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Developing a model to describe the shock-accelerated cylindrical fluid layer with arbitrary
Atwood numbers is essential for uncovering the effect of Atwood numbers on the
perturbation growth. The recent model (J. Fluid Mech., vol. 969, 2023, p. A6) reveals
several contributions to the instability evolution of a shock-accelerated cylindrical fluid
layer but its applicability is limited to cases with an absolute value of Atwood numbers
close to 1, due to the employment of the thin-shell correction and interface coupling effect
of the fluid layer in vacuum. By employing the linear stability analysis on a cylindrical
fluid layer in which two interfaces separate three arbitrary-density fluids, the present work
generalizes the thin-shell correction and interface coupling effect, and thus, extends the
recent model to cases with arbitrary Atwood numbers. The accuracy of this extended
model in describing the instability evolution of the shock-accelerated fluid layer before
reshock is confirmed via direct numerical simulations. In the verification simulations, three
fluid-layer configurations are considered, where the outer and intermediate fluids remain
fixed and the density of the inner fluid is reduced. Moreover, the mechanisms underlying
the effect of the Atwood number at the inner interface on the perturbation growth are
mainly elucidated by employing the model to analyse each contribution. As the Atwood
number decreases, the dominant contribution of the Richtmyer–Meshkov instability is
enhanced due to the stronger waves reverberated inside the layer, leading to weakened
perturbation growth at initial in-phase interfaces and enhanced perturbation growth at
initial anti-phase interfaces.
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1. Introduction

The hydrodynamic instability of a shock-accelerated finite-thickness fluid layer has great
significance in the dynamical characteristics of various phenomena, including inertial
confinement fusion (ICF, Betti & Hurricane 2016) and supernova explosions (Arnett et al.
1989). Specifically, laser-generated shocks in ICF passing through layers of a capsule
containing fusion fuel can lead to capsule material mixing into the fuel (Kishony & Shvarts
2001; Abu-Shawareb et al. 2022; Wadas et al. 2023), while shocks generated from rapid
energy release in core-collapse supernovae propagate outward through the layers of the
collapsing stars, causing heavy core elements to jet into outer layers (Kane, Drake &
Remington 1999; Hester 2008; Abarzhi et al. 2019). Therefore, it is important for scientific
and engineering communities to explore the instability evolution of a shock-accelerated
finite-thickness fluid layer.

Hydrodynamic instabilities frequently occur on a perturbed interface between two
fluids with different densities. They are usually referred to as the Rayleigh–Taylor (RT)
instability when the heavy fluid is persistently accelerated by the light one (Rayleigh 1883;
Taylor 1950), or the Richtmyer–Meshkov (RM) instability when the interface is subjected
to an impulsive force typically by a shock wave (Richtmyer 1960; Meshkov 1969). Both
instabilities are induced by the baroclinic vorticity produced by the misaligned directions
of density and pressure gradients (Zhou et al. 2019, 2021). These instabilities occurring
at a shock-accelerated fluid layer in planar geometry depend not only on the fluid-layer
thickness and initial layer shape but also the waves reverberated inside the fluid layer.
Specifically, the interface coupling effect illustrating the perturbation feedthrough from
one interface to another becomes increasingly evident as the initial fluid-layer thickness
decreases (Taylor 1950; Mikaelian 1985, 1995; Jacobs et al. 1993, 1995; Mikaelian 1996).
Also the morphologies of shocked fluid layers are strongly sensitive to the initial layer
shape (Jacobs et al. 1993, 1995), such that proper perturbations initially imposed at the two
interfaces can lead to the freeze out of amplitude where the amplitude growth stagnates
(Mikaelian 1995, 1996). In addition, the waves reverberated inside a fluid layer can
significantly affect the fluid-layer evolution via the following complicated mechanisms.
First, the waves continuously accelerate or decelerate the perturbed interfaces, causing
RT destabilization/stabilization effect (Liang et al. 2020; Liang & Luo 2021). Second,
the waves passing through the perturbed interfaces lead to sudden decreases/increases
of amplitudes, which are called compression/decompression effects of waves (Richtmyer
1960; Liang & Luo 2021). Third, additional baroclinic vorticity is deposited on the
interface during wave–interface collision to enhance or cancel original vorticity produced
by the initial incident shock (Henry de Frahan, Movahed & Johnsen 2015; Liang & Luo
2022b; Chen et al. 2023a,b). In recent experiments, it was expected that the Atwood
number serves as an important factor for interface coupling effect and reverberating waves
(Liang & Luo 2022a, 2023). However, the quantitative effect of arbitrary Atwood number
on the instability evolution is still not fully understood.

The researches mentioned above have primarily focused on the planar geometry of
fluid layers. However, in practical applications such as ICF (Betti & Hurricane 2016) and
supernovae (Kane et al. 1999), convergent counterparts are more commonly encountered
and are of greater practical interest (Mikaelian 1990, 2005; Ding et al. 2019; Sun et al.
2020; Li et al. 2022; Yuan et al. 2023; Zhang et al. 2023). The instability evolution of
a shock-accelerated cylindrical fluid layer with initial perturbations imposed at outer and
inner interfaces was investigated by experiments (Ding et al. 2019; Sun et al. 2020; Li
et al. 2022). These observations have shown that several factors, including RM instability,
RT effect, compressibility effect (Bell 1951; Epstein 2004), Bell–Plesset (BP) effect
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(Bell 1951; Plesset 1954) and waves reverberated inside the fluid layer, significantly
influence the growth characteristics of the perturbations at shocked cylindrical fluid layers.
Zhang et al. (2020) modelled the instability evolution of a cylindrical fluid shell in
vacuum and found that effects of thin-shell correction and the interface coupling effect
are significant to the perturbation growths at thin fluid layers. Recently, Yuan et al.
(2023) identified various contributions to the perturbation growth at a shock-accelerated
cylindrical fluid layer, including RM instability, RT effect, compressibility effect,
thin-shell correction, interface coupling effect, compression/decompression effects of
reverberated waves and BP effect. Yuan et al. (2023) also proposed an improved model
by linear combination of the model of Zhang et al. (2020) and the compressible Bell
model (Bell 1951; Epstein 2004) describing the single interface to quantify all above
contributions. Since the interface coupling effect and thin-shell correction in this improved
model are formulated based on the assumption of a cylindrical fluid shell in vacuum, the
model is only applicable for a shock-accelerated cylindrical fluid layer with high Atwood
numbers. However, the Atwood number in applications has a wide range and its effect
on the perturbation growth is critical (Amendt et al. 2002; Betti & Hurricane 2016;
Abu-Shawareb et al. 2022). As a result, the underlying mechanisms of Atwood number
effects on instability evolution of a shock-accelerated cylindrical fluid layer remains
unclear.

In the present work a model is derived theoretically to predict the instability evolution of
a shock-accelerated cylindrical fluid layer with arbitrary Atwood numbers. The verification
of the model is accomplished by conducting a comparison with direct numerical
simulations (DNS) of three fluid-layer configurations in which the outer and intermediate
fluids are kept fixed and the density of the inner fluid is reduced. Via the derived model,
the mechanisms underlying the effect of the Atwood number at the inner interface on the
perturbation growth are elucidated. The remainder of this paper is organized as follows.
The derivation of the model is detailed in § 2. The numerical strategy used to simulate the
instability evolution is described in § 3. The model validation and the effect of Atwood
number are discussed in § 4. The conclusions are addressed in § 5. Furthermore, two
additional verification simulations are provided in the Appendix.

