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Abstract. This paper deals with numerical solution to the multi-term time fractional
diffusion equation in a finite domain. An implicit finite difference scheme is estab-

lished based on Caputo’s definition to the fractional derivatives, and the upper and
lower bounds to the spectral radius of the coefficient matrix of the difference scheme

are estimated, with which the unconditional stability and convergence are proved.

The numerical results demonstrate the effectiveness of the theoretical analysis, and
the method and technique can also be applied to other kinds of time/space fractional

diffusion equations.
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1. Introduction

The partial differential equations of fractional order have played an important role

in modeling of the anomalous phenomena and in the theory of the complex systems

during the last two decades, see, e.g., [1–4,8,9,20,24,25]. The so-called time-fractional

diffusion equation that is obtained from the classical diffusion equation by replacing the

first-order time derivative by a fractional derivative of order α with 0 < α < 1 has to

be especially mentioned. On the other hand, by the attempts to describe some real

processes with the equations of the fractional order, several researches confronted with

the situation that the order α of the time-fractional derivative from the corresponding

model equations did not remain constant and changed, say, in the interval from 0 to 1,

from 1 to 2 or even from 0 to 2. To manage these phenomena, several approaches were

suggested. One of them introduces the fractional derivatives of the variable order, i.e.,

the derivatives with the order that can change with the time or/and depending on the

spatial coordinates [5, 6, 16, 22], and the other way is to employ the multi-term time
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fractional differential equations. For l > 0, T > 0, the 1D multi-term time fractional

diffusion equation in a finite homogeneous domain is given as

∂αu

∂tα
+

S∑

s=1

rs
∂βsu

∂tβs
= D

∂2u

∂x2
+ f(x, t), 0 < x < l, 0 < t < T, (1.1)

where u = u(x, t) denotes the state variable at space point x and time t, and α denotes

the principal fractional order, and β1, β2, · · · , βS are the multi-term fractional orders of

the time derivatives, which satisfy the condition:

0 < βS < βS−1 < · · · < β1 < α < 1, (1.2)

and r1, · · · , rS are positive constants, and D > 0 is the diffusion coefficient, f(x, t) is a

linear source term. All of the above time fractional derivatives are defined in the sense

of Caputo, for example, the fractional derivative of the order β ∈ (0, 1) is given as

∂βu

∂tβ
=

1

Γ(1− β)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)β
. (1.3)

See, e.g., Podlubny [23] and Kilbas et al. [11] for the definition and properties of the

Caputo’s derivative.

There are still a few research works reported on the multi-term time fractional

diffusion equations like Eq. (1.1). On theoretical analysis and analytical methods,

we refer to Daftardar-Gejji et al. [7], Luchko [19] and Jiang et al. [10]. In [7], the

multi-term time-fractional diffusion-wave equation with the constant coefficients was

considered, and a solution of the corresponding IBV problem was represented in form

of the Fourier series via the multivariate Mittag-Leffler function. In [19], a generalized

multi-term time fractional diffusion equation with the variable coefficients was consid-

ered, and well-posedness of the corresponding IBV problem was proved with the help

of maximum principle together with the construction of solution’s representation using

the Fourier method. In [10], analytical solutions of the 1D multi-term time fractional

diffusion-wave/diffusion equations were obtained also using the Fourier’s separating

variables method. However, numerical solutions for the multi-term time fractional dif-

fusion equations are of the same importance as the analytical solutions, especially when

deal with concrete computations for real diffusion phenomena. Recently in [15], Liu

et al. considered numerical solution to the multi-term time fractional wave-diffusion

equation, and put forward a fractional predictor-corrector method by transforming the

equation into a system of time-fractional differential equations, and they gave the con-

vergence rate of the proposed algorithm without discussing the stability.

In this paper, we continue to deal with numerical methods for solving Eq. (1.1)

with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ l; (1.4)

and the homogeneous boundary condition

u(0, t) = u(l, t) = 0, 0 < t ≤ T, (1.5)
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where the initial function u0(x) and the source term f(x, t) satisfy suitable conditions

such that the initial boundary value problem (1.1), (1.4) and (1.5) has only one solu-

tion in suitable space. For example, if u0(x) ∈ C([0, l]), and f(x, t) ∈ C((0, l) × (0, T )),
then there exists at most one classical solution u(x, t) ∈ C([0, l] × (0, T ]) for the above

forward problem (see, e.g., [17,18]).

We give an implicit finite difference scheme for solving the forward problem (1.1),

(1.4) and (1.5) numerically, and we are not only to prove the convergence but also

to establish the unconditional stability for the difference scheme. It is noted that the

unconditional stability and convergence of the difference scheme are proved in a sim-

ple way with the help of the estimation to the spectral radius of the coefficient matrix

based on the discretization to the fractional derivations. Such method seems to be

more effective as compared with those previous works (see, e.g., [13,14,21]), and we

present several numerical examples to support the theoretical analysis.

