potential issue of directly placing a finite-size
particle in HIT is that the flow around the particle could be significantly disturbed (Eaton
2009; Vreman 2016), so the statistics of HIT may not describe the turbulent flow seen
by the particle accurately. Moreover, Lucci, Ferrante & Elghobashi (2010) argued that
finite-size particles in a forced HIT could interfere with the large-scale forcing to sustain
turbulence, which was usually based on a continuous flow field, and led to inevitable
inaccuracy. Although the current configuration does not have the above issues, once the
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HIT enters region B its intensity decays, and the isotropy is no longer maintained. To
accurately capture the information of the turbulent flow seen by the particle, additional
simulations of the corresponding unladen cases are needed.

The numerical simulations in the present study are conducted by the lattice Boltzmann
method (LBM) with interpolated bounce-back (IBB) schemes to treat the no-slip condition
on the particle surface. This method was the same one used in our previous studies on
particle-laden turbulent channel and pipe flows (Peng, Ayala & Wang 2019c; Peng &
Wang 2019). The flow solver adopts a multi-relaxation time model based on a D3Q27
lattice grid, i.e. three-dimensional lattice grid with 27 velocities. The inlet boundary
condition of region B with given velocity fields is realized by the half-way bounce-back
scheme (Ladd 1994), while the outlet boundary is treated with the scheme proposed by
Lou, Guo & Shi (2013). The LBM can be incorporated with both IBB schemes and
the immersed boundary methods (IBM) to handle the no-slip boundary treatment in
complex geometries. Both approaches have been successfully applied to particle-laden
turbulent flows with IBB (e.g. Gao, Li & Wang 2013; Jebakumar, Magi & Abraham
2018) and with IBM (Ten Cate et al. 2004; Rubinstein, Derksen & Sundaresan 2016;
Eshghinejadfard et al. 2017). We conducted systematic comparisons between these two
approaches in both laminar and turbulent cases (Peng et al. 2019a; Peng, Ayala &
Wang 2019b). These studies confirmed that IBB schemes not only ensured second-order
accurate velocity fields but also led to much smaller numerical errors in the results
of the fluid velocity, hydrodynamic force/torque and turbulent dissipation rate. On the
other hand, IBM possessed better numerical stability and resulted in weaker artificial
fluctuations in the results of instantaneous force/torque for moving particles. It should
also be pointed out that, while the fluid velocity was only first-order accurate with IBM,
the integrated force/torque of the particles may still be second-order accurate, as reported
in the literature (e.g. Breugem 2012) and confirmed by our own simulation results (Peng
et al. 2019b). Since particles are static in the present study, IBB schemes are more suitable
for the no-slip boundary treatment on the particle surfaces. The quadratic IBB scheme by
Bouzidi, Firdaouss & Lallemand (2001) is adopted.

In the study of Homann et al. (2013), the flow field was solved by a pseudo-spectral
method, and the no-slip boundary condition was treated with IBM. This combination
resulted in a 1.5-order error convergence rate for the particle drag, which is lower than
the second-order error convergence rate with the present approach (Peng et al. 2019b).
It should be pointed out that our convergence rate was calculated using the numerical
results with the highest grid resolution of dp/�x = 48 as the benchmark results, while
the convergence rate reported by Homann et al. (2013) used the Schiller & Naumann
correlation (Schiller & Naumann 1933) as their benchmark results:

CSN
D = 24

Rep
(1 + 0.15Re0.687

p ), (2.1)

where Rep = Udp/ν is the particle Reynolds number, and ν is kinematic viscosity. For
more information on the numerical approach used in the present study, readers can refer
to our previous publications (e.g. Peng 2018; Peng et al. 2018).

3. The parameter settings and the grid-independence study

The numerical approach used in this study has been validated thoroughly through multiple
test cases, including those in the laminar and turbulent regimes, laden and unladen with
particles (Peng 2018; Brändle de Motta et al. 2019). Therefore, further validation of the
approach itself is not performed. Here, we conduct a grid-independence study to ensure
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Drag enhancement by turbulent flows

that the grid meshes used in numerical simulations are sufficient to resolve the turbulent
flows and capture the force acting on particles.

The HIT in region A is generated with the stochastic forcing model of Eswaran & Pope
(1988). The estimated rate of the energy input, whose time average is equal to the averaged
dissipation rate 〈ε〉 is

〈ε〉 =
4Nf σ

2
f Tf

1 + Tf (σ
2
f Tf Nf k2

0)
1/3β

, (3.1)

where Nf is the number of total force modes, σ 2
f is the forcing magnitude, Tf is the forcing

time scale, k0 = 1 is the lowest normalized wavenumber, i.e. k0 = L/l0, l0 is the longest
wavelength, and β = 0.8 is a fitting parameter in the model. In this stochastic forcing
model, only the large-scale flow structures whose wavenumbers satisfy 0 < |k| < 8 are
forced, corresponding to a total of 80 forced modes. We adjust the values of σ 2

f and Tf to
generate turbulent flows with different intensities, and this information is summarized in
table 1. Rosa et al. (2015) systematically examined the parameterizations for this stochastic
forcing model and showed that, when the ratio between the forcing time scale Tf and the
Kolmogorov time scale was small, (3.1) yielded reasonable estimations of the dissipation
rate in the generated turbulent fields.

To demonstrate that the background HIT in region A is well resolved, simulations
with two grid meshes, i.e. 2563 and 5123, are conducted. Five background turbulence
(BT) levels, labelled from BT1 to BT5 from weak to strong are generated, and their
statistics after the flow reached statistical stationary states are tabulated in table 1. These
statistics include: the turbulent kinetic energy (TKE) 〈E〉, where 〈· · · 〉 represents ensemble
averaging unless otherwise specified, the r.m.s. velocity of a single velocity component
〈u′〉, the dissipation rate of TKE 〈ε〉 = 2ν〈s′

ijs
′
ij〉, where s′

ij is the fluctuation part of
the strain rate tensor, the longitudinal integral length scale, 〈l〉, the Reynolds number
〈Reλ〉 = 〈u′λ/ν〉 based on the Taylor microscale λ =

√
15νu′2/ε, the Kolmogorov length

〈η〉, the skewness 〈S〉 and flatness 〈F〉 of the longitudinal velocity gradients,

〈S〉 =
〈

1
3 (s′3

xx + s′3
yy + s′3

zz)
〉

〈
1
3(s′2

xx + s′2
yy + s′2

zz)
〉1.5 , 〈F〉 =

〈
1
3 (s′4

xx + s′4
yy + s′4

zz)
〉

〈
1
3(s′2

xx + s′2
yy + s′2

zz)
〉2 , (3.2a,b)

and the eddy turnover time 〈Te〉 = 〈u′2/ε〉. The uncertainties of the statistics in table 1 are
computed as the standard deviation of the averaged quantities, i.e.

σĀ = σA

√
2Tc

�Tave
, (3.3)

where σA is the standard deviation of time-dependent quantity A(t), Tc is the correlation
time of A(t) and �Tave is the duration of the statistical averaging. The correlation time Tc

is obtained from the coefficient R(τ ) ≡ 〈A(t1)A(t1 + τ)〉/σ 2
A for R(Tc) = 0.5 (Wang et al.