2. Modelling of instability evolution

A linear stability analysis is employed here to derive the model describing the perturbation
growth at the inner and outer interfaces of a cylindrical fluid layer. As shown in figure 1, a
general cylindrical fluid-layer system where two interfaces separate three arbitrary-density
fluids j = A, B and C at r > r1, r1 > r > r2 and r < r2, respectively, is considered. Here,
r1 and r2 represent the radii of unperturbed outer and inner interfaces, respectively. The
flow is assumed as potential and, thus, the velocity of fluid j is given as the gradient of the
velocity potential φj. The flow is further assumed as incompressible, such that φj can be
determined by the solution of the Laplace equation

∇2φj = 0. (2.1)

Similar to Bell (1951) and Zhang et al. (2020), a cosinoidal perturbation is introduced
at each interface as

r = ri(t) + εηi(t) cos(nθ), (2.2)

where ηi(t) and n denote the perturbation amplitude and wavenumber, respectively. Note
that ε is only a formal parameter used to keep the order of the perturbations. Subscripts
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r1

C

A

B

r2

Figure 1. Schematic illustration of a general fluid-layer system including three arbitrary-density fluids A, B
and C. Here, r1 and r2 are the radial locations of unperturbed outer and inner interfaces, respectively.

i = 1 and 2 correspond to the quantities at the outer and inner interfaces, respectively. To
the first order of ε, the velocity potential φj can be derived from (2.1) as

φA = r1ṙ1 ln r + εa(t)r−n cos(nθ), (2.3)

φB = riṙi ln r + εb(t)rn cos(nθ) + εc(t)r−n cos(nθ), (2.4)

φC = r2ṙ2 ln r + εd(t)rn cos(nθ), (2.5)

where a(t), b(t), c(t) and d(t) are time-dependent functions and the dots represent time
derivatives. Note that i = 1 or 2 in (2.4). Because the flow is assumed to be incompressible,
there is r1ṙ1 = r2ṙ2 (Zhang et al. 2020). At the interface (2.2), the kinematic condition
representing the continuity of the velocity component normal to the interface (Mikaelian
1990, 2005) must be satisfied and its linearized formation is as follows:

ṙi + εη̇i cos(nθ) = ∂φj

∂r
. (2.6)

Here, if i = 1 then j = A or B, and if i = 2 then j = B or C. Substituting (2.3)–(2.5) into
(2.6) yields the formulas of a(t), b(t), c(t) and d(t) as follows:

a(t) = −r1η̇1 + ṙ1η1

nr−n
1

, (2.7a)

b(t) = η̇1rn+1
1 + ṙ1rn

1η1 − η̇2rn+1
2 − ṙ2rn

2η2

n(r2n
1 − r2n

2 )
, (2.7b)

c(t) = η̇2r−n+1
2 + ṙ2r−n

2 η2 − η̇1r−n+1
1 − ṙ1r−n

1 η1

n(r−2n
1 − r−2n

2 )
, (2.7c)

d(t) = r2η̇2 + ṙ2η2

nrn
2

. (2.7d)

Furthermore, the pressure of each fluid can be determined by applying the Bernoulli
equation for unsteady potential flow. Thus, the dynamic conditions representing the

1000 A9-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.991


Instability evolution on cylindrical fluid layer

continuity of the pressure at the outer and inner interfaces can be expressed as

(1 − AT,1)

(
∂φA

∂t
+ 1

2
∇φA·∇φA

)
− (1 + AT,1)

(
∂φB

∂t
+ 1

2
∇φB·∇φB

)
= f1(t) (2.8)

and

(1 − AT,2)

(
∂φB

∂t
+ 1

2
∇φB·∇φB

)
− (1 + AT,2)

(
∂φC

∂t
+ 1

2
∇φC·∇φC

)
= f2(t), (2.9)

respectively, where the Atwood number is defined as AT,i = (ρi,in − ρi,out)/(ρi,in + ρi,out)
with ρi,in and ρi,out representing the inner and outer fluid densities of the ith interface,
respectively, and f1(t) and f2(t) are the time-dependent functions. By substituting (2.3)
and (2.4) into (2.8) and substituting (2.4) and (2.5) into (2.9), and then equalizing the
coefficients of zeroth-order and first-order terms of ε on both sides of (2.8) and (2.9),
f1, f2, η1 and η2 can be determined. Specifically, f1(t) and f2(t) are determined by the
coefficients of the zeroth-order terms of ε as f1(t) = −2AT,1[(r̈1r1 + ṙ2

1) ln r1 + ṙ2
1/2] and

f2(t) = −2AT,2[(r̈2r2 + ṙ2
2) ln r2 + ṙ2

2/2], respectively. The governing equations for η1 and
η2 are derived from the coefficients of the first-order terms of ε as

(α2n + AT,1)(r̈1η1 + 2ṙ1η̇1 + r1η̈1) − αn(1 + AT,1)(r2η̈2 + 2ṙ2η̇2 + r̈2η2)

n(α2n − 1)

+ (1 + AT,1)

(α−2 − 1)(α3n + αn)(ṙ2η̇2 + r−1
2 ṙ2

2η2) − (α4n − 2α2n+2 + 1)(ṙ1η̇1 + ṙ2
1r−1

1 η1)

(α2n − 1)2

+ AT,1r̈1η1 + (1 + AT,1)ṙ1η̇1 + (1 + AT,1)ṙ2
1r−1

1 η1 = 0 (2.10)

and

αn(1 − AT,2)(r1η̈1 + 2ṙ1η̇1 + r̈1η1) − (α2n − AT,2)(r̈2η2 + 2ṙ2η̇2 + r2η̈2)

n(α2n − 1)

+ (1 − AT,2)

(α3n + αn)(α2 − 1)(ṙ1η̇1 + r−1
1 ṙ2

1η1) − (α4n − 2α2n−2 + 1)(ṙ2η̇2 + r−1
2 ṙ2

2η2)

(α2n − 1)2

− AT,2r̈2η2 + (1 − AT,2)ṙ2η̇2 + (1 − AT,2)ṙ2
2r−1

2 η2 = 0, (2.11)

where α = r1/r2 is the radius ratio. Note that both (2.10) and (2.11) include η̈1 and η̈2,
and thus, cannot individually describe the perturbation growths of the outer and inner
interfaces. In order to provide separate descriptions of the perturbation growths of the outer
and inner interfaces, η̈2 in (2.10) and η̈1 in (2.11) are eliminated by the linear combinations
of (2.10) and (2.11), i.e. (α2n − AT,2) (2.10) −αn(1 + AT,1) (2.11) and αn(1 − AT,2) (2.10)
−(α2n + AT,1) (2.11), respectively. Then the governing equations for η1 and η2 can be
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further written as

d(r2
1η̇1)

dt
+ (nAT,1 + 1)r1r̈1η1 − nAT,1AT,2(1 + AT,1)

(α2n + AT,1AT,2)
r1r̈1η1

+ nα2n(α2 − 1)(1 + AT,1)(1 + AT,2)(r1ṙ1η̇1 + ṙ2
1η1)

(α2n − 1)(α2n + AT,1AT,2)

= nα3n+1(α2 − 1)(1 + AT,1)(1 + AT,2)ṙ2
1η2

(α2n − 1)(α2n + AT,1AT,2)

− nαn+1(1 + AT,1)AT,2r1r̈1η2

(α2n + AT,1AT,2)
+ nαn−1(α2 − 1)(1 + AT,1)(α

2n + AT,2)r1ṙ1η̇2

(α2n − 1)(α2n + AT,1AT,2)
(2.12)

and

d(r2
2η̇2)

dt
+ (nAT,2 + 1)r2r̈2η2 + nAT,1AT,2(1 − AT,2)

(α2n + AT,1AT,2)
r2r̈2η2

+ nα2n−2(α2 − 1)(1 − AT,1)(1 − AT,2)(r2ṙ2η̇2 + ṙ2
2η2)

(α2n − 1)(α2n + AT,1AT,2)

= nα3n−3(α2 − 1)(1 − AT,1)(1 − AT,2)ṙ2
2η1

(α2n − 1)(α2n + AT,1AT,2)

− nαn−1AT,1(1 − AT,2)r2r̈2η1

(α2n + AT,1AT,2)
+ nαn−1(α2 − 1)(1 − AT,2)(α

2n − AT,1)r2ṙ2η̇1

(α2n − 1)(α2n + AT,1AT,2)
,

(2.13)

respectively. The second terms on the left-hand side of (2.12) and (2.13) correspond to the
RT effect caused by non-uniform motion of the interface. The third and fourth terms on the
left-hand side represent the thin-shell correction. All three terms on the right-hand side of
(2.12) and (2.13) are interface coupling effects describing the influences of the perturbation
at one interface on that at another. Both the thin-shell correction and interface coupling
effect will be insignificant when the thickness increases (i.e. α → ∞). However, it is
crucial to consider these two effects in thin fluid layers. When AT,1 = 1 and AT,2 = −1,
(2.12) and (2.13) are reduced to the model of Zhang et al. (2020) describing the instability
evolution of a cylindrical fluid shell in vacuum. Therefore, the present model extends the
model of Zhang et al. (2020) and analytically describes the perturbation growth of an
incompressible cylindrical fluid layer with arbitrary Atwood numbers.