The rest of the paper is organized as follows. In Section 2, the implicit finite differ-

ence scheme to the forward problem is put forward by discretization to the fractional

derivations. In Section 3, unconditional stability and convergence of the difference

scheme are proved by estimating the spectral radius of the coefficient matrix. In Sec-

tion 4, numerical examples are presented to support the convergence analysis, and

several concluding remarks are given in Section 5.

2. The implicit finite difference scheme

Firstly, discretizing the space domain by xi = ih (i = 0, 1, · · · ,M), and the time

domain by tn = nτ (n = 0, 1, · · · , N), we have by definition (1.3)

∂αu

∂tα
(xi, tn+1)

=
τ−α

Γ(2− α)

n∑

k=0

(
u(xi, tn+1−k)− u(xi, tn−k)

)
[(k + 1)1−α − k1−α] +O(τ), (2.1)

∂βsu

∂tβs
(xi, tn+1)

=
τ−βs

Γ(2− βs)

n∑

k=0

(
u(xi, tn+1−k)− u(xi, tn−k)

)
[(k + 1)1−βs − k1−βs ] +O(τ), (2.2)

for s = 1, 2, · · · , S, respectively, here h = l/M is the space mesh step, and τ = T/N is

the time mesh step.

Next, we discretize the integer-order derivative ∂2u
∂x2 in Eq. (1.1) by utilizing general

two-order center difference scheme, which is given by

∂2u(xi, tn+1)

∂x2
=

u(xi+1, tn+1)− 2u(xi, tn+1) + u(xi−1, tn+1)

h2
+O(h2). (2.3)
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Then denoting uni = u(xi, tn) and fn
i = f(xi, tn), and substituting (2.1)–(2.3) into Eq.

(1.1), and multiplying by ταΓ(2− α), we have

a · (un+1
i − uni ) + a

n∑

k=1

(
un+1−k
i − un−k

i

)
dk

=
DταΓ(2− α)

h2
(un+1

i−1 − 2un+1
i + un+1

i+1 ) + ταΓ(2− α)fn+1
i +Rn+1, (2.4)

where

a = 1 +

S∑

s=1

rsτ
α−βs

Γ(2− α)

Γ(2− βs)
, (2.5)

dk =
1

a

(
[(k + 1)1−α − k1−α] +

S∑

s=1

rs[(k + 1)1−βs − k1−βs ]τα−βs
Γ(2− α)

Γ(2− βs)

)
,(2.6)

for k = 0, 1, · · · , n. Moreover, it follows from (2.1)–(2.3) that the remainder in (2.4)

satisfies

Rn+1 = ταΓ(2− α)O(h2 + τ) = O(h2τα + τα+1).

Let

p =
DταΓ(2− α)

h2a
. (2.7)

Ignoring the remainder term in (2.4) and dividing both sides of (2.4) by a, we have

−pun+1
i−1 + (1 + 2p)un+1

i − pun+1
i+1

= uni −

n∑

k=1

dk(u
n+1−k
i − un−k

i ) +
1

a
ταΓ(2− α)fn+1

i . (2.8)

The initial boundary conditions are discretized as

u0i = u0(xi); un0 = 0, unM = 0.

Let

Un = (un1 , · · · , u
n
M−1)

′, U0 = (u01, · · · , u
0
M−1)

′, fn = (fn
1 , · · · , f

n
M−1)

′;

ck = dk−1 − dk, k = 1, · · · , n, (2.9)

where dk (k = 0, 1, · · · , n) is defined by (2.6); and B = (bij)(M−1)×(M−1), where bij = 0
for 1 ≤ i, j ≤ M − 1 except

bij =





−p, j = i+ 1,
1 + 2p, j = i,
−p, j = i− 1.

(2.10)
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Thus, we have the implicit difference scheme in the matrix form given by

BU1 = U0 +
1

a
ταΓ(2− α)f1; (2.11a)

BUn+1 = c1U
n + c2U

n−1 + · · ·+ cnU
1 + dnU

0 +
1

a
ταΓ(2− α)fn+1. (2.11b)

Obviously, the coefficient matrix B is symmetric, and strictly diagonally dominant,

and the difference equation (2.11) has only one solution. In the next subsection, we

will prove its stability and convergence with the help of analysis to the coefficient

matrix.

3. The stability and convergence

Firstly, we give several lemmas.