2014).
For conciseness, the statistics from the high-resolution simulations of 5123 are only

shown for BT5 with the greatest 〈Reλ〉, which demands the highest grid resolution.
The benchmark data from our in-house pseudo-spectral (PS) code are also included for
comparison. As shown in table 1, the turbulent statistics are already well predicted with
the grid mesh of 2563, even for the sensitive high-order statistics 〈S〉 and 〈F〉. In our

959 A30-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

15
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.152


C. Peng and L.-P. Wang

100

10–5

10–10E(k) ε(k)

10–15

10–20

100

PS, 2563

LB, 5123

LB, 2563

PS, 2563

LB, 5123

LB, 2563

10–5

10–10

10–15

100 101 102 103 100 101 102 103

k k

(b)(a)

Figure 2. The TKE and dissipation rate spectra of the background HIT.

previous comparative study between LBM and the PS method on simulating the forced
single-phase HIT, it was found that the simulation with the second-order accurate LBM
roughly needed doubled grid resolutions compared with the PS simulation at moderate
Reλ. This roughly sets the grid resolution requirement for LBM 〈kmaxη〉 > 2 (Wang et al.
2014), where kmax = N/2 is the maximum wavenumber and N is the number of grid mesh
points in each direction. This statement is also supported by the comparisons of TKE and
dissipation rate spectra of BT5 in figure 2. The LBM results with the mesh of 5123 collapse
perfectly with the PS results with half the mesh size (2563). When the mesh sizes are both
2562, LBM resolves flow scales of k < kmax/2 = 64 quite well but underestimates the
TKE for smaller scales. As a compromise in considering the numerical accuracy and the
computational cost, a consistent grid mesh of 2563 is adopted in this study to generate the
background HIT.

It is equally important to represent the particle with sufficient grid numbers in
particle-laden turbulent flow simulations so that the force/torque on the particle can be
accurately assessed. In order to find this sufficient grid resolution, simulations of a fixed
particle in uniform incoming flows are conducted at different particle Reynolds numbers.
These simulations are conducted in a domain of 20dp × 10dp × 10dp that has the same
boundary conditions as region B. The particle is fixed at (5dp, 5dp, 5dp) and the grid
resolutions, i.e. dp/�x are varied. The drag coefficient results in these simulations are
compiled in table 2. For Rep ranging from 20 to 400, a grid resolution of dp/�x = 24
is sufficient to capture the drag force acting on the particle accurately. The empirical
results predicted by the Schiller–Naumann correlation (Schiller & Naumann 1933) are
presented as references in table 2. However, these results should not be regarded as the
benchmark for quantitative assessments since the numerical settings in the simulations,
such as the domain size and boundary conditions, are not precisely identical to Schiller
& Naumann’s experimental study. It is interesting to observe that the converged drag
coefficients for Re � 100 are 6.7 % to 1.3 % larger than the corresponding value from the
Schiller–Naumann correlation, whereas those for Re � 200 are 1.8 % to 2.8 % less than
the corresponding value from the Schiller–Naumann correlation. The former is likely due
to the confinement effect of the domain size. The reason for the latter could be partially
due to the fitting error of the Schiller–Naumann correlation.

One of the key advantages of the flow configuration adopted in the present study
compared with its counterpart in Homann et al. (2013) is that the particle wake would
not re-enter the computational domain. However, we still need to ensure that the size
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Drag enhancement by turbulent flows

dp/�x Rep = 20 Rep = 100 Rep = 200 Rep = 400

16 2.7780 1.1048 0.7882 —
24 2.7705 1.1026 0.7807 0.5976 ± 0.0010
32 2.7845 1.1063 0.7827 0.6009 ± 0.0012
S–N 2.6095 1.0917 0.8056 0.6119

Table 2. The comparison of particle drag coefficients with different grid resolutions in the case of laminar
flows passing over a fixed sphere.

Rep = 20 Rep = 100 Rep = 200 Rep = 400

Lx = 20dp, dp/�x = 24 2.7705 1.1026 0.7807 0.5976 ± 0.0010
Lx = 30dp, dp/�x = 24 2.7705 1.1026 0.7807 0.5977 ± 0.0011

Table 3. The comparison of particle drag coefficients with different domain length in the case of laminar
flows passing over a fixed sphere.

of the computational domain is sufficiently large so that the simulation results are not
affected by the treatment of the outflow boundary condition. To confirm this, we compare
the drag coefficients on a fixed particle in uniform flows with two domain lengths,
20dp × 10dp × 10dp and 30dp × 10dp × 10dp. The particle in both domains is fixed at
(5dp, 5dp, 5dp). As shown in table 3, a domain length of 20dp × 10dp × 10dp is sufficient
to ensure that the convective outflow boundary treatment does not alter the drag force on
the particle.

The simulations of free-streaming turbulence passing over a fixed particle and particle
arrays are based on the five background HITs (BT1 to BT5 in table 1) with Reλ ranging
from 24 to 63. Three particle Reynolds numbers, Rep = 100, 240 and 330, defined
with the mean flow velocity U are selected. These Reynolds numbers are chosen to
correspond to three regimes of wake formats, i.e. the steady axisymmetric regime with
20 < Rep < 210, the steady planar-symmetric regime with 210 < Rep < 270 and the
unsteady planar-symmetric regime with 270 < Rep < 400 with uniform incoming flows
(Jones & Clarke 2008; Ern et al. 2012). It should be noted that the precise particle
Reynolds numbers for the wake to switch from one regime to another vary in the
literature. Therefore, particle Reynolds numbers are chosen around the middle point in
each range to ensure that three wake regimes are indeed covered. For validation purposes,
we simulated the case of uniform flow passing over a fixed sphere in each wake regime
using a domain size of 20dp × 10dp × 10dp, with a grid size of dp/�x = 24. The vortex
structures visualized by the Q-criterion (Q = 0.5(ωijωij − sijsij), where ωij and sij are the
anti-symmetric and symmetric parts of the velocity gradient tensor, respectively) in the
particle wake are compared in figure 3. Correct vortex structures are successfully captured
in each wake regime.

Based on the above grid-independence study, a grid mesh of 768 × 256 × 256 is
selected for the computational domain of 30dp × 10dp × 10dp, containing both region
A and region B, i.e. the first 2563 for region A and the remaining 512 × 256 × 256 for
region B. Under this grid resolution, the turbulent eddies and drag force acting on the
particle should be well resolved. This grid resolution is also comparable to those adopted
by Homann et al. (2013), which chose the same number of 256 grid points in the two
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Figure 3. The wake structures visualized by the Q-criterion in different wake regimes: (a) Rep = 200, steady
axisymmetric wake; (b) Rep = 240, steady planar symmetric wake; (c) Rep = 330, unsteady planar symmetric
wake; and (d) Rep = 420, three-dimensional chaotic wake. The colour on the isosurface represents the
streamwise velocity.

lateral directions for Reλ up to 118, which is approximately twice the maximum Reλ in the
present study. The grid resolutions for particle representation are 16.3, 24.4 and 32.6 for
Rep = 20, 200 and 400, respectively, compared with 25.6 in the present study. Considering
that our numerical approach possesses a second-order accuracy, while the Homann et al.
(2013) approach only has 1.5 order, it can be concluded that the grid resolution in the
present study is sufficient.