Following Ding et al. (2017) and Luo et al. (2019), the perturbation amplitude can be
obtained by integrating (2.12) and (2.13) from t0 to t twice as

ηi = ηi,RM + ηi,RT + ηi,Thin + ηi,Cou. (2.14)

Here, ηi,RM represents the perturbation growth due to RM instability, ηi,RT is the
contribution of the RT effect to the perturbation growth, ηi,Thin denotes the growth induced
by the thin-shell correction and ηi,Cou represents the contribution of the interface coupling
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effect. Specifically,

ηi,RM =
∫ t

t0

r2
i,t+j

η̇i,t+j

r2
i (τ )

dτ, (2.15)

where ri,t+j
and η̇i,t+j

in (2.15) represent the position and growth rate of the ith interface at

the end moment t+j of the jth wave passing through the interface, and

ηi,RT =
∫ t

t0
−nAT,i + 1

r2
i (t

′)

∫ t′

t0
ri(τ )r̈i(τ )ηi(τ ) dτ dt′. (2.16)

Terms η1,Thin and η2,Thin take forms as

η1,Thin =
∫ t

t0

1
r2

1(t
′)

{∫ t′

t0

nAT,1AT,2(1 + AT,1)

α2n(τ ) + AT,1AT,2
r1(τ )r̈1(τ )η1(τ ) dτ

−
∫ t′

t0

nα2n(τ )[α2(τ ) − 1](1 + AT,1)(1 + AT,2)

[α2n(τ ) − 1][α2n(τ ) + AT,1AT,2]
r1(τ )ṙ1(τ )η̇1(τ ) dτ

−
∫ t′

t0

nα2n(τ )[α2(τ ) − 1](1 + AT,1)(1 + AT,2)

[α2n(τ ) − 1][α2n(τ ) + AT,1AT,2]
ṙ2

1(τ )η1(τ ) dτ

}
dt′ (2.17)

and

η2,Thin =
∫ t

t0

1
r2

2(t
′)

{
−

∫ t′

t0

nAT,1AT,2(1 − AT,2)

α2n(τ ) + AT,1AT,2
r2(τ )r̈2(τ )η2(τ ) dτ

−
∫ t′

t0

nα2n−2(τ )[α2(τ ) − 1](1 − AT,1)(1 − AT,2)

[α2n(τ ) − 1][α2n(τ ) + AT,1AT,2]
r2(τ )ṙ2(τ )η̇2(τ ) dτ

−
∫ t′

t0

nα2n−2(τ )[α2(τ ) − 1](1 − AT,1)(1 − AT,2)

[α2n(τ ) − 1][α2n(τ ) + AT,1AT,2]
ṙ2

2(τ )η2(τ ) dτ

}
dt′, (2.18)

respectively. Terms η1,Cou and η2,Cou are read as

η1,Cou =
∫ t

t0

1
r2

1(t
′)

{
−

∫ t′

t0

nαn+1(τ )(1 + AT,1)AT,2

α2n(τ ) + AT,1AT,2
r1(τ )r̈1(τ )η2(τ ) dτ

+
∫ t′

t0

nαn−1(τ )[α2(τ ) − 1](1 + AT,1)[α2n(τ ) + AT,2]
[α2n(τ ) − 1][α2n(τ ) + AT,1AT,2]

r1(τ )ṙ1(τ )η̇2(τ ) dτ

+
∫ t′

t0

nα3n+1(τ )[α2(τ ) − 1](1 + AT,1)(1 + AT,2)

[α2n(τ ) − 1][α2n(τ ) + AT,1AT,2]
ṙ2

1(τ )η2(τ ) dτ

}
dt′ (2.19)
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and

η2,Cou =
∫ t

t0

1
r2

2(t
′)

{
−

∫ t′

t0

nαn−1(τ )AT,1(1 − AT,2)

α2n(τ ) + AT,1AT,2
r2(τ )r̈2(τ )η1(τ ) dτ

+
∫ t′

t0

nαn−1(τ )[α2(τ ) − 1](1 − AT,2)[α2n(τ ) − AT,1]
[α2n(τ ) − 1][α2n(τ ) + AT,1AT,2]

r2(τ )ṙ2(τ )η̇1(τ ) dτ

+
∫ t′

t0

nα3n−3(τ )[α2(τ ) − 1](1 − AT,1)(1 − AT,2)

[α2n(τ ) − 1][α2n(τ ) + AT,1AT,2]
ṙ2

2(τ )η1(τ ) dτ

}
dt′, (2.20)

respectively.
It is worth noting that (2.14) derived within the framework of the incompressible

potential flow inherently disregards the compressibility effect and the compression and/or
decompression effect of waves. Here, the compressibility effect refers to the effect of fluid
compression caused by the basic flow to the centre of cylindrical geometry (Bell 1951;
Epstein 2004). Moreover, the compression or decompression effect of waves denotes the
sudden decrease/increase in the perturbation amplitude during the wave passing through
the interface (Richtmyer 1960; Liang & Luo 2021). Evidently, these two effects describe
distinct physical processes compared with the incompressible model and make noteworthy
contributions to perturbation growth on the cylindrical interface (Luo et al. 2019; Yuan
et al. 2023; Zhang et al. 2023). These two effects can be modelled as following two terms.
Specifically, according to Bell (1951) and Epstein (2004), the compressibility effect caused
by the base flow to the centre after the impact of the incident shock can be modelled as

ηi,Com =
∫ t

t0

ci

r2
i (t

′)

[∫ t′

t0
ri(τ )ṙi(τ )ηi(τ ) dτ +

∫ t′

t0
r2

i (τ )η̇i(τ ) dτ

]
dt′, (2.21)

where the parameter ci = −ρ̇i,in/ρi,in = −ρ̇i,out/ρi,out is the expansion rate of the species
at the ith interface. The expansion rate can be approximated as a constant value, ci ≈
[(ri,min/ri,0)

2 − 1]/tres (Luo et al. 2019; Wu, Liu & Xiao 2021), where ri,min denotes
the smallest radius of the ith interface during its motion, ri,0 is the initial position
of the ith interface and tres represents the time when the reshock happens. Moreover,
the compression/decompression effect represents the sudden decrease/increase of the
perturbation amplitude of the interface impacted by one known wave (Richtmyer 1960;
Liang & Luo 2021). For a shock-accelerated fluid layer, the inner and outer interfaces
are successively impacted by several waves as a result of reverberations inside the
layer. The overall variations of the perturbation amplitudes on the interfaces caused
by the compression/decompression effects of the successive waves can be modelled by
accumulating every rapid decrease/increase of the amplitude induced by each wave (Yuan
et al. 2023),

ηi,CD = ηi,t0 +
∫ t

t0


V(τ )

2
dτ, (2.22)

where ηi,t0 is the initial amplitude of the ith interface at t0. The function 
V(τ ) defined
in (2.22) represents the radial velocity jump of the unperturbed interface at the moment
τ , namely if t−j < τ < t+j , 
V(τ ) = ±|
Vj|, otherwise 
V(τ ) = 0. Here, 
Vj is the jth
radial velocity jump of the interface impacted by the jth wave reverberated inside the fluid
layer, t−j and t+j are the beginning and end moments of the jth wave passing through the
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Instability evolution on cylindrical fluid layer

interface and the operators ‘+’ and ‘−’ before the term |
Vj| represent decompression
and compression effects.

