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Monte Carlo methods are often employed to numerically integrate kinetic equations,
such as the particle-in-cell method for the plasma kinetic equation, but these methods
suffer from the introduction of counting noise to the solution. We report on a
cautionary tale of counting noise modifying the nonlinear saturation of kinetic
instabilities driven by unstable beams of plasma. We find a saturated magnetic field
in under-resolved particle-in-cell simulations due to the sampling error in the current
density. The noise-induced magnetic field is anomalous, as the magnetic field damps
away in continuum kinetic and increased particle count particle-in-cell simulations. This
modification of the saturated state has implications for a broad array of astrophysical
phenomena beyond the simple plasma system considered here, and it stresses the care
that must be taken when using particle methods for kinetic equations.
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1. Introduction

Often, the mean free path for a binary Coulomb interaction between two charged
particles in the plasma that makes up the vast majority of the luminous universe is not
small compared to the dynamical scales of the astrophysical system. The infrequency
of collisions in these astrophysical systems necessitates a kinetic description. Kinetic
equations are thus of critical importance to our understanding of astrophysical phenomena.
However, the numerical integration of kinetic equations presents a significant challenge,
because we require a representation of the solution in a six-dimensional phase space, three
position and three velocity variables, as well as in time.

It is unequivocally true that the most common numerical techniques for the solution of
kinetic equations are Monte Carlo methods. For the plasma kinetic equation, or Vlasov
equation, this approach discretizes the particle distribution function as ‘macroparticles’,
particles with some shape function. These macroparticles are then advanced along their
characteristics and sampled to construct the required velocity moments to couple the
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plasma dynamics to the electromagnetic fields via Maxwell’s equations (Dawson 1962;
Langdon & Birdsall 1970; Dawson 1983; Birdsall & Langdon 1990; Lapenta 2012).
This numerical method is traditionally called the particle-in-cell (PIC) method, since the
results of the velocity moment computations are deposited onto the grid that discretizes
Maxwell’s equations.

The PIC method has been historically very fruitful and the core method of several
production-level computational tools for simulating kinetic plasmas (e.g. Fonseca et al.
2008; Bowers et al. 2009; Germaschewski et al. 2016). However, because of its Monte
Carlo nature, the PIC method introduces counting noise into the solution of the kinetic
equation. This numerical noise can manifest as a combination of numerical collisions and
heating of the underlying distribution of particles and has been quantified in a number of
studies (Hockney 1968; Okuda & Birdsall 1970; Hockney 1971; Okuda 1972; Langdon
1979; Krommes 2007).

While numerical heating can be quantified and controlled, the pollution of the solution
with noise can have larger effects on the dynamics of the plasma. For example, Camporeale
et al. (2016) have demonstrated that a large number of particles per cell is required to
correctly identify wave–particle resonances and compare well with the wave damping
rates obtained from linear theory. More egregious examples include the counting noise
induced transport found to be the source of disagreement between PIC models of turbulent
transport in nuclear-fusion relevant simulations and corresponding continuum models of
the same flavour of turbulence (Nevins et al. 2005). Here, a continuum model refers to a
numerical model of a kinetic equation which directly discretizes the quantity of interest,
the particle distribution function, on a phase space grid, directly solving a six-dimensional
partial differential equation in time.

There are many means of reducing this noise. The simplest strategy is to use more
particles, but the counting noise decreases like 1/

√
Nppc, where Nppc is the number of

particles per grid cell, and this slow convergence with increasing particle count can
make the desired phase space accuracy prohibitively expensive computationally. Other
techniques explicitly modify the algorithm, such as the delta-f PIC method (Parker & Lee
1993; Hu & Krommes 1994; Denton & Kotschenreuther 1995; Belova, Denton & Chan
1997; Cheng et al. 2013; Kunz, Stone & Bai 2014), very high order and more sophisticated
particle shape functions, e.g. particle in wavelets (van yen Nguyen et al. 2010, 2011) and
von Mises distributions based on Kernel density estimation theory (Wu & Qin 2018) and
time-dependent deformable shape functions for the particles (Coppa et al. 1996), the latter
of which is an active area of research for the N-body Monte Carlo method applied to
gravitational systems (Abel, Hahn & Kaehler 2012; Hahn & Angulo 2015) and has recently
been extended to PIC (Julian et al. 2016).