4. Results and discussion

4.1. Enhanced drag coefficients by turbulence
In this section, the effects of the turbulence environments on the particle drag are examined
in detail. Nine cases are simulated, and their turbulence intensity I = 〈u′〉/U ranges from
0.132 to 0.411, where 〈u′〉 is the turbulent r.m.s. velocity and U is the mean flow velocity
computed from the given Rep in each case. This range of turbulence intensity is chosen
to cover the conditions in most experimental studies where the turbulence effect on the
particle drag was observable. As mentioned, once the turbulence freely streams into
region B, its intensity decays due to the viscous dissipation, and its isotropy is no longer
maintained due to the redistribution of TKE among three components. The latter change
can be seen from the time-averaged component-wise TKE budget equations

d
dx

[〈
1
2

(
U + u′

x
)

u′2
x

〉
+ 1

ρ

〈
p′u′

x

〉
− 2ν

〈
s′

xxu′
x

〉]
=
〈
p′s′

xx

〉
− 2ν

〈
s′

xjs
′
xj

〉
, (4.1a)

d
dx

[〈
1
2

(
U + u′

x
)

u′2
y

〉
− 2ν

〈
s′

xyu′
y

〉]
=
〈
p′s′

yy

〉
− 2ν

〈
s′

yjs
′
yj

〉
, (4.1b)

d
dx

[〈
1
2

(
U + u′) u′2

z

〉
− 2ν

〈
s′

xzu
′
z
〉] = 〈

p′s′
zz
〉− 2ν

〈
s′

zjs
′
zj

〉
, (4.1c)

where u′
x, u′

y, u′
z are the fluctuation velocities in the x, y and z directions, and p′ is the

fluctuation pressure.
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Case HIT Rep 〈u′
x〉 〈u′

y〉 〈u′
z〉 〈u′〉 U I

A BT1 100 3.01 ± 0.04 2.20 ± 0.05 2.30 ± 0.06 2.53 ± 0.04 15.04 0.168
B BT2 100 5.19 ± 0.07 3.81 ± 0.06 3.90 ± 0.06 4.35 ± 0.06 15.04 0.289
C BT3 100 7.05 ± 0.08 5.62 ± 0.07 5.78 ± 0.08 6.19 ± 0.07 15.04 0.411
D BT3 240 7.82 ± 0.06 5.67 ± 0.06 5.90 ± 0.06 6.54 ± 0.05 36.10 0.181
E BT4 240 11.30 ± 0.08 8.48 ± 0.09 8.63 ± 0.08 9.56 ± 0.07 36.10 0.265
F BT5 240 14.90 ± 0.14 12.08 ± 0.14 12.28 ± 0.13 13.15 ± 0.12 36.10 0.364
G BT3 330 7.83 ± 0.06 5.75 ± 0.06 5.88 ± 0.06 6.56 ± 0.05 49.63 0.132
H BT4 330 11.67 ± 0.10 8.46 ± 0.10 8.67 ± 0.09 9.71 ± 0.08 49.63 0.196
I BT5 330 15.66 ± 0.10 11.88 ± 0.10 12.11 ± 0.12 13.33 ± 0.09 49.63 0.269

Table 4. Information of the incoming flow.
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Figure 4. The probability distribution functions (p.d.f.s) of the fluctuation velocity components of the
incoming turbulent flows: (a) case C, I = 0.410, (b) case E, I = 0.265, (c) case G, I = 0.132. The black solid
line in each plot represents the Gaussian distribution.

To better assess the flow information at the particle location, unladen cases
corresponding to the nine examined cases are simulated, and the statistics of these
unladen simulations are tabulated in table 4. These statistics (spatial and time averaged)
are measured in a y–z plane sized L2 centred at (xc − 0.5dp, yc, zc), corresponding to
the flow stagnation point in the particle-laden cases. A similar approach was used by
Botto & Prosperetti (2012), except that they measured the statistics from the y–z plane
corresponding to the particle centre. As shown in table 4, the turbulent incoming flows
seen by the particle are indeed anisotropic. To assist the comparisons between the drag
enhancements from the present study and those reported by Homann et al. (2013), an

overall r.m.s. velocity 〈u′〉 =
√

(〈u′
x〉2 + 〈u′

y〉2 + 〈u′
z〉2)/3 is defined for the present cases,

and the turbulence intensity I = 〈u′〉/U can be computed accordingly, as listed in table 4. It
should be made clear that the purpose of conducting these unladen cases is not to obtain the
instantaneous undisturbed fluid velocity to assess the reliability of the particle equations
of motion, as intended in some previous studies (e.g. Bagchi & Balachandar 2003; Burton
& Eaton 2005; Zeng et al. 2008). In the present study, we are only interested in how the
turbulence modifies the statistical average of the particle drag and how these modifications
can be predicted from the statistics of the turbulent flows. The probability distribution
functions (p.d.f.s) of u′

x, u′
y and u′

z in three selected cases out of the nine cases are shown
in figure 4. It can be clearly seen that the distributions of the incoming flow velocities in
all three directions are still close to Gaussian.
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Figure 5. The drag enhancement coefficients under different turbulence intensities: ◦, data from the present
study; ∗, data from the Homann et al. (2013) study; solid lines, nonlinear drag enhancements; dashed lines, the
empirical correlation suggested by Uhlherr & Sinclair (1971). Symbols and curves with the same colour have
the same Rep.

Case FH
D/FL

D − 1 FP
D/FL

D − 1 FBB1
D /FL

D − 1 FBB2
D /FL

D − 1 FBB3
D /FL

D − 1 〈FT
D/FL

D〉 − 1

A 0.0275 0.0299 0.0526 −0.0104 0.0734 0.1153 ± 0.0363
B 0.0787 0.0870 0.1569 −0.0307 0.2124 0.2516 ± 0.0390
C 0.1511 0.1632 0.3240 −0.0639 0.4111 0.3814 ± 0.0503
D 0.0353 0.0386 0.0648 −0.0104 0.0869 0.2899 ± 0.0254
E 0.0740 0.0810 0.1400 −0.0228 0.1829 0.3878 ± 0.0395
F 0.1346 0.1446 0.2690 −0.0448 0.3354 0.4399 ± 0.0522
G 0.0195 0.0211 0.0350 −0.0053 0.0467 0.2165 ± 0.0180
H 0.0422 0.0463 0.0768 −0.0116 0.1019 0.2969 ± 0.0292
I 0.0780 0.0851 0.1465 −0.0227 0.1888 0.3718 ± 0.0381

Table 5. Comparison of nonlinear drag enhancement coefficients based on different models, and the actual
drag enhancement coefficients from the simulations (last column).

The drag enhancement coefficient, defined as 〈FT
D/FL

D〉 − 1, where 〈FT
D〉 and FL

D are
the time-averaged drag forces in turbulent and laminar flows, respectively, are plotted in
figure 5, together with the results reported in the Homann et al. (2013) study. To increase
the accessibility of our data, they are also tabulated in table 5. It is evident that turbulence
significantly enhances the drag forces on the particle in all cases. The empirical correlation
suggested by Uhlherr & Sinclair (1971) for drag coefficients of spherical particles in
turbulent flows,

CUS
D = 0.133

(
1 + 150

Rep

)1.565

+ 4I, 50 < Rep < 700, 0.05 < I < 0.5, (4.2)

is also shown in figure 5 by the dashed lines. Since this correlation does not apply to
laminar flow, its corresponding results of 〈FT

D/FL
D〉 − 1 are computed as CUS

D /CSN
D − 1,

where CSN
D is the drag coefficient predicted by the Schiller & Naumann correlation.