Typically, the terms describing the above two effects are linearly superimposed on
incompressible models, and it has been demonstrated that the resulting superimposed
model effectively describes the instability evolution on cylindrical interfaces. Specifically,
via a comparative analysis of compressible and incompressible models of instability
evolution for the cylindrical interface (Bell 1951; Epstein 2004; Luo et al. 2019; Zhang
et al. 2023), the term (2.21) describing the compressibility effect resulting from the
base flow towards the centre can be linearly superimposed on the incompressible model.
Moreover, the term (2.22) modelling the compression/decompression effect of waves
has been linearly superimposed on the incompressible model by Zhang et al. (2023) to
effectively describe instability evolution in the heavy fluid layer impacted by a divergent
shock. To this end, the terms (2.21) and (2.22) are linearly superimposed on (2.14) as

ηi = ηi,RM + ηi,RT + ηi,Thin + ηi,Cou + ηi,Com + ηi,CD, (2.23)

thereby improving the incompressible model to predict the perturbation growth on a
shock-accelerated cylindrical fluid layer with arbitrary Atwood numbers. It is possible
to model the perturbation growth in this linear superposition because each contribution
in the model (2.23) represents an independent physical mechanism responsible for
the perturbation growth (Bell 1951; Epstein 2004; Zhang et al. 2020). Moreover,
the incompressible terms (2.14) are derived from the linear stability analysis, which
assumes the perturbation amplitudes to be small (ηi/λi � 0.1) (Bell 1951; Epstein 2004).
Therefore, the nonlinear effects associated with the higher-order terms of amplitude can
be disregarded and are not considered in the contributions at the linear stage of the
perturbation growth.

It is important to note that the use of the present model (2.23) requires obtaining the
ith interface’s trajectory ri(t), post-shock Atwood number AT,i, expansion rate ci and the
velocity jump induced by the jth wave 
Vj from the base flow, i.e. shock-accelerated
unperturbed cylindrical fluid layer (Wu et al. 2021). Moreover, the beginning t−j and
end t+j moments of the jth wave passing through the perturbed interface and the growth
rate η̇i,t+j

of the perturbation on the ith interface at t+j need to be obtained from numerical
or experimental data (Ding et al. 2017; Wu et al. 2021; Yuan et al. 2023; Zhang et al.
2023). According to previous work (Luo et al. 2019; Zou et al. 2019; Wu et al. 2021), the
impact of shock waves on the interface causes rapid changes in the amplitude and growth
rate of the perturbation at the interface. To include the effect of shock wave interaction on
the growth rate, the integrals in the model are performed piecewise in the time between
wave interactions and the growth rate in the RM term ηi,RM is updated from the DNS
results at time t+j . The change in perturbation amplitude caused by the impact of a shock
wave is modelled by the compression/decompression term ηi,CD. Consequently, the present
model (2.23) is capable of describing the entire process of the instability evolution in a
shock-accelerated cylindrical fluid layer.

3. Numerical methods

3.1. Governing equations
Direct numerical simulation has been performed to obtain the instability evolution of the
shock-accelerated fluid layer in cylindrical geometry and then to validate the present model
(2.23). The pressure p∗

A and density ρ∗
A of unshocked outer fluid A, as shown in figure 1,
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are chosen as the characteristic scales. Here, the characteristic velocity and temperature
are described, respectively, as u∗

A = √
p∗

A/ρ∗
A and T∗

A = p∗
AM∗

A/(R∗ρ∗
A) with the universal

gas constant R∗ and fluid A’s molar mass M∗
A. Hereafter, the superscript ‘∗’ denotes

the dimensional physical quantity and the subscript ‘A’ corresponds to the quantity of
unshocked fluid A. The radius of the unperturbed outer interface r∗

1 has been used as the
characteristic length. Thus, the non-dimensionalized governing equations in cylindrical
coordinates (r, θ) are

∂ρ

∂t
+ ∇·(ρu) = 0, (3.1)

∂(ρu)

∂t
+ ∇·(ρuu) = −∇p + 1

Re
∇·τ , (3.2)

∂(ρE)

∂t
+ ∇·[(ρE + p)u] = 1

Re
∇·(τ ·u) − 1

RePr
∇·qc − 1

ReSc
∇·qd, (3.3)

∂(ρYi)

∂t
+ ∇·(ρYiu) = − 1

ReSc
∇·J i, i = A, B, (3.4)

where ρ is the fluid density; u = (ur, uθ ) denotes the velocity vector; p is the pressure; E =
CvT + u·u/2 denotes the specific total energy with the specific heat at constant volume Cv

and the temperature T; YA = ρA/ρ and YB = ρB/ρ are the species mass fractions of fluids
A and B, respectively, and YC = 1 − YA − YB is the species mass fraction of fluid C; and
the symbol ∇ denotes the vector-differentiation operator. The stress tensor is obtained as
τ = 2μS − 2μ/3(∇·u)δ, where μ is the dynamic viscosity, S = (∇u + (∇u)T)/2 is the
strain-rate tensor and δ represents the unit tensor. The heat fluxes due to heat conduction
(qc) and interspecies enthalpy diffusion (qd) are given by qc = −γA/[MA(γA − 1)]κ∇T
and qd = ∑

i hiJ i(i = A, B, C), respectively, where γA is the ratio of specific heats of fluid
A, MA is the molar mass of fluid A, κ is the heat conduction coefficient, hi is the enthalpy,
J i = −ρD∇Yi is the diffusive mass flux obtained by the Fick law and D is the diffusion
coefficient. The above governing equations are closed with the non-dimensionalized ideal
gas equation of state, i.e. p = ρT/M, where M is the molar mass. Based on

∑
i Yi = 1, the

summation of the species mass fraction transport equations of all species given by (3.4) can
be reasonably recovered as the continuity equation (3.1) for the mixture density. Moreover,
the same difference scheme should be used to approximate ∇Yi for each species, ensuring
that the numerical simulation satisfies

∑
i(∇·Ji) = 0.

Following Ge et al. (2022), the density and pressure of the mixture are obtained by the
summation of each species, while the temperature is equal for each species of the mixture.
Therefore, the molecular mass of the mixture is given by M = (

∑
Yi/Mi)

−1, where Mi
is the molecular mass of the ith species. The quantities describing the physical properties
of the mixture, such as the dynamic viscosity μ, the diffusion coefficient D, the heat
conduction coefficient κ , the specific heat at constant pressure Cp and the specific heat at
constant volume Cv , are calculated by the linear combinations of each species weighted
with their mass fractions. The dynamic viscosity of the ith species μi is computed by the
Sutherland law as

μi = μ∗
0,i

μ∗
A

(
T∗

AT
T∗

0

)3/2 T∗
0 + T∗

s

T∗
AT + T∗

s
, (3.5)

where T∗
s = 124 K and μ∗

0,i is the dynamic viscosity at the reference temperature T∗
0 =

273.15 K. The heat conduction coefficient κi and diffusion coefficient Di of the ith
species can be obtained by the constant Prandtl number, Pri = C∗

p,iμ
∗
i /κ

∗
i , and the constant

Schmidt number, Sci = μ∗
i /(ρ

∗
i D∗

i ), respectively. The specific heat at constant pressure
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Instability evolution on cylindrical fluid layer

Species ρ∗
i (kg m−3) p∗

i (kPa) T∗
i (K) γi Pri Sci M∗

i (g mol−1) μ∗
0,i (kg m−1 s−1)

Ne 0.83 101.325 298 1.68 0.67 0.676 20.18 1.4757 × 10−5

Air 1.18 101.325 298 1.40 0.72 0.757 28.96 1.7161 × 10−5

CO2 1.80 101.325 298 1.31 0.77 0.766 44.01 1.3711 × 10−5

Kr 3.43 101.325 298 1.67 0.67 0.674 83.80 2.3219 × 10−5

SF6 5.98 101.325 298 1.09 0.80 0.691 146.06 1.2388 × 10−5

Table 1. Initial unshocked parameters of the species. Here the subscript i = N, A, C, K and S represents the
species Ne (Neon), air, CO2 (Carbon Dioxide), Kr (Krypton) and SF6 (Sulphur hexafluoride), respectively.

can be calculated by C∗
p,i = γiR∗/[(γi − 1)M∗

i ]. Moreover, the parameters of fluids to
obtain the quantities describing the mixture properties are listed in table 1. Note that the
present model (2.23) based on the potential flow assumption is suitable for describing
the instability evolutions of shock-accelerated fluid layers without viscosity or with high
Reynolds number. However, to get closer to the interfacial instability in real applications
or experiments, the gases with real parameters are selected for the simulation and the
viscosity of gas is included.