However, many of these modifications have their own deficiencies. The delta-f PIC
method can break down if the distribution function deviates significantly from its initial
value, and the modifications to the particle shape introduce significant computational
complexity to the algorithm. This additional computational complexity makes application
of these techniques to general kinetic systems more challenging, and preliminary work is
focused on lower-dimensional systems (van yen Nguyen et al. 2011) and post-processing
analysis (Totorica, Fiuza & Abel 2018). While the application of advanced particle shapes
to even just the analysis of simulations pays dividends in reducing the noise in the solution
(Totorica et al. 2018), any issues due to noise that arise during the course of a simulation
are not mitigated.

In this paper, we document an instance of disagreement in the underlying dynamics of
competing plasma instabilities when studied with a PIC simulation and continuum kinetic
simulation, and trace the origin of the disagreement to the counting noise introduced to
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the solution by the PIC algorithm. We emphasize that the disagreement stemming from
particle noise manifests not simply as numerical heating, but as a fundamental difference
in the final state of the plasma’s nonlinear evolution. The noise inherent to the PIC
method leads to a sampling error in the computation of the current density, particularly for
small numbers of particles per cell, and thus artificially introduces saturated small-scale
magnetic field structure, while continuum simulations find that the magnetic field is
strongly damped. Particle noise is confirmed as the result of this disagreement with a
combination of larger particle count simulations and post-process filtering of the saturated
state.

We are inspired by the recently reported disagreement between the continuum kinetic
simulations performed in Skoutnev et al. (2019) and past PIC calculations in a similar
parameter regime (Kato & Takabe 2008) of the competition of a class of Weibel-type
instabilities driven by counter-streaming beams of plasmas (Weibel 1959; Bornatici &
Lee 1970; Davidson et al. 1972). These Weibel-type instabilities are an interesting class of
plasma instabilities, serving as a possible explanation for the observed magnetic fields in
gamma ray bursts (Medvedev & Loeb 1999) and pulsar wind outflows (Kazimura et al.
1998), and as a potential source of the seed magnetic field in a cosmological context
(Schlickeiser & Shukla 2003; Lazar et al. 2009). Importantly, while these Weibel-type
instabilities robustly grow a magnetic field in the relativistic context, Skoutnev et al.
(2019) found that the non-relativistic limit of these instabilities was more complex, with
a spectrum of unstable modes all having comparable growth rates vying for dominance.
While these Weibel-type instabilities are generally driven by counter-streaming beams of
both protons and electrons, in this paper we will focus on the electron-driven variants of
these instabilities.

In this regard, for the electron-driven, equal beam density and equal beam temperature,
variants of these instabilities, two ratios primarily affect which mode grows the fastest:
ud/c, how non-relativistic the drift velocity of the beams is, and vthe/ud, how much of
the initial beam energy is internal energy versus kinetic energy. Here, ud is the drift
speed of each beam of electrons, c is the speed of light and vthe = √

kBTe/me is the
electron thermal velocity, where kB is Boltzmann’s constant, Te is the electron temperature,
and me is the electron mass. In the relativistic case, ud ≈ c, the filamentation instability
(Fried 1959) is the fastest-growing mode and previous studies find robust magnetic field
growth and saturation (Fonseca et al. 2003; Nishikawa et al. 2003, 2005; Silva et al.
2003; Kumar, Eichler & Gedalin 2015; Takamoto, Matsumoto & Kato 2018). Likewise,
as the drift velocity becomes non-relativistic, so long as the beams are ‘hot’, i.e. vthe ≈ ud,
the disruption of the fast-growing two-stream instability leads to a secondary Weibel
instability. The disruption of the saturated two-stream modes by the more slowly growing
filamentation instability leads to energy conversion dominantly in only one velocity
dimension, since the two-stream instability is one-dimensional, and this temperature
anisotropy provides another source of free energy for the Weibel instability and thus a
means of supporting a saturated magnetic field (Schlickeiser & Shukla 2003; Kato &
Takabe 2008). The saturated magnetic field from the disruption of two-stream modes
leads to the same levels of magnetization as previous studies of the Weibel instability and
filamentation instability in isolation, in either one dimension or two dimensions (Morse &
Nielson 1971; Califano, Pegoraro & Bulanov 1997; Califano et al. 1998; Cagas et al. 2017).