Uhlherr & Sinclair (1971) predicted linear increases of drag enhancements with
the turbulence intensity, which roughly agrees with the numerical data reported by
Homann et al. (2013) and this study. However, the quantitative values of the

959 A30-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

15
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.152


Drag enhancement by turbulent flows

drag enhancement coefficients are significantly overestimated by the Uhlherr–Sinclair
empirical correlation.

The drag enhancement by turbulence, as analysed in the previous studies (e.g. Homann
et al. 2013; Fornari et al. 2016b), is partially due to the nonlinear dependency of the particle
drag on the flow velocity. Given that the incoming flow velocity is Gaussian distributed in
each direction (confirmed in figure 4), Homann et al. (2013) computed the averaged drag
force as

FH
D ≡

∫
f iso (u) FSN

D (u) du, u = (U + u′
x, u′

y, u′
z), (4.3a,b)

where

FSN
D (u) = 3πdpμ

[
1 + 0.15

( |u|dp

ν

)0.687
]

(u · ex) (4.4)

is the drag force predicted by the Schiller & Naumann correlation and

f iso(u) = 1

(
√

2π〈u′〉)3
exp

(
−u′2

x + u′2
y + u′2

z

2〈u′〉2

)
, 〈u′〉 = IU (4.5a,b)

is the p.d.f. of the instantaneous fluctuation velocity of the incoming flow assuming an
isotropic distribution of TKE. The integral in (4.3a,b) can be numerically obtained, and
the relative changes of 〈FH

D/FL
D〉 − 1 with the turbulence intensity are shown by the solid

lines in figure 5. It is clear that the enhancements due to the nonlinear drag effect are below
the actual drag enhancements and are Rep insensitive after Rep > 200, which is different
from the actual drag enhancement where Rep plays a much more important role. For the
present cases where the incoming turbulent flows are anisotropic, the nonlinear drag FP

D
can be computed by replacing f iso with a more general p.d.f.

f aniso (u) = 1

(
√

2π)3〈u′
x〉〈u′

y〉〈u′
z〉

exp

(
− u′2

x

2〈u′
x〉2 − u′2

y

2〈u′
y〉2 − u′2

z

2〈u′
z〉2

)
, (4.6)

and with the information of 〈u′
x〉, 〈u′

y〉 and 〈u′
z〉 in table 4. We also note that, in the earlier

work of Bagchi & Balachandar (2003), two definitions of the particle drag force accounting
for the nonlinear effect were proposed, and they are

FBB1
D = 1

8
ρf πd2

p〈CSN
D (Rep)|u|2〉, Rep = Rep (u) = |u|dp

ν
, (4.7a)

FBB2
D = 1

8ρf πd2
pCSN

D
(〈Rep〉

) |〈u〉|2, (4.7b)

where

〈CSN
D (Rep)|u|2〉 =

∫
f aniso (u) CSN

D
(
Rep

) |u|2 du, 〈Rep〉 =
∫

f aniso (u) Rep (u) du.

(4.8a,b)

Given the nonlinear dependency of the instantaneous drag force on the flow velocity,
it would make more sense that the drag depends on the average of the velocity squared,
i.e. 〈|u|2〉, rather than the square of the averaged velocity, i.e. |〈u〉|2 in (4.7b). With the
Gaussian distribution of the fluctuation velocity, we shall also have 〈u〉 = Uex, which is
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Figure 6. The pressure fields around the fixed particle in (a) case E and (b) the corresponding laminar flow.

constant. Based on this argument, a more reasonable definition for the nonlinear drag is
formulated as

FBB3
D = 1

8ρf πd2
pCSN

D
(〈Rep〉

) 〈|u|2〉, 〈|u|2〉 =
∫

f aniso (u) |u|2 du. (4.9a,b)

In table 5, these nonlinear drag enhancements are compared with the actual drag
enhancements obtained from the numerical simulations. With the Homann et al. (2013)
definition of the nonlinear drag force, no matter whether the anisotropy in the incoming
turbulent flows is considered, the nonlinear drag forces are significantly lower than
their actual counterparts for all examined cases. With the Bagchi & Balachandar (2003)
definition, the nonlinear drag forces are also considerably smaller than the actual drag
forces, with only two exceptions in case B and case C. In particular, the original definition
of the nonlinear drag in (4.7b) always shows drag reduction rather than drag enhancement,
which could indicate this is an inappropriate estimation for the nonlinear drag. Compared
with the Homann et al. (2013) definition of nonlinear drag, the nonlinear drag of Bagchi &
Balachandar (2003) is significantly higher. The difference is due to the different definitions
of drag in the two works. In the Homann et al. (2013) work, the drag was defined as the
force component aligned with the mean flow direction, whereas in Bagchi & Balachandar
(2003), it was the force aligned with the instantaneous relative velocity between the flow
and the particle. Hence, the magnitudes of the latter are certainly higher. This detail
partially explains the conflicting conclusions in the two works, i.e. Homann et al. (2013)
reported the inadequacy of using the nonlinear drag to explain the drag enhancement due
to turbulence, while Bagchi & Balachandar (2003) claimed that the standard drag formula
was already sufficient to predict the drag coefficient.

Based on the numerical results, this study adopts the Homann et al. (2013) point and
seeks mechanisms resulting in the differences between the nonlinear drag enhancements
and the actual drag enhancements. It should be noted that, although the r.m.s. velocities of
the turbulent flow are used in the calculation of 〈FH

D 〉, the nonlinear drag enhancement is
essentially a laminar effect, which also exists when the incoming flow is laminar but time
dependent.

4.2. Additional mechanisms of drag enhancements
Homann et al. (2013) attributed the gaps between the actual drag enhancements and the
nonlinear drag enhancements to the interactions between the small turbulent eddies and the
particle boundary layer. This deduction is reasonable, but the associated mechanisms have
not been clarified. In order to better understand the mechanisms of how turbulence affects
the particle drag, the flow fields around the particle is visualized. In figure 6, the pressure
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Figure 7. The pressure contours around the particle in (a) the laminar flow, and turbulent flows with different
intensities; (b) case A, (c) case B and (d) case C.

fields around the particle are visualized for case E and its corresponding laminar case with
the same Rep. To ensure the two pressure fields can be compared at the same scale, we plot
the deviation of the pressure from its instantaneous field mean, then average over 1000 time
frames covering approximately 45 eddy turnover times, i.e. 〈p(x)〉 − 〈P〉. Although the
wake structure is planar symmetric at this particle Reynolds number (Rep = 240 in case E),
the averaged pressure field still shows symmetry in the lower and top halves, so only half of
the region is shown. To facilitate the following discussion, we locate (xc − 0.5dp, yc, zc),
(xc + 0.5dp, yc, zc) and (xc, yc + 0.5dp, zc) as the front edge, trailing edge and the zenith,
respectively. Compared with the laminar case, when the incoming flow is turbulent, the
low-pressure region around the zenith is significantly extended, and the magnitudes of
the pressure near the trailing edge are also reduced. These two changes certainly result
in increased pressure drag. The pressure gradients between the high- and low-pressure
regions are also enlarged by turbulence, as shown in the contours around the top-left
corner. At the fixed particle Reynolds number Rep = 100, the pressure contours from the
laminar and turbulent flow cases with different intensities are compared in figure 7. It is
clear that when the turbulence intensity increases, pressure gradients between the front
edge and the zenith are further enhanced. As a result, the area of the low-pressure regions
expands with the increase of the turbulence intensity, and the pressure in the low-pressure
regions further decreases.