Lemma 3.1. For k = 1, · · · , n, and 0 < α < 1, there is

2kα − (k − 1)α − (k + 1)α > 0. (3.1)

Proof. Let f(x) = (x + 1)α − xα, for x > 0 and 0 < α < 1. It is easy to testify that

f ′(x) < 0, and then the function f(x) is strictly decreasing for x > 0, and so there is

f(k) < f(k − 1) for k > 1. This proves (3.1). �

Lemma 3.2. For 0 < α, βs < 1 (s = 1, · · · , S), and ck, dk given by (2.9) and (2.6)

respectively. Then ck > 0 (k = 1, · · · , n), and

n∑

k=1

ck + dn = 1. (3.2)

Proof. By (2.6) and (2.9), we have

ck = dk−1 − dk = k1−α − (k − 1)α +

S∑

s=1

rsτ
α−β Γ(2− α)

Γ(2− β)
[k1−β − (k − 1)β ]

−(k + 1)1−α + kα −
S∑

s=1

rsτ
α−β Γ(2− α)

Γ(2− β)
[(k + 1)1−β − kβ],

= 2k1−α − (k − 1)1−α − (k + 1)1−α

+

S∑

s=1

rsτ
α−β Γ(2− α)

Γ(2− β)
[2k1−β − (k − 1)1−β − (k + 1)1−β ].

It follows from (3.1) that ck > 0 for k = 1, · · · , n. In addition, noting that ck =
dk−1 − dk, and d0 = 1, we can easily verify (3.2). �

Next, noting to definitions of the elements bij of the matrix B and p given by (2.7),

we have
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Lemma 3.3. If D, rs > 0 (s = 1, · · · , S), and 0 < βS < βS−1 < · · · < β1 < α < 1, then

p > 0 and

bii = 1 +

M−1∑

j=1,j 6=i

|bij|, 1 ≤ i ≤ M − 1 (3.3a)

M−1∑

j=1,j 6=i

bij < 0, 1 ≤ i ≤ M − 1. (3.3b)

Now, we give an estimate of the spectral radius of the coefficient matrix B defined

by (2.10).

Theorem 3.1. Under the conditions of Lemma 3.3, and note that B is a symmetry matrix,

we have

1 ≤ ρ(B) = ‖B‖2 ≤ 2‖b‖∞ − 1, (3.4)

1

2‖b‖∞ − 1
≤ ρ(B−1) = ‖B−1‖2 ≤ 1, (3.5)

where ‖b‖∞ = max
1≤i≤M−1

{bii}, and ρ(B) is the spectral radius of B, and ‖B‖2 denotes the

2-norm of the matrix B.

Proof. Suppose that

BΘ = λΘ,

where λ denotes an eigenvalue of matrix B, and Θ = (θ1, · · · , θM−1) 6= 0 is the cor-

responding eigenvector. Without loss of generality, setting |θk| = max
1≤i≤M−1

|θi|, and

considering the k-th equation of BΘ = λΘ, we have

M−1∑

j=1

bkjθj = λθk,

which gives

λ− bkk =

M−1∑

j=1,j 6=k

bkj θj/θk.

Using Lemma 3.3 and noting |θj/θk| ≤ 1, we obtain

|λ− bkk| ≤

M−1∑

j=1,j 6=k

|bkj| = bkk − 1.

Consequently,

1 ≤ |λ| ≤ 2bkk − 1, k = 1, · · · ,M − 1,
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which implies the assertions (3.4) and (3.5) are both valid. �

Based on the above analysis, and with a similar method as used in [12], we can

prove the unconditional stability and convergence for the implicit finite difference

scheme (2.11). By theorem 3.1, we will prove the stability and convergence of the

difference scheme using the 2-norm of the matrix B or vector E, and for convenience

of writing we still denote them as ‖B‖ and ‖E‖ in the following statements.

Theorem 3.2. The implicit difference scheme defined by (2.11) is unconditionally stable.

Proof. By the linear difference scheme (2.11), we can easily get

{
BE1 = E0, E0 = Ũ0 − U0,
BEn+1 = c1E

n + · · ·+ cnE
1 + dnE

0,
(3.6)

where Ũ0 denotes the initial function with noises, En = Ũn−Un denotes the solutions

difference at the n-th level, and n = 0, 1, · · · .

Obviously, by (3.6) and Theorem 3.1 we have

‖E1‖ ≤ ‖B−1‖‖E0‖ ≤ ‖E0‖.

Suppose that there is ‖Ek‖ ≤ ‖E0‖ for k ≤ n, then also utilizing Theorem 3.1 and

(3.6), we have

‖En+1‖ ≤ ‖B−1‖‖c1E
n + · · ·+ cnE

1 + dnE
0‖

≤ c1‖E
n‖+ · · · + cn‖E

1‖+ dn‖E
0‖.