The non-dimensional parameters in (3.1)–(3.4) are the Reynolds, Prandtl and Schmidt
numbers defined, respectively, as

Re = ρ∗
Au∗

Ar∗
1

μ∗
A

, Pr =
C∗

p,Aμ∗
A

κ∗
A

, Sc = μ∗
A

ρ∗
AD∗

A
. (3.6a–c)

In the present study the outer fluid A and intermediate fluid B in figure 1 are fixed to
air and SF6, respectively, to keep the same strength of incident shock wave and Atwood
number at the outer interface AT,1. Therefore, the physical quantities of unshocked air are
chosen as the characteristic scales. Thus, the Prandtl and Schmidt numbers in governing
equations are 0.72 and 0.757, respectively. A sufficiently high Reynolds number is set
as 105 to avoid the effects of viscosity, heat conduction and interfacial diffusion on the
instability evolution (Walchli & Thornber 2017).

A numerical algorithm of high-order finite difference schemes is used to solve the
governing equations (3.1)–(3.4) in cylindrical coordinates. Specifically, the seventh-order
weighted essentially non-oscillatory scheme is implemented to discretize the convective
terms. The eighth-order central difference scheme is performed to discretize the viscous
terms. The time derivative is approximated by the classical third-order Runge–Kutta
method. To validate the present numerical algorithm, the RM instability of the cylindrical
air/SF6 interface accelerated by an incident shock with the shock Mach number Ma = 1.25
is simulated and compared with the DNS results from Wu et al. (2021). The initial
perturbation amplitude a0 = 0.025 and the premixed thickness of the interface δ = 0.025
are consistent with the parameters used by Wu et al. (2021). Figure 2 clearly demonstrates
that the evolution of the perturbation amplitude in the present study is in excellent
agreement with the DNS results reported by Wu et al. (2021). This agreement serves
as validation, indicating that the DNS utilized in the current work effectively captures
the perturbation growth in a shock-accelerated cylindrical interface. The above numerical
algorithm to simulate the instability evolution has also been well validated in previous
studies (Zhao et al. 2020; Fu et al. 2022; Yuan et al. 2023).

1000 A9-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.991


M. Yuan, Z. Zhao, L. Liu, P. Wang, N.-S. Liu and X.-Y. Lu

0

0.1

0.2η

0.3

0.4

Present

Wu et al. (2021)

1 2

t
3 4

Figure 2. Evolution of the perturbation amplitude (red solid line) for the single-mode cylindrical RM
instability at the initial perturbation amplitude a0 = 0.025 and the premixed thickness of the interface δ =
0.025 in comparison with the numerical data (blue squares) (Wu et al. 2021).

3.2. Problem set-up
The shape function of a cosinoidally perturbed interface is defined as ζi(θ) = ri +
ai cos(nθ) (i = 1, 2), where ai and n are the initial amplitude and wavenumber,
respectively. Notably, the amplitude is set as ai = 0 for an unperturbed interface. By
introducing the error function to smooth the interfaces, the mass fraction fields of fluids A
and B are initialized as

YA(r, θ; t = 0) = 1
2

[
1 + erf

(
r − ζ1(θ)

δ

)]
, (3.7a)

YB(r, θ; t = 0) = 1
2

[
erf

(
r − ζ2(θ)

δ

)
− erf

(
r − ζ1(θ)

δ

)]
, (3.7b)

respectively, where δ = 0.005 is the initial premixed thickness of the interface, which is
low enough to ignore the interfacial diffusion (Walchli & Thornber 2017). The incident
shock with shock Mach number Ma = 1.25 is initially at rs = 1.25 for consistency with
the experiments (Ding et al. 2019; Sun et al. 2020) and simulations (Wu et al. 2021; Li
et al. 2022). The present work assumes a uniform pressure p = 1 and temperature T = 1
in unshocked regions. The initialization of the post-shock fluid is supposed to be uniform
and calculated using the Rankine–Hugoniot conditions (Wu et al. 2021; Li et al. 2022;
Yan et al. 2022).

The shocked fluid layer is numerically investigated within a two-dimensional circular
domain D = {(r, θ)|rin � r � rout, 0 � θ < 2π}. To avoid a pole singularity at the centre
of the cylindrical coordinates, a micro-hole with a radius rin = 0.01 is dug out. This
strategy has been commonly verified to have little influence on the interfacial instability
evolution (Zhao et al. 2020; Wu et al. 2021). In addition, in order to eliminate effects
of reflected waves from the exterior boundary, a sufficiently long sponge layer with a
radial width of approximately 19rout is added at r > rout = 1.5. Following previous work
(Lombardini, Pullin & Meiron 2014; Wu et al. 2021), a reflective wall boundary condition
is applied to the interior boundary at r = rin, where the velocity and the gradients of the
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Instability evolution on cylindrical fluid layer

Layer Interface Type AT,i ci 
V1 
V2 
Vr

ASK II1 air/SF6 0.706 −0.482 −0.330 −0.032 0.369
II2 SF6/Kr −0.375 −0.550 −0.355 −0.007 0.264

ASC II1 air/SF6 0.706 −0.592 −0.330 −0.118 0.374
II2 SF6/CO2 −0.572 −0.718 −0.424 −0.043 0.270

ASN II1 air/SF6 0.706 −0.706 −0.330 −0.171 0.321
II2 SF6/Ne −0.789 −0.847 −0.467 −0.062 0.192

Table 2. Detailed parameters corresponding to the base flow of different fluid layers. Here AT,i is the
post-shock Atwood number, ci denotes the expansion rate of the species, 
Vj represents the jth jump of
interfacial inward velocity before reshock and 
Vr denotes the jump induced by the reshock.

density, temperature and species mass fractions are set to zero. A type of non-reflecting
boundary condition is prescribed on the exterior boundary at r = 20rout, where the
numerical fluxes of the waves propagating out of the domain are extrapolated from the
solution within the domain while those propagating into the domain are set to zero. In
fact, the outward-moving reflected shocks formed by the collision of the incident shock
on the fluid layer do not reach the exterior boundary at r = 20rout until the end of the
simulation. Hence, the boundary conditions at the exterior side have a negligible impact
on the current numerical results. In the present study the initial ratio α0 has been set as
1.1 and the fluid layer is thin enough to have an obvious interface coupling effect (Zhang
et al. 2020). It is noted that all the simulations are performed on the grid resolution of
12002, which has been confirmed to well capture the essential flow dynamics in instability
evolution on shocked heavy fluid layers (Yuan et al. 2023).

4. Validation and discussion

To validate the model (2.23), three cylindrical fluid-layer configurations, i.e. air/SF6/Kr
(ASK) layer, air/SF6/CO2 (ASC) layer and air/SF6/Ne (ASN) layer have been simulated.
For these three configurations, the outer fluid A and intermediate fluid B in figure 1 are
fixed to air and SF6, respectively, to ensure that the strength of the incident shock wave
and Atwood number at the outer interface AT,1 are the same in each simulated case. The
inner fluid C in figure 1 is set to Kr, CO2 and Ne, to verify the applicability of model (2.23)
to various Atwood numbers at the inner interface and to further investigate the effect of
Atwood number on the shock-accelerated cylindrical fluid layer. Moreover, the validations
of the model’s applicability to various Atwood numbers at the outer interface are presented
in the Appendix.