The strengthened low-pressure region in the turbulent cases also modifies the wake
structures. Contours of the velocity magnitude and Q-criterion (Jeong & Hussain 1995)
are compared in figure 8 for case E and its corresponding laminar case. More high-speed
fluids outside the boundary layer are transported towards the symmetry axis in response to
the strengthened low-pressure region around the trailing edge, which not only suppresses
the circulation region but also results in faster restorations of the velocity deficiency, as
reported in the previous studies (e.g. Bagchi & Balachandar 2004; Homann et al. 2013).

As turbulence reduces the pressure behind the zenith, the region with adverse pressure
gradients shrinks. This change postpones the separation of the boundary layer, as
can be partially seen from figure 8. In the classic boundary layer theory, postponed
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Figure 8. Contours of the velocity magnitude and Q-criterion in case E (a,c) and the corresponding laminar
case (b,d). (a,b) Velocity magnitude, (c,d) Q-criterion.

separation usually results in drag reductions (Kundu, Cohen & Dowling 2015, Chap. 9).
However, this is not the case in the present study. This exception is because, unlike
the uniform incoming flow in the classic boundary layer theory, the incoming flows in
the present cases are already turbulent. In the classic boundary layer theory, turbulent
fluctuations mainly affect the pressure after the zenith by resisting the boundary layer
separation, which leads to better pressure recovery to reduce the pressure drag (Kundu
et al. 2015, Chap. 9). In the present study, however, a significant portion of the turbulence
effect functions before the zenith, as shown by the amplified pressure gradients around
the top-left corner in the turbulent cases, i.e. figures 6(a) and 7(b)–(d). In order to show
this phenomenon more clearly, streamwise distributions of the planar fluid-phase-averaged
pressure around the particle are computed in some selected laminar and turbulent cases.
The averaging is processed over y–z planes with a size of 2.5dp × 2.5dp that centre on the
streamwise axis of the particle. As confirmed in figure 9, compared with the corresponding
laminar case, the streamwise pressure gradient in the turbulent case is significantly larger,
and most of the difference occurs before the zenith.

The amplified pressure gradients between the front edge and the zenith can be
qualitatively understood by referring to the solution of the pressure field of the inviscid
flow (Kundu et al. 2015, Chap. 4), where

p = p∞ + 1
2
ρU2

[(
3a3

r3 − 3a6

4r6

)
cos2 θ −

(
a3

r3 + a6

4r6

)]
. (4.10)

The pressure gradient ∂p/∂θ yields

∂p
∂θ

= −1
2
ρU2

(
3a3

r3 − 3a6

4r6

)
sin (2θ) . (4.11)

The region between the front edge and the zenith is where ∂p/∂θ < 0. The above solution
does not apply rigorously for the present cases with viscous turbulent incoming flows.
However, experimental measurements (Maxworthy 1969; Achenbach 1972) found that
the lowest pressure in a turbulent boundary layer around a sphere was still θ = 90
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Figure 9. Additional pressure drop in the streamwise direction around the particle in a turbulent flow relative
to that in a laminar flow. Here, P0 is the planar fluid-phase-averaged pressure at the front edge.

degrees from the stagnation point and the pressure distribution was similar to the inviscid
flow theory before the lowest pressure point. Despite the fact that these experimental
measurements were conducted at much higher Rep than the present study, considering
the similarity in their wake structures, it is reasonable to expect that the pressure gradient
follows

∂p
∂θ

∝ 〈|u|2〉 sin (2θ) , (4.12)

before the boundary layer separation. Equation (4.12) still predicts the lowest pressure
at the zenith, which has been confirmed by the contour plots in figures 6 and 7. With
the above assumption, it is clear that the more kinetic energy the flow has, the larger
the pressure gradient expected. Compared with its laminar counterpart, a turbulent
incoming flow has extra kinetic energy in the turbulent motions, i.e. TKE. Thus a greater
pressure change is created, and also a greater resulting pressure drag. For the same
reason, the pressure drop would further increase with the turbulence intensity. Since the
large-scale motions mainly carry TKE in turbulent flows, this mechanism of pressure drag
amplification is more associated with the large-scale eddies.

Different from large-scale eddies, the main effect of small turbulent eddies on the drag
enhancement is to increase the velocity gradient in the particle boundary layer. This
mechanism is the same one that increases the surface shear stress in the flat turbulent
boundary layer. Since the particle has a finite size, the curvature of the particle might
become unimportant for small scales in the turbulent flow. Unlike a laminar boundary layer
that mainly transports momentum in the wall-normal direction via viscous diffusion, when
turbulence is present, the small-scale velocity fluctuations in the wall-normal direction
can directly bring high-speed fluids outside the boundary layer to the near-wall region
and increase the velocity gradients there. As a result, the viscous drag is enhanced. With
uniform incoming flows, this mechanism only occurs at very high Reynolds numbers
after the transition from a laminar to a turbulent boundary layer occurs. In the present
cases, the incoming flows are already turbulent, so the enhancement of the viscous drag
by small turbulent eddies could happen at much lower Reynolds numbers. To confirm
this mechanism, the streamwise velocity profiles along two lines, e1 = (0, 1, 0) and
e2 = (−1/

√
2, 1/

√
2, 0) across the particle centre are plotted in figure 10. The turbulent

cases generally have larger streamwise velocity gradients than corresponding laminar
cases, especially with smaller Rep. When Rep increases, the relative increase of the
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Figure 10. The distribution of the streamwise velocity along two selected lines across the particle centre:
(a) a vertical line, (b) an inclined line.
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0.18(tU /tκ)

tU /tκ
Figure 11. The drag enhancement coefficients under the Homann et al. (2013) scaling.

streamwise velocity gradient due to turbulence reduces. Case E with Rep = 240 has a
similar turbulence intensity to that in case B with Rep = 100, but its enhancements of
streamwise velocity gradient are much less evident.

4.3. Scaling of the drag enhancement
In the previous study of Homann et al. (2013), it was reported that the drag enhancement
coefficient FT

D/FL
D − 1 scales well with 0.18tU/tκ , where tU = dp/U is the convective

time, and tκ = (ν/ε)0.5 is the Kolmogorov time. The data points from the present study are
also plotted using this scaling in figure 11 together with the data reported in the Homann
et al. (2013) study. It is worth mentioning that the dissipation rates used to evaluate
tκ = (ν/ε)0.5 in the present study are estimated indirectly from 〈ε〉 = 〈u′〉3〈εHIT〉/〈u′

HIT〉3,
where 〈u′

HIT〉 and 〈εHIT〉 are measured from the sustained HIT in region A (table 1). This
essentially assumes that the integral length scales L are unchanged while the turbulent
flows travel downstream, i.e. L = 〈u′〉3/〈ε〉 is unchanged.
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Drag enhancement by turbulent flows

As shown in figure 11, although the drag enhancement coefficients in the present
study still qualitatively increase with tU/tκ , their values are considerably higher than
the predictions with the Homann et al. (2013) scaling. These quantitative deviations are
likely due to the difference in flow configurations. Specifically, as the turbulent flow
loses isotropy while travelling downstream, the anisotropy of the turbulence could play
an important role in the drag enhancement.