Using the assumptions, ‖Ek‖ ≤ ‖E0‖ (k = 1, · · · , n), we can get

‖En+1‖ ≤ (c1 + · · ·+ cn + dn)‖E
0‖. (3.7)

It follows from Lemma 3.2 that ‖En+1‖ ≤ ‖E0‖, which implies the unconditional sta-

bility of the difference scheme (2.11). �

Denote eni = u(xi, tn) − uni (i = 1, · · · ,M − 1, n = 1, · · · , N − 1), where u(xi, tn)
be the exact solution of the forward problem (1.1) with (1.4)-(1.5) at mesh point

(xi, tn), and uni is the solution of the difference scheme (2.11) also at (xi, tn), and

en = (en1 , e
n
2 , · · · , e

n
M−1). Noting that e0i = u(xi, 0) − u0i = 0, there is e0 = 0. We give

the convergence result.

Theorem 3.3. The difference solution of (2.11) is convergent to the exact solution of the

forward problem with the convergence order of O(h2 + τ) as h, τ → 0 for any finite time

T < ∞, and there is

‖en‖ ≤
Ma

1− α+
S∑

s=1
rs(1− βs)Tα−βs

Γ(2−α)
Γ(2−βs)

Tα(h2 + τ), (3.8)

where a ≥ 1 is defined by (2.5).
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Proof. Also by the linear difference system (2.11), we have
{

Be1 = R1,
Ben+1 = c1e

n + · · ·+ cne
1 +Rn+1,

(3.9)

where Rn = (Rn
1 , R

n
2 , · · · , R

n
M−1) denotes the truncated term in the solutions’ approxi-

mation for n = 1, 2, · · · . By the expressions (2.1)–(2.4), there is a constant M > 0 such

that

‖Rn‖ ≤ Mτα(h2 + τ), n = 1, 2, · · · (3.10)

with which and also using Theorem 3.1 and Lemma 3.2 we can prove the convergence.

Actually, by (3.9) and using Theorem 3.1, we have

‖e1‖ ≤ ‖B−1‖‖R1‖ ≤ ‖R1‖ ≤ Mτα(h2 + τ). (3.11)

Moreover, we can prove by induction that

‖en+1‖ ≤
1

dnnα
MTα(h2 + τ), (3.12)

where dn is given by (2.6). In fact, we have for n = 1

‖e2‖ ≤ c1‖e
1‖+ ‖R2‖ = c1‖e

1‖+ d1‖R
2‖/d1.

Using Lemma 3.2, (3.11) and (3.10), we have

‖e2‖ ≤
1

d1

(
c1‖e

1‖+ d1‖R
2‖
)
≤

1

d1
(c1 + d1)Mτα(h2 + τ) =

1

d1
Mτα(h2 + τ).

Similarly, we can get

‖en+1‖ ≤
1

dn

( n∑

k=1

ck + dn

)
Mτα(h2 + τ).

Again using Lemma 3.2 and noting nτ ≤ T , we get the assertion (3.12). On the other

hand, we have (see Appendix A)

lim
n→∞

1

dnnα
=

a

1− α+
S∑

s=1
rs(1− βs)Tα−βsΓ(2− α)/Γ(2 − βs)

, (3.13)

where a is given by (2.5). Then by (3.12) we deduce that for sufficiently large n and

for finite time T , the assertion of the theorem is valid. �

Remark 3.1. By (3.8) we can see that the time step τ is more important than the space

step h, and it should be sufficiently small in order to get more accurate numerical

solutions. In addition, we find that if βs = α for all s = 1, 2, · · · , S, then we have also

by (3.8)

‖en‖ ≤
M

1− α
Tα(h2 + τ), (3.14)

which is in accordance with the assertion for one-term time-fractional diffusion equa-

tion given in [12].
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4. Numerical examples

4.1. Solution to the homogeneous equation

Consider the solution to the homogeneous equation (1.1) with two-term and three-

term time fractional derivatives, i.e., we are concerned with the two-term time frac-

tional diffusion equation
∂αu

∂tα
+ r0

∂βu

∂tβ
−D

∂2u

∂x2
= 0, (4.1)

and the three-term time fractional diffusion equation

∂αu

∂tα
+ r1

∂βu

∂tβ
+ r2

∂γu

∂tγ
−D

∂2u

∂x2
= 0, (4.2)

respectively, for which we can get their analytical solutions by using the method of

separating variables and Laplace transform (see Appendix B).

Example 4.1. We firstly consider the two-term time fractional diffusion equation (4.1),

where α and β are the factional orders satisfying 0 < β ≤ α < 1. Setting l = π, T = 1,

and D = 1, r0 = 0.5, and the initial function u0(x) = sin(x), then the analytical solution

is given as

u(x, t) =
∞∑

k=0

(−1)k
Dk

k!
tαk

(
E

(k)
α−β,βk+1(−r0t

α−β)

+r0t
α−βE

(k)
α−β,α−β+βk+1(−r0t

α−β)
)
sin(x). (4.3)