4.1. Base flow
The flow field behind a converging shock is non-uniform as the converging shock travels to
the geometry centre (Chisnell 1998), and hence, no analytical solution exists for the base
flow of a shock-accelerated cylindrical fluid layer (Luo et al. 2019). Therefore, an initially
unperturbed fluid layer impacted by a concentric shock must be firstly examined to provide
a base flow. The parameters of the ASK, ASC and ASN layers are listed in table 2. For
these three layers, AT,1 is fixed at 0.706 and AT,2 decreases from −0.375 to −0.572 and
−0.789. Since the evolutions of interfaces and waves are qualitatively the same in the
three layers, the ASC layer is taken as an example to detail the wave patterns and interface
motions of the shock-accelerated cylindrical fluid layer.
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Figure 3. Temporal variations of (a) radial positions of interfaces and waves and of (b) radial velocities of
interfaces at which the circular IS0 impacts upon the unperturbed ASC layer with α0 = 1.1. Notation: IS0,
incident shock; II1, outer interface; II2, inner interface; RSi, ith reflected shock; TSi, ith transmitted shock; RW,
rarefaction wave; TRW, transmitted rarefaction wave; CW, compression wave; IRW, inward-moving rarefaction
wave.

The quantitative descriptions for positions of waves and interfaces and for radial
velocities (ur) of interfaces are displayed in figure 3. Note that the temporal origin is
defined as the moment when the incident shock (IS0) meets the outer interface (II1). As the
IS0 travels inwards and collides with II1, it bifurcates into an inward-moving transmitted
shock (TS1) and an outward-moving reflected shock (RS1). Impacted by IS0, II1 speeds
up rapidly and then starts to move inwards at a nearly constant speed. Then, TS1 colliding
with the inner interface (II2) generates a second inward-moving transmitted shock (TS2)
and an outward-moving rarefaction wave (RW) since II2 is a heavy/light interface relative
to the motion of TS1. Accelerated by TS1, II2 has a rapid decrease of velocity and starts to
move inwards as shown in figure 3(b). The outward-moving RW impacts upon II1, leading
to a velocity jump of II1 due to the fact that the pressure behind the RW front is lower than
that before the RW front (Liang et al. 2020). Meanwhile, since II1 is a heavy/light interface
relative to the motion of RW, a transmitted rarefaction wave (TRW) is refracted outside the
fluid layer and an inward-moving compression wave (CW) is reflected to collide with II2,
resulting in a velocity increase of II2. Theoretically, the above wave propagation will be
reverberated many times inside the fluid layer. However, after the CW collides with II2, the
waves reverberated inside the fluid layer are too weak to influence the interface velocity
and can be ignored. Later, an outward-moving shock (RS2) is reflected to expand outwards
when TS2 focuses at the geometry centre. At the same time, two interfaces slow down
gradually due to the compressibility of the inner species and the effect of the RS2 (Wu
et al. 2021). Impacting with II2, RS2 bifurcates into an outward-moving transmitted shock
(TS3) and an inward-moving reflected shock (RS3). Soon, TS3 colliding with II1 generates
an outward-moving transmitted shock (TS4) and reflects an inward-moving rarefaction
wave (IRW). As indicated by figure 3(b), RS2 impacting upon II2 and TS3 colliding with
II1 cause another velocity jump at II2 and II1, respectively.

The necessary physical quantities to employ the model (2.23) to predict the perturbation
growth can be obtained via the base flow, including the interfacial trajectory ri(t), the
post-shock Atwood number AT,i, the expansion rate ci and the value of the interface’s
jth velocity jump 
Vj induced by the jth wave, which are listed in table 2. Note that
the Atwood number at the inner interface AT,2 has significant effects on the velocity
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Instability evolution on cylindrical fluid layer

Layer Interface Type a1/λ1 a2/λ2 n t−1 t+1 η̇i,t+1
t−2 t+2 η̇i,t+2

ASK6
II1 air/SF6 0.02 0.02 6 −0.014 0.014 0.006 0.211 0.225 0.015
II2 SF6/Kr 0.02 0.02 6 0.112 0.140 0.004 — 0.310 0.012

ASC6
II1 air/SF6 0.02 0.02 6 −0.014 0.014 0.006 0.225 0.239 0.010
II2 SF6/CO2 0.02 0.02 6 0.112 0.140 0.003 — 0.336 0.005

ASN6
II1 air/SF6 0.02 0.02 6 −0.014 0.014 0.006 0.234 0.245 0.002
II2 SF6/Ne 0.02 0.02 6 0.112 0.137 −0.001 — 0.380 −0.008

ASC12
II1 air/SF6 0.02 0.02 12 0 0.014 0.008 — 0.309 0.015
II2 SF6/CO2 0.02 0.02 12 0.126 0.140 0.001 — 0.365 −0.004

Table 3. Detailed parameters corresponding to the IP cases. Here, ai is initial amplitude, λi is initial
wavelength, n is the wavenumber of the perturbed interface, t−j and t+j are the beginning and end moments
of the jth wave passing through the interface, η̇i,t+j

represents the growth rate of the IIi at t+j .

Layer Interface Type a1/λ1 a2/λ2 n t−1 t+1 η̇i,t+1
t−2 t+2 η̇i,t+2

ASK6 II1 air/SF6 0.02 −0.02 6 −0.014 0.014 0.006 0.126 0.310 0.050
II2 SF6/Kr 0.02 −0.02 6 0.084 0.168 0.010 0.182 0.310 0.042

ASC6 II1 air/SF6 0.02 −0.02 6 −0.014 0.014 0.006 0.126 0.334 0.074
II2 SF6/CO2 0.02 −0.02 6 0.084 0.168 0.018 0.182 0.306 0.078

ASN6 II1 air/SF6 0.02 −0.02 6 −0.014 0.014 0.006 0.118 0.308 0.110
II2 SF6/Ne 0.02 −0.02 6 0.084 0.174 0.030 0.185 0.256 0.115

ASC12 II1 air/SF6 0.02 −0.02 12 0 0.014 0.008 0.183 0.280 0.052
II2 SF6/CO2 0.02 −0.02 12 0.112 0.155 0.010 0.225 0.280 0.052

Table 4. Detailed parameters corresponding to the AP cases. Notations can be found in table 3.

jumps. Specifically, as AT,2 decreases, the increase of density difference at II2 leads to
a corresponding increase in the absolute value |
V1| of II2 impacted by TS1. Moreover,
the absolute values |
V2| of II1 induced by the RW and of II2 induced by the CW are
also more prominent. This is due to the fact that the RW and CW are enhanced as AT,2
decreases and the density difference at II2 increases.

4.2. Validation of the model
Following the experiments of Liang & Luo (2022a), two typical cases in which the phase
differences between two perturbed interfaces are 0 and π, corresponding to in-phase (IP)
cases and anti-phase (AP) cases, respectively, are performed to examine the instability
evolutions of the three layers. The ratio of initial perturbation amplitude to wavelength
is fixed at 0.02 to satisfy the small-perturbation assumption, and two wavenumbers are
chosen as n = 6 and 12 to verify the applicability of the model to various wavenumbers.
The perturbation amplitude ηi is defined as ηi = (rθ=0 − rθ=π/n)/2(i = 1, 2) with rθ=0
and rθ=π/n representing the radial locations where YSF6 = 0.5 along θ = 0 and θ = π/n
lines, respectively. Further details of the IP cases and AP cases used in this work are listed
in tables 3 and 4, respectively, including the beginning t−j and end t+j moments of the
jth wave passing through the interface and the perturbation growth rate at t+j , which are
necessary for the employment of the model.
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Figure 4. Temporal variations of the amplitudes of the outer (η1) and inner (η2) interfaces for the IP cases.
The simulation data are marked by symbols and the model results are denoted by lines.
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Figure 5. Temporal variations of the amplitudes of the outer (η1) and inner (η2) interfaces for the AP cases.
The simulation data are marked by symbols and the model results are denoted by lines.

As shown in figure 4, the present model (2.23) well captures the perturbation growths
of the IP cases with three fluid layers before reshock, which proves the rationality and
validity of the model. Note that the present model based on the linear stability analysis is
primarily applicable to the linear stage of the perturbation growth. Previous studies (Ding
et al. 2019; Sun et al. 2020) have demonstrated that the nonlinear effect of the perturbation
growth of a shock-accelerated cylindrical fluid layer becomes significant after the collision
of reshock on the interface. Therefore, the end time of the present model is chosen as the
moment when the reshock meets the perturbed inner interface. It is obvious that the η1 of
the three layers in the IP cases with n = 6 almost collapses together until the RW passes
through II1. After the RW collides with II1, η1 has almost the same growth in the ASK6
and ASC6 layers that have different AT,2. In the ASN6 layer in which AT,2 is smallest,
η1 grows more slowly than that in the ASK6 and ASC6 layers. Moreover, the growth rate
of η2 after the impact of TS1 on II2 decreases from positive to negative with decreasing
AT,2. As a result, η2 in the IP cases changes from increasing to decreasing with time with
decreasing AT,2 before reshock.