In order to see this point more clearly, a volume-averaged streamwise momentum
balance analysis is conducted here. In recent years, such analyses have been widely
employed to enhance the understanding of how particles modify the mean flow velocity
and TKE in particle-laden turbulent channel and pipe flows (e.g. Picano, Breugem &
Brandt 2015; Yu et al. 2017; Vreman & Kuerten 2018; Peng et al. 2019c). By volume
averaging the streamwise momentum equation, the difference between the particle drag in
turbulent and laminar flows is related to flow properties at the front and trailing edges of
the particle as

〈FT
D − FL

D〉 ≈ − 1
�x

(
1
ρ

PT − 1
ρ

PL + kT
x − kL

x

)∣∣∣∣
xc+(1/2)dp

xc−(1/2)dp

. (4.13)

Detailed derivation of this equation is provided in Appendix A. Equation (4.13) shows
that, in an ideal case, the particle drag enhancement due to turbulence is only related to
two changes, the amplified pressure drops in the turbulent cases (as confirmed in figure 9)
and the modification of the streamwise kinetic energy distribution. Compared with laminar
boundary layers, turbulent boundary layers could provide more viscous dissipation to
the kinetic energy, further increasing its drop in the streamwise direction. Since the
modification of streamwise kinetic energy dominates the drag enhancement, in anisotropic
turbulence, the influence of flow anisotropy should be considered when modelling the drag
enhancement based on the fluid and particle parameters.

We start to seek an appropriate scaling by conducting a dimensional analysis. When
the turbulent flow is homogeneous and isotropic, it is natural to think that the drag
enhancement coefficient is a function of the turbulent r.m.s. velocity 〈u′〉, dissipation rate
〈ε〉, viscosity ν, the mean flow velocity U and the particle diameter dp, i.e.〈

FT
D

FL
D

〉
− 1 = f

(〈u′〉, 〈ε〉, ν, U, dp
)
. (4.14)

The first three parameters define a HIT, while the last three define the particle Reynolds
number. There are five dimensional parameters in this function and two basic units. Thus
we can define three non-dimensional parameters, and they are〈

FT
D

FL
D

〉
− 1 = f

( 〈u′〉
U

,
dp

η
,

Udp

ν

)
= f (I, dr, Rep), (4.15)

where dr = dp/η is short-hand notation for the relative particle size. Note that, since the
function is undetermined, we use the same f in (4.14) and (4.15) for convenience. With
some mathematical manipulation, the Homann et al. (2013) scale tU/tκ can be recast as
Re−1

p d2
r , i.e.

tU
tη

= dp

U

( ε

ν

)0.5 = ν

Udp

d2
p(

ν3/ε
)0.5 = Re−1

p

(
dp

η

)2

= Re−1
p d2

r , (4.16)

which is a special form of (4.15). For a more general anisotropic turbulent flow, a single
r.m.s. velocity 〈u′〉 is no longer sufficient to describe the turbulence intensity, we therefore
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formulate 〈
FT

D

FL
D

〉
− 1 = fnew

(〈u′
1〉, 〈u′

2〉, 〈u′
3〉, 〈ε〉, ν, U, dp

)
, (4.17)

where 〈u′
1〉, 〈u′

2〉 and 〈u′
3〉 are the component-wise r.m.s. velocities in three directions.

Since the small scales in a turbulent flow are nearly isotropic, we keep 〈ε〉 rather than
separating it into component-wise quantities. An alternative argument for this choice
is that even the viscous dissipation is affected by anisotropic large-scale turbulent
fluctuations as long as the time scales 〈ui〉2/〈εi〉 for different velocity components are
comparable, thus there is still no need to divide 〈ε〉 into component-wise quantities.
Compared with (4.15), the new function fnew contains two additional non-dimensional
parameters, β1 = 〈u′

1〉/〈u′
2〉 and β2 = 〈u′

1〉/〈u′
3〉 that measure the anisotropy of the

turbulent flow. For convenience, we can always make 〈u′
1〉 the r.m.s. velocity in the

streamwise direction that usually contains the largest TKE, i.e. β1 > 1 and β2 > 1. In the
present study, the two cross-streamwise directions are symmetric, so only one parameter
β = (β1β2)

0.5 is needed to measure the anisotropy. Equation (4.17) then becomes〈
FT

D

FL
D

〉
− 1 = fnew(β, I, dr, Rep). (4.18)

Taking 〈FT
D/FL

D〉 − 1 ∝ Re−1
p d2

r in Homann et al. (2013) as the reference, it is reasonable
to assume fnew has power function dependencies on the four non-dimensional parameters,
i.e. 〈

FT
D

FL
D

〉
− 1 = KβaIbdc

r Red
p. (4.19)

We can obtain the coefficients a, b, c, d and K in two ways. The first is to assume the
most general form in (4.19) and obtain the optimal values of the coefficients to fit the DNS
data, which are tabulated for the nine simulated cases in table 6, via multi-dimensional
linear regression. This method gives a = 1.4, b = 0.5, c = 0.9, d = −0.1 and K = 0.06.
The comparison between the predictions of this scaling (A = β1.4I0.5d0.9

r Re−0.1
p ) and

the numerical simulation results is shown in figure 12(a). The second method is to
introduce the anisotropic correction on the basis of the Homann et al. (2013) scale,
i.e. b = 0, c = 2, d = −1 and K = 0.18. The optimal value for a is obtained from linear
regression as 1.8. The comparison between the model prediction of the second scaling
(B = β1.8d2

r Re−1
p ) and the numerical data is presented in figure 12(b). Good agreements

between the prediction and the numerical results are observed in both plots. Scaling A has
a slightly better match to the numerical data than scaling B, but its formula is also slightly
more complicated. Under both scalings, the anisotropy and the ratio between the particle
size and the small turbulent eddies positively affect the relative drag enhancement, while
the particle Reynolds number delivers negative impacts. For comparative purposes, the
drag enhancement predicted by the nonlinear drag effect, Homann, Bec & Grauer 2013’s
scaling, and the present modified scalings are shown in table 6.

4.4. The turbulent effect on the drag coefficient of particle arrays
Besides the single-particle cases discussed in the last section, cases with arrays of fixed
particles in laminar and turbulent incoming flows are also investigated. The purpose is to
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Figure 12. The drag enhancement coefficients under the revised scalings accounting for the anisotropy of the
incoming turbulence flow.