These results stand in stark contrast to the findings of Skoutnev et al. (2019) as
the ratio of vthe/ud is decreased further and the inter-penetrating beams are made
‘colder’. As the temperature of the beams is reduced, the growth rates of a spectrum
of oblique modes increase, modes which arise due to perturbations between parallel
(two-stream) and perpendicular (filamentation) to the drift direction (Bret 2009). These
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hybrid two-stream–filamentation modes begin to have comparable growth rates to the
two-stream instability – see figure 1 in Skoutnev et al. (2019). These fast-growing
oblique modes rapidly deplete the free energy in the inter-penetrating flows, eliminating
the channel for magnetic field growth via a combination of the more slowly growing
filamentation instability and secular Weibel instability from the residual temperature
anisotropy of saturated two-stream modes studied in, e.g. Kato & Takabe (2008).

With the free energy depleted, the oblique modes are then able to collisionlessly damp
on the electrons. This collisionless damping converts the electromagnetic energy from the
saturated oblique modes to electron thermal energy, leaving little residual magnetic energy
in the system, along with a highly structured distribution function in phase space due to
the mixing of nonlinearly saturated oblique modes. This additional phase space structure
serves as an added marker for the collapse of the magnetic field via damping of the oblique
modes.

The collapse of the magnetic field in the non-relativistic, cold limit in the continuum
kinetic simulations presented in Skoutnev et al. (2019) had not been previously reported,
and in fact disagreed with the PIC results of Kato & Takabe (2008) in the ‘cold’ parameter
regime, ud/c = 0.1, vthe/ud = 0.1. Skoutnev et al. (2019) identified a number of potential
explanations for this disagreement, such as the shock geometry – Kato & Takabe (2008)
performed Weibel-mediated collisionless shock simulations while Skoutnev et al. (2019)
considered only perturbations to an initially unstable system and not a driven system such
as a collisionless shock. In addition, Skoutnev et al. (2019) focused solely on the electron
dynamics with the protons forming a neutralizing background while Kato & Takabe (2008)
included the dynamics of the protons in their collisionless shock simulations. We consider
the effect of the difference in numerical method in this paper and perform identical
simulations to Skoutnev et al. (2019) with a PIC method, focusing on the electron-only
variants of these Weibel-type instabilities with an initial-value problem.

2. Methods and results

We concern ourselves with the evolution of the Vlasov equation of a species s,

∂fs

∂t
+ v · ∇fs + qs

ms
(E + v × B) · ∇v fs = 0, (2.1)

coupled to Maxwell’s equations via self-consistent currents. Here, f s is the particle
distribution for species s, qs and ms are the charge and mass of species s
respectively, and E and B are the electric and magnetic fields respectively. The
Vlasov–Maxwell system of equations is numerically integrated with the PIC code p3d
(Zeiler et al. 2002) and the Gkeyll simulation framework, which contains a continuum
Vlasov–Maxwell solver (Juno et al. 2018). Note that the Gkeyll simulation framework
also contains a Fokker–Planck collision operator, and can thus numerically integrate the
Vlasov–Maxwell–Fokker–Planck system of equations (Hakim et al. 2019).

We initialize an electron–proton plasma in two spatial dimensions and two velocity
dimensions (2X2V), with two, uniform, equal density, counter-streaming, Maxwellian
beams of electrons,

f0,e(vx, vy) = n0

2πv2
the

e−v2
x /2v2

the [e−(vy−ud)
2/2v2

the + e−(vy+ud)
2/2v2

the ]. (2.2)

The protons form a stationary, neutralizing background. Here, n0 = 1 is a density
normalization. To excite the zoo of instabilities, two stream, filamentation (Fried 1959)
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FIGURE 1. Evolution of the box-integrated magnetic field energy, εB = 1/(2μ0)
∫

B2
z ,

normalized to the initial electron energy for a sequence of p3d calculations varying particle
number and particle shape and compared to a fiducial Gkeyll calculation. While there is initial
growth of the magnetic field due to the electromagnetic component of the oblique modes, the
oblique modes quickly damp the electrons, leading to the decay of the magnetic field energy
in the continuum Gkeyll simulation and high particle count p3d simulations. With the free
energy of the counter-streaming electron beams depleted by the fast-growing oblique modes,
the continuum and more highly resolved PIC calculations cannot support any saturated magnetic
field structure. However, with reduced particle count, the magnetic field energy saturates to a
fixed value. Modest increases in the number of particles per cell and higher-order particle shapes
reduce the magnitude of the saturated magnetic field, but only with more substantial increases
in particle count do we observe similar late time behaviour between the p3d PIC and Gkeyll
continuum simulations.

and electromagnetic oblique (Bret 2009), a collection of electric and magnetic fluctuations
are initialized,

Bz(t = 0) =
16,16∑

nx,ny=0

B̃ sin
(

2πnxx
Lx

+ 2πnyy
Ly

+ φ̃

)
, (2.3)

with equivalent perturbations in Ex and Ey. Here, B̃ and φ̃ are random amplitudes and
phases, with the random amplitudes chosen such that all three fields have equal initial
average energy densities, 〈ε0E2

x/2〉 = 〈ε0E2
y/2〉 = 〈B2

z/2μ0〉 ≈ 10−7EK , where EK is the
total initial energy of the two counter-streaming beams of electrons and ε0 and μ0 are the
permittivity and permeability of free space respectively.