It is shown in figure 5 that the model (2.23) is also verified to show excellent consistency
with the DNS results of the perturbation growths of the AP cases with various Atwood
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Figure 6. Temporal variations of the amplitudes at the outer (η1) and inner (η2) interfaces of the ASK layer
with AT,1 = 0.706 and AT,2 = −0.375 for the IP and AP cases before reshock. The simulation data are marked
by symbols. The results calculated by the previous model (Yuan et al. 2023) and the current one are marked by
the solid and dashed lines, respectively.

numbers and wavenumbers. The effect of AT,2 on the perturbation growths in the AP
cases is different from that in the IP cases. Specifically, the growth rates of η1 after the
RW passes through II1 and of η2 after TS1 collides with II2 increase with decreasing
AT,2. Consequently, η1 and η2 in the AP cases have a faster growth as AT,2 decreases
before reshock. Moreover, figure 6 is plotted to show the difference between the previous
model (Yuan et al. 2023) and the current one in predicting the perturbation growth of the
ASK layer with AT,1 = 0.706 and AT,2 = −0.375. It is evident that the previous model
deviates from the DNS results and, thus, is inadequate when |AT,i| /= 1. In contrast, the
present model exhibits a much better agreement with the DNS results. This shows that it
is necessary to extend the previous model for the fluid layer in a vacuum to the current one
for the cases with arbitrary AT,i. The above results of the IP and AP cases also indicate that
the Atwood number at the inner interface plays an important role in instability evolution
of the shock-accelerated cylindrical fluid layer. To this end, the effect of Atwood number
at the inner interface is further investigated in the following subsection.

4.3. Effect of Atwood number at the inner interface
To elucidate the underlying mechanisms of the effect of Atwood number at the inner
interface, various effects that contribute to the perturbation growth of three IP cases with
n = 6 are specified via the model (2.23) as plotted in figure 7. It is clearly seen that
with the decrease of AT,2, the contribution of the RM instability to η1 weakens after
the RW collides with II1. This is due to the fact that the strength of the RW increases
with the decrease of AT,2. Specifically, as observed from schlieren images in figure 8(a),
the collision of IS0 with II1 is a standard RM instability in which an unperturbed shock
impacts upon a perturbed interface (Richtmyer 1960; Meshkov 1969). Since the strength
of IS0 and AT,1 are the same in the three layers, η1 first suffers the same quick drop at
t = 0 under the compression effect of IS0 and then increases due to the RM instability by
the vorticity deposited by IS0 on II1. However, decreasing AT,2 leads to a greater density
difference at the inner interface and then to a stronger RW. The stronger RW impinging on
II1 results in a stronger RM instability. Figure 8(c) shows that the RW has the same phase
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Figure 7. Temporal variations of total amplitudes along with their decomposed contribution terms of the outer
(η1) and inner (η2) interfaces for the IP cases with (a,b) ASK layer, (c,d) ASC layer and (e, f ) ASN layer. The
simulation data are marked by symbols and the model results are denoted by lines.

as II1 and a greater amplitude than II1. Therefore, the RW first encounters the crest of II1
whose inward radial velocity is accelerated to a greater value than the trough. This radial
velocity difference produces a quick drop in η1 at t ≈ 0.25. As AT,2 decreases, this drop is
increasingly prominent due to the increasing strength of the RW. Note that the RW deposits
vorticity on II1 opposite to the IS0. Consequently, with decreasing AT,2 and an increasing
strength of the RW, the greater cancellation on the original vorticity results in the fact that
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Figure 8. Schlieren images showing the development of wave patterns and interfacial morphologies visualized
by the |∇ρ| contours for the ASC layer with n = 6. The top rows (a–d) represent the IP case and the bottom
rows (e–h) denote the AP case.

the contribution of the RM instability to η1 weakens after the passage of the RW. For the
contribution of the RT effect to η1, the RW accelerates the inward movement of II1 and
the II1 is RT unstable. Therefore, after the RW impinges on II1, the ηRT has a positive
value that is more significant with the decrease of AT,2 shown in figure 7(a,c,e). Moreover,
the contributions of the thin-shell correction and the interface coupling effect, especially
in the ASN layer, are gradually significant after the RW accelerates II1 inwards. This is
attributed to the fact that the terms of ηThin and ηCou are sensitive to the acceleration
of the interface. When AT,2 decreases, the interfacial acceleration of II1 increases, thus
leading to the increasing contributions of ηThin and ηCou. In addition, the compressibility
effect is not significant for η1 of the IP cases under the present incident shock strength. The
compression/decompression effect contributes to η1 only when the waves pass through II1.
The above analysis about various contributions to η1 shows that the decrease of AT,2 and
enhancement of the RW weaken the contribution of the RM instability, thus, the η1 of the
ASN layer grows slower than that of the ASK and ASC layers.

It is expected that with decreasing AT,2, the strength of the CW generated by the
collision of the RW with II1 increases, which has an influence on the growth of η2.
As depicted in figure 7, the growth of η2 mainly relies on the RM instability whose
contribution to η2 decreases from positive to negative with decreasing AT,2. It is clearly
seen in figure 8(b) that TS1 has the same phase as II2 and a smaller amplitude than II2.
As a result, the TS1 colliding with II2 leads to a sudden decrease of η2 at t ≈ 0.12, and
introduces an IP perturbation growth rate at η2 under the domination of the cylindrical BP
effect (Yuan et al. 2023). The ηRM has a slight increase with time until the CW collides
with II2. As depicted in figure 8(d), the CW has the same phase as II2 and deposits vorticity
on II2 by baroclinic processes to affect the growth of ηRM . With decreasing AT,2 and an
increasing strength of the CW, the contribution of the RM instability to η2 after the passage
of the CW decreases from positive to negative. The RT effect is also influenced by the AT,2.
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Since the stronger CW leads to greater inward acceleration at the heavy/light interface
II2, the RT-stable II2 has a more significant negative contribution from the RT effect as
AT,2 decreases. Furthermore, as the strength of the CW increases, the contribution of the
thin-shell correction ηThin, sensitive to the acceleration of II2, decreases from positive in
the ASK layer to negative in the ASN layer, and the contribution of the interface coupling
effect ηCou, also sensitive to the acceleration of II2, increases from negative in the ASK
layer to positive in the ASN layer. Additionally, the inner fluid of II2 is lighter and more
increasingly compressible as AT,2 decreases and, thus, the compressibility effect ηCom has
an increasing contribution to promote the growth of η2. The above analysis indicates the
decrease of AT,2 and enhancement of the CW significantly affect various contributions to
the growth of η2 in the IP cases, and the decreasing contribution of the RM instability
mainly determining the growth of η2 results in the change of the growth of η2 from
increasing to decreasing with time.

The effect of the Atwood number at the inner interface on the instability evolutions in
the AP cases is also investigated. Figure 9 shows various contributions to the perturbation
growths of the outer and inner interfaces. For the outer interface in the AP cases, the
contribution of the RM instability is enhanced by decreasing AT,2, which is different
from the diminished RM contribution in the IP cases. This is due to the fact that the
AP collision between TS1 and II2 causes the AP impact of the generated RW with II1
as shown in figure 8( f,g). On the one hand, the RW firstly impacts upon the trough
of II1 that consequently obtains a greater inward radial velocity than the crest. This
radial velocity difference produces the quick increase of η1 at t ≈ 0.2, which is the
decompression effect of the RW. The strength of the RW increases with decreasing AT,2
and, thus, the decompression effect of the RW is more significant at lower AT,2, as shown
in figure 9(c,e). On the other hand, the RW produces vorticity deposition with the same
direction as the vorticity deposited by the initial IS0 on II1. With decreasing AT,2 and
an increasing strength of the RW, more vorticity is deposited on II1 and the contribution
of the RM instability ηRM is enhanced. Sharing the same base flow with the IP cases,
the AP cases have the same time-varying trends of ηRT and ηThin as the corresponding
IP cases. Note that the interface coupling effect depends on not only the motion of the
interface itself but also the perturbation at another interface. These complex factors make
ηCou always decrease to suppress the growth of η1 for the AP cases and the negative
contribution of ηCou is enhanced with decreasing AT,2. Additionally, the compressibility
effect ηCom always has a negative contribution to the growth of η1 and is less affected
by AT,2. According to the effect of AT,2 to various contributions, the reason for increasing
growth of η1 with decreasing AT,2 is that the main contribution to η1 is the enhanced RM
instability as AT,2 decreases.