Case Rep I FH
D/FL

D − 1 dr 0.18tU/tη β 0.06A 〈FT
D/FL

D〉 − 1

A 100 0.168 0.0275 6.89 0.0855 1.34 0.133 0.1153 ± 0.0363
B 100 0.289 0.0787 10.03 0.181 1.35 0.246 0.2516 ± 0.0390
C 100 0.411 0.1511 12.75 0.293 1.24 0.323 0.3814 ± 0.0503
D 240 0.181 0.0353 13.30 0.133 1.35 0.231 0.2899 ± 0.0254
E 240 0.265 0.0740 17.39 0.227 1.32 0.344 0.3878 ± 0.0395
F 240 0.364 0.1346 21.87 0.359 1.22 0.446 0.4399 ± 0.0522
G 330 0.132 0.0195 13.33 0.0969 1.35 0.191 0.2165 ± 0.0180
H 330 0.196 0.0422 17.59 0.169 1.36 0.303 0.2969 ± 0.0292
I 330 0.269 0.0780 22.10 0.266 1.31 0.410 0.3718 ± 0.0381

Table 6. Non-dimensional parameters in the modelling of drag enhancement. The fourth, sixth and eighth
columns of the table represent the drag enhancements predicted by the nonlinear drag, the Homann et al.
(2013) scaling and the modified scaling. The DNS drag enhancements are shown in the last column.

understand how the lateral interactions among particles change the particle drag force. In
order to reduce the computational cost, only three set-ups, cases B, D and E in table 4
are chosen. Case B and case E have similar turbulence intensities, while case D and case
E have the same particle Reynolds number. Under each set-up, the number of particles
varies to create particle arrays (see the sketch in figure 13) with different particle–particle
relative gap distances, which are quantified by a non-dimensional parameter rρ = dp/d,
where d is the gap distance between the two nearest particles. The range of rρ is chosen
between 1/9 and 1.5, corresponding to a layer of 1 to 36 uniformly distributed particles
in region B. Particles in each simulation are placed at the same streamwise location
as the corresponding single-particle case. Given a fixed number of 256 grid points in
each cross-streamwise direction, further increasing rρ may lead to the flow in the throat
between two particles being unresolved. Therefore, to avoid sabotaging the reliability of
the numerical results, very dense particle cases with rρ > 1.5 are not covered.

The averaged drag coefficient in both the laminar and selected turbulent cases are
shown in figure 13 and tabulated in table 7. With laminar incoming flows, the averaged
drag force increases monotonically with rρ , whereas with turbulent incoming flows, the
drag coefficient decreases slightly at the beginning, then increases with rρ . The overall
increased particle drag with rρ also partially explains why the settling speed of multiple
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Case D
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Figure 13. The drag coefficients of laminar and turbulent flows passing over arrays of particles.

Np = 1 Np = 2 Np = 9 Np = 16 Np = 25 Np = 36 Np = 47
Case rρ = 1/9 rρ = 1/4 rρ = 3/7 rρ = 2/3 rρ = 1 rρ = 3/2 rρ = 7/3

Rep = 100 1.1018 1.1261 1.2231 1.3863 1.7002 2.2510 3.3071
laminar
Case B 1.3790 1.3008 1.3370 1.4625 1.7312 2.2418 3.2550

±0.0429 ±0.0165 ±0.0095 ±0.0039 ±0.0102 ±0.0019 ±0.0022
Rep = 240 0.7129 0.7427 0.8034 0.9219 1.1456 1.5516 2.3260
laminar
Case D 0.9160 0.8373 0.8709 0.9588 1.1641 1.5417 2.2836

±0.0181 ±0.0061 ±0.0033 ±0.0017 ±0.0010 ±0.0004 ±0.0010
Case E 0.9893 0.8968 0.9160 1.0039 1.1917 1.5501 2.2686

±0.0281 ±0.0099 ±0.0041 ±0.0019 ±0.0011 ±0.0008 ±0.0005

Table 7. The averaged drag coefficients for laminar and turbulent flow passing over particle arrays.

particles is lower compared with the sedimentation speed of individual particles, as
reported in Fornari et al. (2016a). Besides the hindering effect and the nonlinear drag
effect (Yin & Koch 2007; Fornari et al. 2016a), the lateral interactions between particles
could also play an important role in the reduced settling speed for multiple particles.

The increasing drag coefficient with rρ is not difficult to understand. As shown by the
pressure contours in figure 14, when their distribution becomes denser, particles form
contraction passages that force the flow to accelerate and lead to significantly amplified
pressure drops between the particle front edge to the zenith location. In addition to this
change, as particles approach each other, the low-pressure regions on the back of the
particles merge and make the pressure recovery more difficult, which can be seen in
figure 14. These two effects result in a significant increase in the pressure drag. Moreover,
the flow acceleration in the contracted passages would create larger velocity gradients
around particles and enhance the viscous drag. This latter mechanism is confirmed by
the comparison of the streamwise velocity profiles along the two lines e1 = (0, 1, 0)

and e2 = (−1/
√

2, 1/
√

2, 0) across the particle centre, as shown in figure 15. When
turbulence is present, the fluctuation motions of the turbulent eddies may partially counter
these mechanisms and result in slight drag reduction. When rρ further increases, these
inverse effects eventually get overwhelmed, and enhancements of the drag coefficient are
again observed. Nevertheless, more in-depth and decisive analyses are certainly needed to

959 A30-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

15
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.152


Drag enhancement by turbulent flows

170

160

150
Nx

Nx

Nx

Ny Ny

140

130

40 50 60 70 80 90

170

160

150

140

130

40 50 60 70 80 90

100

50

0

–50

–100

170

160

150

140

130

40 50 60 70 80 90

170

160

150

140

130

40 50 60 70 80 90

150

140

130

40 50 60 70 80 90

150

140

130

40 50 60 70 80 90

100

50

0

–50

–100

100

0

–100

(a) (b)

(c) (d )

(e) ( f )

Figure 14. The comparison between the pressure contours of laminar and turbulent cases passing over arrays
of particles with different particle–particle relative gap distances; (a,b) rρ = 1/9, (c,d) rρ = 1/4, (e, f ) rρ = 1;
(a,c,e) laminar cases, (b,d, f ) turbulent cases.

further confirm and reveal the subtle physics behind this inverse impact of turbulence on
particle drag, which could be pursued in our future studies.

The results of relative drag enhancement due to turbulence are shown in figure 16(a). In
all examined cases, the enhancements of the drag coefficient due to turbulence decrease
monotonically with rρ and eventually disappear around rρ = 1.5. This change essentially
results from the fact that the drag enhancement due to the contracted passages dominates
the contribution due to the turbulence, which is observed from the comparison of the
pressure contours in figures 14(e)–14( f ) and the comparison of the streamwise velocity
distribution around the particle in figure 15. It is also observed that the changes in the drag
enhancement coefficient with rρ in different cases follow the same pattern.

Based on this observation, an empirical correlation to consider the effect of the
particle–particle relative gap distance on the drag enhancement due to turbulence is
proposed. Defining rρ0 as the rρ with which the particle interaction can be fully ignored
(cases with a single particle are roughly this type), the relative drag enhancement
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Figure 15. The distribution of the streamwise velocity along (a) a vertical line and (b) an inclined line across
the particle centre.
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Figure 16. The enhancement of the mean drag force as a function of rρ : (a) relative drag enhancements
compared with the laminar cases, (b) an empirical correlation for the relative drag enhancements.

compared with its baseline value Θ(rρ0) = 〈FT
D(rρ0)/FL

D(rρ0)〉 − 1 approximately
satisfies,

Θ(rρ) = Θ(rρ0)
−0.147(rρ − rρ0)

rρ − rρ0 + 0.228
. (4.20)

We emphasize that this correlation is generalized from our simulation results under
relatively narrow ranges of parameter settings, i.e. the particle–particle relative gap
distances 1/9 � rρ � 1.5, particle Reynolds numbers Rep = 100 and 240 and turbulence
intensities 0.18 < I < 0.3. Applying the correlation for parameters beyond these ranges
should proceed with caution.