Further details of the simulations are as follows. For all simulations, the box size is
chosen based on the ud/c = 0.1, vthe/ud = 0.1 simulation in Skoutnev et al. (2019), Lx =
2.7de, Ly = 3.1de, where de = c/ωpe is the electron inertial length and ωpe = √

e2ne/ε0me
is the electron plasma frequency. This box size is chosen to fit the faster-growing
filamentation mode, kFI

max = 2π/Lx, and an integer number of two-stream modes kTS
max =

2πn/Ly, while keeping the box size roughly square Lx ≈ Ly. The Gkeyll continuum
Vlasov–Maxwell simulation is run with Nx = Ny = 48 grid points in configuration space,
vmax = [−3ud, 3ud] velocity space extents, Nv = 642 in the two velocity dimensions and
piecewise quadratic Serendipity elements (Arnold & Awanou 2011) – see Juno et al.
(2018) for details on the discontinuous Galerkin discretization of the Vlasov–Maxwell
system of equations. The p3d simulations are run with configuration space resolution
Δx = Δy = 0.014de, and the number of particles per cell is varied according to Nppc =
[12, 120, 1200, 12 000], with both linear and quadratic particle shapes. In addition, the
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FIGURE 2. Evolution of the electron distribution function from Gkeyll (left column) and Nppc =
12 and Nppc = 12 000, quadratic spline, p3d (middle and right column) simulations in y − vy.
The rows show the evolution of the distribution function in time, t = 0ω−1

pe (top row), the
peak of the magnetic field energy, t = 45ω−1

pe for the Gkeyll simulation and t = 35ω−1
pe for the

p3d simulations (middle row) and the end of the simulation t = 250ω−1
pe (bottom row). These

distribution function cuts are generated by integrating over a narrow slice of the interior of Lx
and all of vx. Specifically, we integrate the Gkeyll simulation over the middle two grid cells,
Δx = 0.1de, and sample particles from the corresponding extent in the p3d simulations. In
addition, to generate the velocity space representation in vy of the p3d simulations, the particles
are binned into 101 equally space bins from −20vthe to 20vthe . All three simulations begin
with good phase space resolution, as the initial particle distribution function can be sampled
precisely even with only Nppc = 12. However, we can see that the evolution of phase space is
much less well resolved with very few particles per cell, and because the nonlinear dynamics of
the saturated instabilities leads to a phase space filling electron distribution function, the effective
phase space resolution of the Nppc = 12 calculation has decreased significantly by the end of the
simulation.

p3d simulations employ Marder’s correction (Marder 1987) via a multigrid method to
enforce charge conservation. Periodic boundary conditions are employed in configuration
space, and for only the continuum Gkeyll simulation, zero-flux boundary conditions are
used in velocity space, along with a small number of collisions, νee = 4 × 10−5ωpe, for
velocity space regularization – see Hakim et al. (2019) for details of the collision operator
implementation in Gkeyll.

The evolution of the box-integrated magnetic energy from this suite of simulations is
shown in figure 1. We can clearly identify the collapse of the magnetic field observed in
Skoutnev et al. (2019) in both the continuum Gkeyll simulations and the high particle count
p3d simulations. However, as the number of particles per cell is decreased, the magnetic
field attains a particle-per-cell-dependent saturated state. The saturation level has some
sensitivity to the particle shape, with the quadratic spline particles saturating at a lower
level than the linear spline particles. But even the modestly high particle counts saturate
at a still higher amplitude than what we expect from the continuum calculation and more
resolved PIC calculations.