On the concrete computations, noting that

E
(k)
α,β =

∞∑

j=0

(k + j)!zj

j!Γ(α(k + j) + β)
,

there are

E
(k)
α−β,βk+1(−r0t

α−β) =
∞∑

j=0

(k + j)!(−r0t
α−β)j

j!Γ((α − β)(k + j) + βk + 1)
,

E
(k)
α−β,α−β+βk+1(−r0t

α−β) =

∞∑

j=0

(k + j)!(−r0t
α−β)j

j!Γ((α − β)(k + j) + α− β + βk + 1)
,

respectively. Then the analytical solution is approximated by

u(x, t) ≈

K∑

k=0

(−1)k
Dk

k!
tαk

( J∑

j=0

(k + j)!(−r0t
α−β)j

j!Γ((α − β)(k + j) + βk + 1)

+r0t
α−β

J∑

j=0

(k + j)!(−r0t
α−β)j

j!Γ((α − β)(k + j) + α− β + βk + 1)

)
sin(x). (4.4)
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Without loss of generality, we take α = 0.6 and β = 0.4 as example, and choose

K = J = 50 in the formula (4.4) to get the analytical solution. The relative errors in

the solutions at t = 0.5 with different space and time steps are listed in Table 1 and

Table 2, where h, τ denote the space and time steps respectively, and the relative error

is given by

Err =
‖u(x, 0.5) − u∗(x, 0.5)‖2

‖u(x, 0.5)‖2
, (4.5)

and u(x, 0.5) is the analytical solution approximated by (4.4), and u∗(x, 0.5) is the

difference solution worked out by (2.11).

Table 1: The solutions errors with time steps for h = π/100 in Example 4.1.

τ 1/100 1/200 1/300 1/500 1/1000

Err 2.3016e-3 1.1524e-3 7.7479e-4 4.7529e-4 2.5268e-4

Table 2: The solutions errors with space steps for τ = 1/100 in Example 4.1.

h π/100 π/200 π/300 π/500 π/1000

Err 2.3016e-3 2.2769e-3 2.2724e-3 2.2700e-3 2.2690e-3

From Tables 1 and 2, we find that the solutions errors become small as the grid

steps small, but the convergent rate is slow for the space and time steps varied with

the same scale. Noting to Theorem 3.3, we recompute the numerical solutions also for

α = 0.6 and β = 0.4 but with the grid scale of τ = h2/π2, the computational results are

listed in Table 3.

Table 3: The solutions errors with time and space steps in Example 4.1.

h τ = h2/π2 Err Rat

π/4 1/16 3.52456e-2

π/10 1/100 5.55438e-3 6.3456

π/20 1/400 1.37756e-3 4.0320

π/40 1/1600 3.42765e-4 4.0190

π/80 1/6400 8.54593e-5 4.0109

By Table 3 we can see that the solutions errors approach to zero with almost the

same rate as the steps become small in the case of τ = h2/π2, and there exists a

constant M > 0 such that

Err ≤ M(h2 + τ), h, τ → 0

which is just in accordance with the convergence analysis given in Theorem 3.3.

Moreover, choosing h = π/40 and τ = h2/π2 = 1/1600, the relative errors in

the solutions at t = 0.5 with different fractional orders are listed in Table 4, and the

analytical solution and the difference solution at t = 0.5 for α = 0.6 and β = 0.4 are

plotted in Fig. 1, respectively.
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Figure 1: The analytical and numerical solutions for α = 0.6, β = 0.4 in Example 4.1.

Table 4: The solutions errors with different fractional orders in Example 4.1.

α β Err

0.9 0.1 4.16195e-4

0.8 0.2 3.91113e-4

0.7 0.3 3.62738e-4

0.6 0.4 3.42765e-4

0.5 0.5 3.31074e-4

By the above computations, we find that the fractional orders have little influences

on solving the forward problem, and the difference solution is convergent to the an-

alytical solution as the mesh becoming fine. It seems to be more significant to the

numerical solutions for reducing the time step than that of the space step, and the nu-

merical solution converges to the analytical solution perfectly if choosing τ = h2/π2 in

this example.

Example 4.2. Consider the three-term time fractional diffusion equation (4.2), where

α, β and γ are the factional orders satisfying 0 < γ ≤ β ≤ α < 1. We also set

l = π, T = 1, and D = 1, and the initial function u0(x) = sin(x). The numerical

solution is worked out by the difference scheme (2.11), and the analytical solution in

this case is expressed by the following formula (also see Appendix B)

u(x, t) =

∞∑

m=0

(−1)m
m∑

k=0

rk2
k!(m− k)!

tαm−kγ
(
E

(m)
α−β,1+mβ−kγ(−r1t

α−β)

+r1t
α−βE

(m)
α−β,1+mβ−kγ+α−β(−r1t

α−β)

+r2t
α−γE

(m)
α−β,1+mβ−kγ+α−γ(−r1t

α−β)
)
sin(x). (4.6)

We choose the fractional orders α = 0.8, β = 0.5 and γ = 0.3, and the coefficients
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Figure 2: The analytical and numerical solutions for α = 0.8, β = 0.5, γ = 0.3 in Example 4.2.

r1 = r2 = 0.5. Like done in Example 4.1, the relative errors in the solutions at t =
0.5 with different space and time steps are listed in Tables 5-7 respectively, and the

relative error is also given by (4.5). Moreover, the analytical solution and the difference

solution at t = 0.5 for α = 0.8 and β = 0.5, γ = 0.3 are plotted in Fig. 2.