For the inner interface of the AP cases, due to the compression effect of TS1, η2
increases quickly to 0 at t ≈ 0.12 and then grows towards the opposite direction compared
with its initial phase. This phenomenon, induced by the vorticity deposited by TS1 on II2,
is known as phase reversal (Brouillette 2002). This phase reversal is followed by collision
of the CW with II2. As shown in figure 8(g), the CW reflecting from the trough of II1
collides with II2 whose corresponding part is accelerated to move inwards while the rest
of II2 still keeps its original radial velocity. Thus, this radial velocity difference leads
to a slight AP growth rate of η2 at t ≈ 0.25. Besides, the CW also deposits vorticity
with the same direction as the vorticity deposited by TS1 on II2. With decreasing AT,2
and an increasing strength of the CW, more vorticity is produced on II2 and, thus, the
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Figure 9. Temporal variations of total amplitudes along with their decomposed contribution terms of the outer
(η1) and inner (η2) interfaces for the AP cases with (a,b) the ASK layer, (c,d) the ASC layer and (e, f ) the ASN
layer. The simulation data are marked by symbols and the model results are denoted by lines.

RM instability has a stronger contribution to η2. Moreover, the contributions of the RT
effect and thin-shell correction can be neglected and are less affected by AT,2, as shown
in figure 9(b,d, f ). The interface coupling effect has a negative contribution to the growth
of η2 and is enhanced by decreasing AT,2. Like the growth of the outer interface, the faster
growth of the inner interface in the AP cases with decreasing AT,2 is caused by the stronger
RM instability.
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5. Concluding remarks

Instability evolution of a shock-accelerated cylindrical fluid layer with two interfaces
separating three arbitrary-density fluids is theoretically and numerically investigated.
A novel model to describe the instability evolution of a shock-accelerated cylindrical
fluid layer with arbitrary Atwood numbers is established. Specifically, a linear stability
analysis for the incompressible fluid layer is employed to obtain the contributions,
including RM instability, RT effect, thin-shell correction and interface coupling effect
at two interfaces with arbitrary Atwood numbers. Then the compressibility effect and
compression/decompression effects of waves reverberated inside the fluid layer are linearly
superimposed on the incompressible model, which makes the novel model able to predict
the instability evolution of a shock-accelerated cylindrical fluid layer with arbitrary
Atwood numbers. The present model’s validity has been established by comparing its
results with the DNS of three different fluid-layer configurations. In these configurations
the outer and intermediate fluids remain fixed (i.e. AT,1 is fixed) and the density of the inner
fluid is reduced. The results demonstrate that the model effectively captures the temporal
evolutions of the perturbation amplitudes.

The influence of the Atwood number at the inner interface on the instability evolution of
the shock-accelerated cylindrical fluid layer has also been examined. In IP cases where the
initial IP perturbations are applied to the inner and outer interfaces, it has been observed
that the growth rate of η1 decreases with decreasing AT,2. Additionally, the growth of η2
exhibits a transition from increasing to decreasing with time as AT,2 decreases. For AP
cases with initial AP perturbations at the inner and outer interfaces, both the increasing
growths of η1 and η2 with time are enhanced with decreasing AT,2. By utilizing the model
to analyse the effect of AT,2 on each contribution to the instability evolution, it has been
discovered that the dominant contribution from the RM instability is greatly influenced
by AT,2, resulting in the above observations. As AT,2 decreases, the density difference at
the inner interface increases. This increased density difference leads to the stronger waves
reverberated inside the layer, i.e. the CW and RW. The stronger RW and CW produce more
vorticity deposition in the opposite direction compared with the vorticity deposited by the
incident shock on II1 and II2 in the IP cases, and more vorticity deposition in the same
direction as the vorticity deposited by the incident shock on II1 and II2 in the AP cases.
Consequently, as AT,2 decreases, the increasing perturbation growth with time is weakened
in the IP cases and enhanced in the AP cases.

The current model is capable of describing the instability evolution of a
shock-accelerated cylindrical fluid layer with arbitrary Atwood numbers. In the future,
the model can be employed to reveal the underlying mechanism behind more parametric
effects on the instability evolutions of shock-accelerated cylindrical fluid layers. Moreover,
the present model still relies on the numerical or experimental data to obtain the post-wave
growth rate of the perturbation. Quantifying the relationship between the post-wave
perturbation growth rate and the intensity of each type of wave based on numerical
simulations or experiments to further improve the present model would be an intriguing
and worthwhile topic for future investigation.
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Layer Interface Type AT,i ci 
V1 
V2 
Vr

SAK II1 SF6/air −0.688 −0.347 −0.296 0.059 0.201
II2 air/Kr 0.464 −0.367 −0.208 −0.020 0.232

SKA II1 SF6/Kr −0.343 −0.436 −0.230 −0.062 0.173
II2 Kr/air −0.469 −0.525 −0.312 0.007 0.205

Table 5. Detailed parameters corresponding to the base flow of SAK and SKA layers with α0 = 1.111.
Notations can be found in table 2.

Layer Interface Type a1/λ1 a2/λ2 n t−1 t+1 η̇i,t+1
t−2 t+2 η̇i,t+2

SAK II1 SF6/air 0.02 0.02 6 −0.022 0.040 0 0.109 0.166 0.013
II2 air/Kr 0.02 0.02 6 0.048 0.109 −0.008 — 0.248 −0.004

SKA II1 SF6/Kr 0.02 0.02 6 −0.021 0.042 0 0.168 0.229 0.011
II2 Kr/air 0.02 0.02 6 0.092 0.146 0.002 — 0.302 0.018

Table 6. Detailed parameters corresponding to perturbed SAK and SKA layers. Notations can be found in
table 3.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Ming Yuan https://orcid.org/0000-0002-2602-9990;
Zhiye Zhao https://orcid.org/0000-0003-1509-5084;
Luoqin Liu https://orcid.org/0000-0002-6020-3702;
Nan-Sheng Liu https://orcid.org/0000-0001-9128-1933;
Xi-Yun Lu https://orcid.org/0000-0002-0737-6460.

Appendix. Further validation of the present model

It has been verified in § 4 that the current model (2.23) is capable of accurately describing
the perturbation growth of a shock-accelerated cylindrical fluid layer with a fixed outer
interface characterized by a light/heavy configuration. To further validate that the current
model is suitable for layers with arbitrary configurations (or arbitrary AT,i), DNS has
also been conducted for two cases with the outer interface characterized by a heavy/light
configuration. Specifically, these two cases, namely SF6/air/Kr (SAK) and SF6/Kr/air
(SKA), are characterized by the outer interfaces with the post-shock Atwood numbers of
−0.688 and −0.343, respectively. The perturbed interfaces of the layer for these two cases
are IP. Detailed parameters for the base flow are listed in table 5 and the parameters for the
perturbed SAK and SKA layers are shown in table 6. The remarkable agreement depicted
in figure 10 indicates that the present model (2.23) can describe the perturbation growth of
a fluid layer with an outer interface characterized by a heavy/light configuration. Moreover,
the present model is able to successfully capture the phase inversion of the outer interface
as demonstrated in figure 10(a,c), and accurately describes the various contributions to the
perturbation growths at both the outer and inner interfaces.
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Figure 10. The perturbation amplitudes of the outer (η1) and inner (η2) interfaces on the (a,b) SAK layer,
(c,d) SKA layer along with their decomposed contribution terms versus time for the IP case before reshock.
The simulation data marked by symbols are added for comparison.
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