To understand this pseudo-saturation of the magnetic field, we show the phase space
structure from the Gkeyll simulation and a subset of the p3d simulations in figures 2 and 3.
We plot the results from the Gkeyll simulation (left column), along with the Nppc = 12
and Nppc = 12 000, quadratic spline particle shape, p3d simulations (middle and right
columns) in y − vy (figure 2) and vx − vy (figure 3). The three rows denote the beginning
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of the simulation, t = 0ω−1
pe (top row), peak of the magnetic field energy, t = 45ω−1

pe for
the Gkeyll simulation and t = 35ω−1

pe for the p3d simulations (middle row) and end of the
simulation, t = 250ω−1

pe (bottom row). These distribution function cuts are generated from
the full 2X2V phase space by integrating over the interior 0.1de in the x dimension, i.e. the
middle two grid cells in x in the Gkeyll simulation, and the equivalent x extents in the p3d
simulations, along with an integration in the entirety of vx for the y − vy cut in figure 2, and
the entirety of y for the vx − vy cut in figure 3. We note that to generate the velocity space
representation in the p3d simulations, the particles are binned into 101 equally spaced bins
from −20vthe to 20vthe in vy for figure 2 and both vx and vy for figure 3.

We observe that, regardless of the ‘coarseness’ of our particle resolution, the simulations
begin with good phase space resolution. Although the beams are cold and the drift speed
is large, ud � vthe , even with Nppc = 12, we can concentrate phase space resolution in the
initial distribution function for the p3d calculations. However, as the instabilities evolve
and lead to the electrons filling phase space, the low particle count simulation in figures 2
and 3 becomes much less well resolved, with an inability to distinguish the features
observed at saturation in the Gkeyll and Nppc = 12 000 simulations, and the steady-state
isotropic distribution becoming poorly sampled.

To understand the effect this decreased effective phase space resolution can have on the
dynamics of the plasma in the Nppc = 12 p3d simulation, consider Ampère’s law in steady
state,

∇x × B = μ0J = μ0

∑
s

qs

∫
vfs dv, (2.4)

where we have assumed ∂E/∂t → 0 and substituted the charge-weighted sum over each
species’ first velocity moment for the current density. While this computation of the
current is straightforward for the grid-based continuum method in Gkeyll, for the p3d PIC
calculations this velocity moment is given by the sum over each individual macroparticle’s
velocity ∑

s

qs

∫
vfs dv =

∑
s

qPIC
s

N∑
j=1

V s,jS(x − X s,j), (2.5)

where X s,j and V s,j are the j macroparticle positions and velocities for species s, qPIC
s is the

charge of the macroparticle of species s and S(x) is the shape function in configuration
space.

Because the current density is computed from discrete macroparticles, if any
fluctuations in the current density are uncorrelated on some spatial scale, we expect
these fluctuations can give rise to a magnetic field. This behaviour would be akin to the
‘quasi-thermal’, electrostatic noise which arises from uncorrelated density fluctuations
in a plasma, both in real plasma systems (Meyer-Vernet et al. 1986) and in PIC
calculations (Langdon 1979). We expect, in analogy with the Debye length for electrostatic
shielding and density fluctuations, the electron skin depth, de, is the scale below which
current density fluctuations will not be effectively shielded by the magnetic field. Since
these fluctuations are uncorrelated, their ensemble average, i.e. their average over many
realizations of the plasma system, will be zero, but their root-mean-square (r.m.s.) average
might not be zero. In other words, the current density computed from the collection has
zero ensemble average,

〈
J PIC〉 =

∑
s

qPIC
s

〈∑
j

V s,jS(x − X s,j)

〉
= 0, (2.6)
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FIGURE 3. The same evolution of the electron distribution function shown in figure 2 from
Gkeyll (left column) and Nppc = 12 and Nppc = 12 000, quadratic spline, p3d (middle and right
column) simulations, but now in vx − vy. The rows show the evolution of the distribution
function in time, t = 0ω−1

pe (top row), the peak of the magnetic field energy, t = 45ω−1
pe for

the Gkeyll simulation and t = 35ω−1
pe for the p3d simulations (middle row) and the end of

the simulation t = 250ω−1
pe (bottom row). These distribution function cuts are generated by

integrating over a narrow slice of the interior of Lx and all of y. As in figure 2, we integrate
the Gkeyll simulation over the middle two grid cells, Δx = 0.1de, and sample particles from
the corresponding extent in the p3d simulations. In addition, to generate the velocity space
representation in vx and vy of the p3d simulations, the particles are binned into 101 equally space
bins from −20vthe to 20vthe for both velocity dimensions. Again, the phase space resolution
at the beginning of the simulation is acceptable, even with only Nppc = 12, because we can
sample particles efficiently for the cold distribution. However, because the unstable oblique
modes efficiently convert this free energy into electromagnetic energy and then back into electron
thermal energy, the final electron distribution fills a much larger volume of phase space and the
effective phase space resolution has plummeted by the end of the simulation.