Table 5: The solutions errors with time steps for h = π/100 in Example 4.2.

τ 1/100 1/200 1/300 1/500 1/1000

Err 2.1402e-3 1.0773e-3 7.2490e-4 4.04403e-4 2.3433e-4

Table 6: The solutions errors with space steps for τ = 1/100 in Example 4.2.

h π/100 π/200 π/300 π/500 π/1000

Err 2.1402e-3 2.1206e-3 2.1169e-3 2.1151e-3 2.1143e-3

Table 7: The solutions errors with time and space steps in Example 4.2.

h τ = h2/π2 Err Rat

π/4 1/16 2.92199e-2

π/10 1/100 4.73759e-3 6.1677

π/20 1/400 1.18154e-3 4.0097

π/40 1/1600 2.94488e-4 4.0122

π/80 1/6400 7.34376e-5 4.0100

From Tables 5-7, we can see that the solutions errors have the same trends as ob-

served in Tables 1-3, respectively, and the difference solution is also in good accordance

with the analytical solution in the case of τ = h2/π2.
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Figure 3: The numerical and exact solutions for α = 0.7, β = 0.6, γ = 0.4 in Example 4.3.

4.2. Solution to the inhomogeneous equation

In this subsection, we consider the inhomogeneous equation with three-term time

fractional derivatives in the unit domain given as

∂αu

∂tα
+ r1

∂βu

∂tβ
+ r2

∂γu

∂tγ
−D

∂2u

∂x2
= f(x, t), 0 < x < 1, 0 < t < 1. (4.7)

Example 4.3. We set the exact solution be

u(x, t) = x2(1− x)2(1 + t2),

in this example, and the initial function u0(x) = x2(1− x)2. Noting to
∂β(t2)
∂tβ

= 2t2−β

Γ(3−β) ,

we get the nonzero source term

f(x, t) = 2x2(1− x)2
(

t2−α

Γ(3− α)
+ r1

t2−β

Γ(3− β)
+ r2

t2−γ

Γ(3− γ)

)

−2D(6x2 − 6x+ 1)(1 + t2).

For other parameters in the model, we take D = 1 and r1 = 1, r2 = 0.5, and we

choose the fractional orders α = 0.7, β = 0.6 and γ = 0.4 in this example, and we only

investigate the solutions errors at t = 0.5 in the case of τ = h2. The computational

results are listed in Table 8, and the numerical solution with the exact solution are

plotted in Fig. 3, respectively.

From Table 8, we can see that the solutions errors have the completely same trends

as observed in Table 3 and Table 7, and all of them effectively support the convergence

result given in Theorem 3.3. In the follows, we give an example in which the exact

solution of the forward problem is related with the fractional orders.
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Table 8: The solutions errors with time and space steps in Example 4.3.

h τ = h2 Err Rat

1/4 1/16 2.18714e-1

1/10 1/100 3.56113e-2 6.1417

1/20 1/400 8.90798e-3 3.9977

1/40 1/1600 2.22580e-3 4.0021

1/80 1/6400 5.56142e-4 4.0022

Example 4.4. Also considering the inhomogeneous diffusion equation with three-term

time fractional derivatives in the unit domain (l = 1), and we here set the exact solution

be

u(x, t) = x1+α(1− x)(1 + tβ+γ),

and the initial function u0(x) = x1+α(1− x). Then noting that

∂β(tn)

∂tβ
=

Γ(n+ 1)

Γ(n+ 1− β)
tn−β,

the nonzero source term in this case is

f(x, t) = x1+α(1− x)Γ(β + γ + 1)

(
tβ+γ−α

Γ(β + γ + 1− α)
+ r1

tγ

Γ(γ + 1)
+ r2

tβ

Γ(β + 1)

)

−D(1 + α)xα−1[α− (2 + α)x](1 + tβ+γ).

