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A NOTE ON STRONGLY CLOSED 2-SUBGROUPS 

BY 

PAUL FONG(1) AND MORTON E. HARRIS(1) 

The purpose of this note is to present a proof of the following: 

PROPOSITION. Let T be a Sylow 2-subgroup of the finite group G and let 
1<S<T with S strongly closed in T with respect to G. Let T = (CG(s), 
NG(fli(S)) | seJ(S)). Suppose that T<H<Gfor some subgroup H of G. Then 
HCi(SG) is strongly embedded in (SG) and S = Tn(SG) or S = a i (Tf l<S G » . 
Alsoifm(S) = l, thenS = Tn(SG). 

This result has several applications. As an illustration, we utilize the above 
Proposition to give an alternate proof of [1, Theorem 2(2)] (one of the many 
fundamental results of [1]). 

The proof of our Proposition utilizes some of the basic results on strongly 
closed 2-subgroups in [2] and [3]. 

All groups in this article are finite and our notation is standard. 

Section 1. A proof of the Proposition. 
Throughout this section we assume that S, T, T, H and G satisfy the 

hypotheses of the Proposition. Set X = (SG). Clearly the following two Lem­
mas imply the Proposition. 

LEMMA 1.1. Suppose that m(S) = l . Then 

(1) SeSyl2(X); and 
(2) HHX is strongly embedded in X. 

Proof. For (1), we proceed by induction on \G\. Thus we may assume that 
0(G) = 1. Clearly [3, Corollary B3] implies that we may assume that S is 
quaternion, of order 8. Also (liffl^G by Glauberman's Z*-Theorem. Set 
G = G/il^S). Then S is strongly closed in T with respect to G by [3, Lemma 
2.2(a)], S = JE4, f eSyl2(G), 0(G) = 1 and S*(SG) = X Also [2, Theorem A] 
implies that X = PSU(3, 4) or X = PSL(2, q) for some odd prime power q>3 
with q = ±3 (mod 8). Since the Schur multiplier of PSU(3, 4) is of odd order, it 
follows that |X|2 = \S\ and (1) holds. Next observe that r - CG(fli(S))^= H< G. 
Hence G = X r = XH and C x ( f l 1 ( S ) ) < H n X < X . Thus (2) holds and the 
proof of the lemma is complete. 
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LEMMA 1.2. Suppose that m ( S ) > l . Then 
(1) HHX is strongly embedded in X; and 
(2) S = TC\Xor S = ai(TCiX). 

Proof. We proceed by induction on |G|. Since 0 ( G ) < T < H , we may assume 
that 0(G) = 1. Also G = XNG(S) = XH, X = (SG) = (SX) and (Cx(s), 
Nx(tl1(S))\se#(S))<HnX<X. Thus we may assume that G = X. Let Y = 
( f l^S) 0 ) . Then G - YNda^S)) = YH and hence Y^H. Thus 
Y^(CG(s) | se$(S)) and Y has a strongly embedded subgroup by [3, Lemma 
2.7]. Consequently Y is a simple Bender group and Q,1(S) = Q/1(Tr\Y)< 
S(l Y < T P l Y G S V 1 2 ( Y ) . If G = Y, then we are clearly done. Thus we may 
assume that Y<G, S^Y and Sfl Y = fl1(S) = ft1(Tfï Y) or SHY=TnY. 
Set L=YS and C = C L ( Y ) . Thus C = 02(L)<(TnY)S. Suppose that C ^ l . 
Choose c G ^(C) and write c = t~xs where teTHY and s G S. Since Y ^ H, we 
have ce S and SnY = fL1(S) = Q,1(TnY). Since OË Y, we have se Y and 
| s |>4 . As s = ct = fc, we also have | t | >4 . In particular, TP lY = 
(t^rlneNYiTHY)). But if neNY(THY), then sn = ctneT, sneS and 
r V = s~1sn e SnY = Sl1(TC\Y). Since this is impossible, we have C = l . Let 
seS-Y be such that s2eY and set L1=Y(s). Then Tl = TDL1 = 
(TO Y)(s)eSy\2(L1) and Tx contains an involution r such that T1 = (TC\ Y)(r) 
and T acts like a "field automorphism" on Y Thus ^ (T1)>J>(S) = ill(S)# = 
a^THY)*, SO Y=Jl1(S) = ai(TnY)<TC] Y, Y = PSU(3,2n) for some in­
teger n > 2 and 7\ = T1/fl1(T Pi Y) is not abelian. However S H T^ = 
(S H Y)<s> - OiCSXs) - a ^ T n Y)(s) sa 7\ and hence s 7 Ï T 1 < Z ( t 1 ) . But 7^ = 
(Tfl Y)(SflT1) and T H Y is abelian, so that 7\ is abelian. This contradiction 
establishes Lemma 2.2. 

Section 2. An Application of the Proposition. 
Recall that a subgroup Q of a finite group G is said to be tightly embedded 

in G if \Q\ is even and if | Q n Q 8 | is odd for every geG-NG(Q). The 
following corollary is [1, Theorem 2(2)]. 

COROLLARY. Let Q be a tightly embedded subgroup of the finite group G and 
let H = NG(Q). Suppose That \Q*nH\ is odd for all geG-H. Then either 
G = H or H<G and HD(QG) is strongly embedded in (QG). 

Proof. Let S G Syl2(Q) and let Te Syl2(H) with S<T. The hypotheses imply 
that T G S V 1 2 ( G ) and that S is strongly closed in T with respect to G Suppose 
that H<G. Clearly I\(S, G) = (NG(U) | 1 * U < S > < H . Set X = (SG) and Y = 
<QG). Then H H X is strongly embedded in X and S = THX or S = fl^THX) 
by the Proposition. Also G = XNG(S) = XH = YH, Y = (QG) = (QX) = XQ, 
|Y/X| is odd and HO Y< Y. But THX = Tfl Y G S V 1 2 ( Y ) and i ^ T H X , Y)< 
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H f l Y < Y since Cl1(TnX) = il1(S). Consequently HOY is strongly embedded 
in Y and the proof is complete. 
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