where 〈·〉 denotes the ensemble average, but the squared r.m.s.,

∣∣J PIC
rms

∣∣2 =
∑

s

1
NPIC

(
qPIC

s

)2 ∑
j

∑
k

V s,jS(x − X s,j)V s,kS(x − X s,k), (2.7)
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where NPIC is the number of PIC particles being summed over, may have non-zero
ensemble average,

〈∣∣J PIC
rms

∣∣2
〉
=

∑
s

1
NPIC

(
qPIC

s

)2

〈∑
j

∑
k

V s,jS(x − X s,j)V s,kS(x − X s,k)

〉
�= 0. (2.8)

If we assume the current is carried solely by the electrons and consider a volume of
∼ d2

e in two dimensions, we can make a back-of-the-envelope calculation for the size of
the r.m.s. current density,

〈∣∣J PIC
rms

∣∣2
〉
∼

(
ePIC

)2

(
dPIC

e

)4

1
NPIC

∑
j

〈|V j|2
〉

∼
(
ePIC

)2

(
dPIC

e

)4 NPIC (
vPIC

the

)2
, (2.9)

where we have added the superscript PIC to all quantities, charge, ePIC, electron inertial
length, dPIC

e and electron thermal velocity vPIC
the

to emphasize these are the macroparticle
quantities.

In general, because a macroparticle represents many particles in the real plasma system,
all intrinsic properties, e.g. the mass and charge, must be scaled by the appropriate
macroparticle factor when comparing a quantity computed with the PIC method to the
actual physical quantity. Comparing the r.m.s. current density from the PIC method to the
physical r.m.s. current density from a fiducial plasma, we have

〈∣∣J PIC
rms

∣∣2
〉

〈|J rms|2
〉 =

(
ePIC

)2

(
dPIC

e

)4 NPIC
(
vPIC

the

)2

e2

d4
e

Nv2
the

, (2.10)

where N is the number of particles in the real plasma system being modelled. Since every
charge is a macroparticle charge, the difference between the macroparticle charge and the
elementary charge is

ePIC

e
= Fmacroe

e
= N

NppcNcells
, (2.11)

where Fmacro is the scaling factor for the number of particles a macroparticle represents
and Ncells is the number of grid cells we have summed over to construct our d2

e volume.
In other words, when NppcNcells < N, the charge in the PIC method must be scaled by the
appropriate factor since the macroparticle is representing some (potentially large) number
of particles.

We can proceed in a similar fashion for the other terms. We note that the electron plasma
frequency, ωpe = √

e2n/ε0me, is macroparticle independent because the macroparticle
factors cancel in the charge, density and mass. Therefore, the electron inertial length,
de = c/ωpe, is also macroparticle independent. To determine the factor for the electron
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thermal velocity, we note that substitution of one factor of d2
e reveals that

(
vPIC

the

)2

d2
e

=
(
vPIC

the

)2

c2
ω2

pe, (2.12)

and since the ratio of the electron thermal velocity to the speed of light is independent
of macroparticle size, we have no additional factor from the electron thermal velocity.
We are thus left with 〈∣∣J PIC

rms

∣∣2
〉

〈|J rms|2
〉 = N

NppcNcells
, (2.13)

after substitution of NPIC = NppcNcells. We can then massage (2.9) to a more general form
with the appropriate scaling factor,

〈∣∣J PIC
rms

∣∣2
〉
∼

(
N

NcellsNppc

)
e2

d2
e

nv2
the

, (2.14)

where n is the number density of the plasma. In the limit that every macroparticle
represents a single charged particle in the real plasma system, (2.14) would reduce to
the estimate of the continuum r.m.s. current density spectrum from uncorrelated current
density fluctuations.