We also take D = 1, and the fractional orders α = 0.8, β = 0.7 and γ = 0.6, and

r1 = 0.5, r2 = 1.0 in this example. The solutions errors at t = 1 are listed in Table 9,

and the exact and numerical solutions are plotted in Fig. 4, respectively.
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Figure 4: The numerical and exact solutions for α = 0.8, β = 0.7, γ = 0.6 in Example 4.4.
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Table 9: The solutions errors with time and space steps in Example 4.4.

h τ = h2 Err Rat

1/4 1/16 2.48803e-2

1/10 1/100 6.12038e-3 4.0652

1/20 1/400 2.00159e-3 3.0578

1/40 1/1600 6.36046e-4 3.1469

1/80 1/6400 1.98156e-4 3.2098

Remark 4.1. If dealing with the multiple time fractional diffusion equation where S ≥
3, we can also get good numerical solutions by the difference scheme (2.11). For

example, considering the four-term time fractional diffusion equation, i.e., S = 3 in

Eq. (1), and there are α = 0.85, β1 = 0.7, β2 = 0.5 and β3 = 0.4, and r1 = 1, r2 = 2
and r3 = 0.5. We also take u(x, t) = x2(1 − x)2(1 + t2) as the exact solution, and the

diffusion coefficient D = 1, and the solutions errors at t = 1 with the mesh τ = h2

are listed in Table 10, and the corresponding numerical solutions with different meshes

and the exact solution also at t = 1 are plotted in Fig. 5, respectively.

Table 10: The solutions errors with time and space steps for S = 3 in Remark 4.1.

h τ = h2 Err Rat

1/4 1/16 1.91180e-1

1/10 1/100 3.10298e-2 6.1612

1/20 1/400 7.75687e-3 4.0003

1/40 1/1600 1.93723e-3 4.0041

1/80 1/6400 4.83833e-4 4.0039

By Table 10 and Fig. 5, we can see the difference scheme is also suitable for solving

the four-term time fractional diffusion equation, and the solutions errors have the com-

pletely same trends as observed in the above, and the numerical solutions give good

approximations to the exact solution with the space and time steps become small.

5. Conclusions

The multi-term time fractional diffusion equation can be solved analytically by

Laplace transform and separating variables method using the multivariate Mittag-Leffler

function. However, the solution’s expression is complicated and inconvenient to utiliza-

tion. The implicit finite difference scheme proposed in this paper is efficient for solving

the multi-term time fractional diffusion equation numerically. The numerical solutions

give good approximations to the exact solutions demonstrate the effectiveness of the

proposed scheme, and the convergence rates basically coincide with the theoretical

analysis as the space and time steps become small with the mesh scale of τ = Ch2,
where τ is the time step, and h is the space step, C is a constant.
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(a) τ = h2 = 1/100
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(b) τ = h2 = 1/400
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(c) τ = h2 = 1/1600
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(d) τ = h2 = 1/6400

Figure 5: Numerical and exact solutions with different meshes for S = 3 in Remark 4.1

The proposed method utilized in the proof of Theorems 3.2-3.3 can be generalized

to establish stability and convergence of the difference scheme for other fractional dif-

ferential equations, and it can also be applied to deal with numerical solutions to the

multi-term time fractional diffusion equations in multidimensional cases.
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Appendix A

In this appendix, we prove the limiting expression (3.13) is valid in the proof of

Theorem 3.3.

By (2.6), we have

dn = d1n + d2n, (A.1)
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where

d1n =
(n+ 1)1−α − n1−α

1 +
S∑

s=1
rsτα−βs

Γ(2−α)
Γ(2−βs)

, (A.2a)

d2n =

S∑
s=1

rs[(n+ 1)1−βs − n1−βs ]τα−βs Γ(2−α)
Γ(2−βs)

1 +
S∑

s=1
rsτα−βs

Γ(2−α)
Γ(2−βs)

. (A.2b)

Firstly, note that

lim
n→∞

[(n+ 1)1−α − n1−α]nα = lim
n→∞

n

(
(1 +

1

n
)1−α − 1

)

= lim
n→∞

n

(
1 +

1− α

n
+ o(

1

n
)− 1

)
= 1− α.

Then we have

lim
n→∞

d1nn
α =

1− α

1 +
S∑

s=1
rsτα−βs

Γ(2−α)
Γ(2−βs)

. (A.3)

Next, since τα−βs = (nτ)α−βsnβs−α, we rewrite d2nn
α as

d2nn
α =

S∑
s=1

rs[(n + 1)1−βs − n1−βs ]nβs(nτ)α−βs Γ(2−α)
Γ(2−βs)

1 +
S∑

s=1
rsτα−βs

Γ(2−α)
Γ(2−βs)

.