5. Summary and conclusions

This work conducts direct numerical simulations of laminar and turbulent flows
passing over fixed particles and particle arrays at moderate particle Reynolds numbers.
Through systematically contrasting the results between the laminar and turbulent cases,
two mechanisms of drag enhancement by turbulence are revealed, and more general
scalings to quantify the drag enhancements are proposed to account for the influence of
flow anisotropy. The main observations are summarized below.
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Drag enhancement by turbulent flows

(i) Compared with laminar flows, turbulent incoming flows amplify particle drag
significantly. The nonlinear drag enhancement is insufficient to explain this
amplification. This observation is consistent with those reported in the previous DNS
study of Homann et al. (2013) with a different flow configuration.

(ii) Aside from the nonlinear drag enhancement, two mechanisms are found responsible
for the particle drag enhancement in turbulence. They are:
(a) The amplified streamwise pressure gradient due to the presence of TKE, which

mainly occurs between the particle front edge and the zenith point, and is
contributed by the large-scale fluctuations in the turbulent flows.

(b) The increased velocity gradient around the particle caused by the enhanced
mixing of the low-speed fluid inside the boundary layer and the high-speed fluid
outside, which is contributed by the small turbulent scales below the particle
size.

(iii) The volume-averaged streamwise momentum analysis shows that the modifications
of the streamwise kinetic energy make much more significant contributions to
the drag enhancement than those in the other two directions. Based on this
observation, the impact of flow anisotropy on drag enhancement must be considered.
By dimensional analyses and fitting to the numerical data, the drag enhancement
coefficient is found to scale with A = β1.4I0.5d0.9

r Re−0.1
p , where β is the parameter

for flow anisotropy, I is the turbulent intensity, dr is the relative particle size and Rep

is the particle Reynolds number, or B = β1.8d2
r Re−1

p .
(iv) In laminar flows, the particle drag increases monotonically with decreasing

particle–particle relative gap distance (quantified by rρ), whereas in turbulent flows,
the drag first decreases slightly and then increases with rρ . The impact of turbulence
on the drag enhancement decreases monotonically with rρ and disappears when
rρ = 1.5 is reached.

A few unresolved puzzles are worth further investigation, particularly with multiple
particles in turbulence. The minimum particle drag with rρ ≈ 0.25 in free-streaming
turbulence certainly needs some further exploration. Whether the drag force enhancement
correlation with rρ is extendable to more general flow and particle parameters is also an
open question. Furthermore, the present study only focuses on the turbulence effects on
the averaged particle drag. How turbulence affects the level of fluctuations in the particle
drag and how to model this aspect based on the flow and particle parameters have not been
addressed. Answering those questions would better predict the settling speed of particles
in turbulence, which will be pursued in our future studies.
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Appendix A. Derivation of the analytical drag enhancement

In the absence of the body force, the volume-averaged momentum equation of the fluid
phase can be derived as (Crowe et al. 2011)

∂

∂t
(α〈ui〉 f ) + ∂

∂xj
(α〈uiuj〉 f ) = 1

ρ

∂

∂xj
(α〈σij〉 f ) + 1

ρV

∫
SI

njσij dS, (A1)

where α is the volume fraction of the fluid phase in the control volume V , 〈· · · 〉 f indicates
the phase averaging over the fluid phase, σij is the total stress tensor (pressure plus the
viscous stress), SI is the flow–particle interface within the control volume V and the last
term in (A1) represents the force of the particle acting on the fluid phase. The last term in
(A1) is the force acting on the fluid due to the presence of the particle (i.e. nj is the surface
normal pointing into the particle) which is equal to −Fi, where Fi is the force acting on the
particle per unit mass of the averaging volume. At the steady state or statistically stationary
state in the turbulent flow case, choosing the control volume V as a very thin cuboid in the
y − z plane with thickness of �x, the time-averaged momentum balance equation in the
streamwise direction becomes

Fx = − ∂

∂xj

(
α〈uxuj〉 f

)
+ 1

ρ

∂

∂xj

(
α〈σxj〉 f

)
, (A2)

where the overbars · · · represent time averaging. When the flows are statistically
homogeneous in the two cross-streamwise directions, e.g. in cases existing multiple free
moving particles, the gradients in the two directions can be neglected, and the momentum
balance equation in the streamwise direction becomes

Fx = − 1
ρ

d
dx

(
α〈p〉 f

)
− d

dx

(
α〈uxux〉 f

)
+ 2ν

d
dx

(
α

〈
∂ux

∂x

〉 f
)

. (A3)

It should be emphasized that the statistics in the two cross-streamwise directions are
deemed to be inhomogeneous with a single fixed particle. Thus (A3) does not apply
rigorously. Extending the control volume V to the whole y–z plane solves this conflict with
the periodicity conditions in the two cross-streamwise directions. However, it would bring
far-field information irrelevant to the particle drag change into the analysis. Therefore, the
quantitative use of (A3) should proceed with caution.

With a fixed particle, the volume fraction of the fluid phase α does not change with time,
we would write 〈∂ux/∂x〉 f = d〈ux〉 f /dx. Applying the short-hand notation 〈ux〉 f = Ux,
〈p〉 f = P, and 〈uxux〉 f = Kx to the laminar and turbulent cases, (A3) becomes

FL
x = − 1

ρ

d
dx

(αPL) − d
dx

(αKL
x ) + 2ν

d
dx

(
α

dUL
x

dx

)
, (A4a)

FT
x = − 1

ρ

d
dx

(αPT) − d
dx

(αKT
x ) + 2ν

d
dx

(
α

dUT
x

dx

)
, (A4b)

where the superscripts ‘T’ and ‘L’ represent the laminar and turbulent flow cases. With
the same control volume V and particle size dp in the laminar and turbulent cases, α
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is identical. Thus, we use α instead of αL and αT in each case. The difference between the
two equations is the drag enhancement contributed by the control volume V , i.e.

FT
x − FL

x = − 1
ρ

d
dx

[α(PT − PL)] − d
dx

[α(KT
x − KL

x )] + 2ν
d

dx

[
α

(
dUT

x

dx
− dUL

x

dx

)]
.

(A5)

Again, when the flow is homogeneous in the two cross-streamwise directions or when V
is extended to the whole domain, the continuity equation requires αUT

x = αUL
x , which

essentially leads to UT
x = UL

x . As a result, (A5) further simplifies as

FT
x − FL

x = − 1
ρ

d
dx

[
α(PT − PL)

]
− d

dx

[
α(kT

x − kL
x )
]
, (A6)

where kx = Kx − UxUx is the off-mean kinetic energy due to the inhomogeneous
distribution of fluid velocity in the control volume, which can be non-zero even for the
laminar case. Summing up the above equation from the control volume containing the
front edge of the particle to the control volume containing the trailing edge of the particle,
we have

〈FT
D − FL

D〉 =
∑(

FT
x − FL

x

)
≈ − 1

�x

(
1
ρ

PT − 1
ρ

PL + kT
x − kL

x

)∣∣∣∣
xc+(1/2)dp

xc−(1/2)dp

. (A7)

Note that, at the front and trailing edges of the particle, α = 1, thus they are omitted from
the above equation.
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