Substitution of the estimate in (2.14) into Ampère’s law gives us

1
2μ0

〈∣∣BPIC
rms

∣∣2
〉
∼ d2

eμ0

2

〈∣∣J PIC
rms

∣∣2
〉

∼
(

N
NcellsNppc

)
d2

eμ0

2
e2

d2
e

nv2
the

, (2.15)

which, upon rearrangement of the expression using the fact that c2 = 1/ε0μ0 and our
definitions of the electron thermal velocity, vthe , the electron plasma frequency, ωpe, and
electron skin depth, de, we obtain

1
2μ0

〈∣∣BPIC
rms

∣∣2
〉
∼ 1

2
N

NcellsNppc

T
d2

e

∼ 1
2

nT
NcellsNppc

. (2.16)

This estimate is similar to Tajima et al. (1992) for the continuum noise spectrum of current
fluctuations, but with the additional NcellsNppc term for how the fluctuation spectrum scales
with the number of particles per cell. However, this calculation is fundamentally different
from the Tajima et al. (1992) computation of the continuum noise spectra because we
expect the fluctuation spectrum to decrease with increasing Nppc, as we are estimating an
anomalous source of fluctuations. The PIC method is still a numerical discretization of the
Vlasov equation, which in the absence of true discrete particle effects such as collisions
should not have a fluctuation spectrum due to uncorrelated current density fluctuations.

We note that the magnitude of the magnetic field fluctuations in (2.16) inversely depends
on the number of particles per cell, as we expect from the scaling of the saturated
magnetic field amplitude in figure 1, where we observe the saturation level decreasing
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FIGURE 4. Evolution of the box-integrated magnetic field energy, εB = 1/(2μ0)
∫

B2
z ,

normalized to the initial electron energy, with a 3 × 3 spatial boxcar filter applied in
post-processing to the Nppc = 12 and Nppc = 12 000 p3d simulations, with the corresponding
unfiltered p3d data and the Gkeyll simulation for reference. The use of a filter on small spatial
scales assists in the smoothing of the noise-generated magnetic field for this initial-value
problem, although the magnitude of the magnetic field collapse still does not agree with the
fiducial Gkeyll simulation.

by roughly an order of magnitude when we increase the number of particles by a factor
of ten. Importantly, the magnitude of the magnetic field fluctuations also depends on the
temperature, thus explaining the observed saturated magnetic field state in the smaller
Nppc p3d simulations. Despite a reasonable sampling accuracy at the beginning of the
simulation for the initially cold beams, the large electron temperature increase from the
oblique mode dynamics leads to a larger noise floor of magnetic field fluctuations. In
other words, the number of particles per cell, Nppc, is fixed, so increases in the temperature
of the distribution being sampled inevitably increases the fluctuation amplitude arising
from noise. By the end of the simulation, we are much more poorly sampling the saturated
electron distribution function because of the distribution’s increased temperature, and we
thus obtain a saturated magnetic field from the resulting r.m.s. fluctuations in the current
density. The final, much hotter, electron distribution would require higher phase space
resolution, i.e. a larger number of particles per cell, to effectively represent and reduce the
r.m.s. current density fluctuations which arise from the noise inherent to the PIC method.

It is natural to ask if this noise-generated magnetic field can be filtered in some
fashion to restore the solution to the results found in the continuum Gkeyll simulation
and converged p3d simulations. We plot in figure 4 the result of a boxcar smoothing
on a 3 × 3 stencil in configuration space, i.e. a spatial average over the smallest scales
in the p3d simulation. Clearly, the averaging over the small spatial scales assists in the
restoration of the collapse of the magnetic field, even if the p3d calculations still do not
reproduce the exact quantitative level of collapse as the Gkeyll simulations. We emphasize
that the filtering procedure performed here is done in post-processing, and while this
post-processing procedure works here for this initial-value problem, we caution that for
a driven system such as a Weibel-mediated collisionless shock, in situ filtering may be
required to restore the results of instability collapse, lest a pseudo-saturated magnetic field
pollute the dynamics of the driven system. But, aggressive in situ filtering should also be
employed with caution, as it is the saturated oblique modes that lead to the magnetic field
collapse, and filtering in situ may average over the oblique mode dynamics and prevent the
collisionless damping of the electromagnetic fluctuations.
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3. Discussion and summary