Then by lim
n→∞

[(n + 1)1−βs − n1−βs]nβs = 1− βs, and lim
n→∞

nτ = T , we can get

lim
n→∞

d2nn
α =

S∑
s=1

rs(1− βs)T
α−βs Γ(2−α)

Γ(2−βs)

1 +
S∑

s=1
rsτα−βs

Γ(2−α)
Γ(2−βs)

. (A.4)

By (A.1), and combining (A.3) with (A.4), we verified that (3.13) is valid. �

Appendix B

In this appendix, we deduce the analytical solutions for the two-term and the three-

term time fractional diffusion equations given by (4.1) and (4.2) respectively. We take
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the diffusion equation with three-term time fractional derivatives as example, and con-

sider the following initial boundary value problem

∂αu

∂tα
+ r1

∂βu

∂tβ
+ r2

∂γu

∂tγ
= D

∂2u

∂x2
, 0 < x < l, t > 0, (B.1a)

u(0, t) = u(l, t) = 0, t > 0, (B.1b)

u(x, 0) = u0(x), 0 ≤ x ≤ l. (B.1c)

Utilizing the method of separating variables and Laplace transform, we can get the

analytical solution to the problem (B.1).

Actually, noting to the homogeneous Dirichelet boundary conditions, the solution

of the problem (B.1) is expressed by

u(x, t) =
∞∑

n=1

pn(t)ϕn(x), (B.2)

where ϕn(x) =
√

2/l sin(nπx
l
) (n = 1, 2, · · · ,) are the orthogonal eigenfunctions corre-

sponding to the eigenvalues λn = Dn2π2/l2, and pn(t) satisfying the fractional ordinary

differential equation

dαpn
dtα

+ r1
dβpn
dtβ

+ r2
dγpn
dtγ

+ λnpn = 0, (B.3)

with the initial condition

pn(0) = (u0, ϕn) := p0n. (B.4)

Denoting p̄n(η) =
∫∞

0 e−ηtpn(t)dt (Re(η) > η0), and utilizing Laplace transform for

equation (B.3), we have

ηαp̄n(η) − ηα−1p0n + r1

(
ηβ p̄n(η) − ηβ−1p0n

)
+ r2

(
ηγ p̄n(η)− ηγ−1p0n

)
+ λnp̄n(η) = 0,

and noting r1, r2 > 0 and λn > 0, we can get

p̄n(η) =
ηα−1 + r1η

β−1 + r2η
γ−1

ηα + r1ηβ + r2ηγ + λn
p0n. (B.5)

Denote

ḡn(η) =
ηα−1 + r1η

β−1 + r2η
γ−1

ηα + r1ηβ + r2ηγ + λn
.

Then it can be verified that

ḡn(η) =
ηα−β−1 + r1η

−1 + r2η
γ−β−1

ηα−β + r1

1

1 + r2ηγ−β+λnη−β

ηα−β+r1

.

Since
1

1 + r2ηγ−β+λnη−β

ηα−β+r1

=

∞∑

m=0

(−1)m
(r2η

γ−β + λnη
−β)m

(ηα−β + r1)m
,

https://doi.org/10.4208/nmtma.2016.y13024 Published online by Cambridge University Press

https://doi.org/10.4208/nmtma.2016.y13024


Numerical Solution to the Time Fractional Diffusion Equation 355

we have

ḡn(η) =

∞∑

m=0

(−1)m
ηα−β−1 + r1η

−1 + r2η
γ−β−1

(ηα−β + r1)m+1

m∑

k=0

Ck
m(r2η

γ−β)k(λnη
−β)m−k, (B.6)

where Ck
m = m!

k!(m−k)! . Then by the well-known Laplace transform formula (see, e.g.,

[23]) ∫ ∞

0
e−ηttαm+β−1E

(m)
α,β (−ctα)dt =

m!ηα−β

(ηα + c)m+1
,

where c is a constant, m ∈ N, and E
(m)
α,β (z) = dk

dzk
Eα,β(z), and Eα,β(z) is the two-

parameter Mittag-Leffer function defined by

Eα,β(z) =

∞∑

j=0

zj

Γ(αj + β)
,

we can get

gn(t) =
∞∑

m=0

(−1)mλm
n

m∑

k=0

(r2/λn)
k

k!(m− k)!
tmα−kγ

(
E

(m)
α−β,1+mβ−kγ(−r1t

α−β)

+r1t
α−βE

(m)
α−β,1+mβ−kγ+α−β(−r1t

α−β)

+r2t
α−γE

(m)
α−β,1+mβ−kγ+α−γ(−r1t

α−β)
)
. (B.7)

Hence, we get the solution of the ordinary fractional differential equation (B.3) with the

initial condition (B.4) which is pn(t) = p0ngn(t), and the analytical solution of problem

(B.1) is given by

u(x, t) =
∞∑

n=1

p0ngn(t)ϕn(x). (B.8)

In the case of l = π,D = 1, and u0(x) = sin(x), there are p01 =
√

π
2 and p0n = 0

for n ≥ 2, and λn = Dn2 = n2, then the exact solution is expressed by u(x, t) =
p01g1(t)ϕ1(x) = g1(t) sin(x), which leads to the expression (4.6).

With a similar method as used in the above, we can get the analytical solution (4.3)

for the two-term time fractional diffusion equation with the same initial boundary value

conditions as used for the three-term case.
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