We conclude having demonstrated the role particle noise can play in the dynamics of
the electron-only variants of Weibel-type instabilities. In the non-relativistic, cold limit,
we should find no net magnetization from the free energy of the initial counter-streaming
electron beams due to the dynamically important electromagnetic oblique modes depleting
this free energy and then damping the magnetic field, but a particle-per-cell-dependent
saturated magnetic field can arise in underresolved PIC simulations due to noise-generated
fluctuations in the current density. This result on its own suggests a re-examination of
some Weibel-relevant calculations may be necessary to accurately assess the role of these
electromagnetic oblique modes. The noise-driven saturated magnetic field in the low
Nppc simulations is motivating for collisionless shock simulations with the PIC method,
which often employ Nppc = 10–100 (see, e.g. Spitkovsky 2005; Kato & Takabe 2008;
Fiuza et al. 2012; Huntington et al. 2015). Beyond a re-exploration of Weibel-mediated
collisionless shocks in the parameter regime considered here, studies of the Biermann
battery (Biermann 1950), another candidate for the development of a magnetic field in
the very early universe, have found the presence of the electron Weibel instability as one
pushes to larger system size (Schoeffler et al. 2014, 2016; Schoeffler, Loureiro & Silva
2018). Thus, a study of the Biermann battery in this ‘cold’ parameter regime is both timely
due to the discovery of the importance of the oblique mode dynamics by Skoutnev et al.
(2019) and likely requires care given the results presented here on the sensitivity of the
oblique mode dynamics to phase space resolution.

We do not wish to appear antagonistic towards the PIC method. There are applications
which historically have used fewer particles per cell, and our study suggests the physics
of oblique modes requires higher effective phase space resolution. In general, the phase
space resolution required for a kinetic simulation to adequately represent the physics
of interest is difficult to know a priori (see, e.g. Barnes, Dorland & Tatsuno 2010). It
is not necessarily surprising that certain phenomena may require higher phase space
resolution. In this regard, the continuum method employed here should be viewed as a
complementary approach to the general task of modelling kinetic plasmas because of the
high resolution the method provides in phase space at an acceptable computational cost –
the Nppc = 1200 linear spline p3d simulation has roughly the same cost as the 482 × 642,
piecewise quadratic Serendipity element Gkeyll simulation. We believe the power of this
complementary continuum kinetic approach is made manifest by the results of this study,
in addition to previous studies of similar phenomena in the unmagnetized regime, such
as collisionless shocks (Pusztai et al. 2018; Sundström et al. 2019), the one-dimensional
Weibel instability (Cagas et al. 2017), and the plasma dynamo (Pusztai et al. 2020).

We wish to emphasize that the results of this study alone do not yet answer the question
of the source of disagreement between Skoutnev et al. (2019) and Kato & Takabe (2008)
in the non-relativistic, cold parameter regime. On one hand, particle noise appears to be a
possible component of the disagreement, with the potential for a noise-generated magnetic
field to modify the dynamics in a driven system such as a Weibel-mediated collisionless
shock. On the other hand, this comparison is incomplete until the effects of the protons and
shock geometry are also considered. A recent study (Matteucci et al. 2019), found that the
growth of the magnetic field in laser ablation simulations matched solely the ion Weibel
theory, as opposed to the combined ion–electron Weibel theory. In this non-relativistic
parameter regime, it is possible that the protons, or more generally any ion species, are
solely responsible or magnetic field growth, and the protons receive no assistance from the
electron Weibel instability due to the oblique mode dynamics of the electrons. A further
study of the phase space dynamics of the proton Weibel instability will be the focus of a
future study.
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Finally, we end with a note that the results of this study prompt an additional
inquiry analogous to the original studies of quasi-thermal noise in PIC codes, such
as the numerical fluctuation–dissipation relation derived in Langdon (1979). All of the
previous work in quantifying noise in the PIC method has focused on the uncorrelated
charge density fluctuations and the corresponding noise-driven electrostatic field from
these fluctuations. While uncorrelated charge density fluctuations lead to uncorrelated
current density fluctuations via the equation of charge continuity, and violations of
charge continuity are themselves a source of noise which can be mitigated via additional
improvements to the particle-in-cell method such as energy-conserving methods (Markidis
& Lapenta 2011), we note that the p3d simulations considered here employ Marder’s
correction (Marder 1987) to the charge density to mitigate such errors. Thus, we take
as motivation this observed noise-driven magnetic field to propose an extension of the
previous work quantifying noise in the PIC method, rederiving the modern results for
the continuum magnetic field spectra of real plasmas (Yoon 2007; Schlickeiser & Yoon
2012; Yoon, Schlickeiser & Kolberg 2014) but using particles with finite shape. In much
the same way as the results of Langdon (1979) permit PIC codes to carefully filter and
control electrostatic noise (Haggerty et al. 2017) by providing precise predictions of the
noise generated by density fluctuations of the macroparticles, a similar prediction could
be calculated from a fluctuation–dissipation relation on the magnitude of magnetic field
fluctuations generated by current density fluctuations of the macroparticles.
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