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For a perturbed generalized Korteweg–de Vries equation with a distributed delay, we
prove the existence of both periodic and solitary waves by using the geometric
singular perturbation theory and the Melnikov method. We further obtain
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wave speed and the wavelength.

Keywords: Korteweg–de Vries equation with delay; periodic wave; solitary wave;
geometric singular perturbation theory; Abelian integral

2020 Mathematics Subject Classification: 35Q53; 35C07; 37G15

1. Introduction

The Korteweg–de Vries equation (KdV for short)

ut + αuux + uxxx = 0 (1.1)

was first derived by Korteweg and de Vries [22] in 1895 for modelling propagation
of small amplitude long water waves in a uniform channel, where α is a constant
coefficient, and u is a function in both the spatial variable x and the time t describing
the waves. The KdV equation and its generalizations have modelled a large number
of different physical phenomena [7].
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As we know, a large class of generalizations of the KdV equation can be expressed
as the generic functional form [30]

ut + (F (u))x + uxxx = 0, (1.2)

where F (u) is a nonlinear function satisfying F (0) = 0. If F ∼ u2, equation (1.2)
corresponds to the classic KdV equation (1.1) [3, 14, 20, 22]. If F (u) ∼ up with
p ∈ N \ {1}, equation (1.2) is called the generalized KdV equation [18, 26–28].
Especially, when p = 3, equation (1.2) corresponds to the modified KdV equation
[17, 18], which possesses many polynomial conservation laws. While when p > 3,
there remain only three polynomial conservation laws, see e.g. [28]. Of course, KdV
equation has also many other generalizations, see e.g. Goubet [15], Chu et al. [6],
Isaza and León [20] and the references therein.

On perturbation of the KdV equation, there are also many results with respect to
the travelling waves. Derks and Gils [8] in 1993 studied uniqueness of the travelling
wave solutions in the following equation

ut + uux + uxxx + ε(uxx + uxxxx) = 0, (1.3)

where ε > 0 is a small parameter. One year later, Ogawa [29] investigated the exis-
tence of the solitary waves and periodic waves to system (1.3) by using geometric
singular perturbation theory (GSPT for short). In the same paper, Ogawa also stud-
ied monotonicity properties for the speed of periodic waves with the total energy
of the Hamiltonian via Abelian integrals, and provided a relationship between the
wave speed and the wavelength. In 2014, Yan et al. [34], applying GSPT, researched
the existence of the solitary waves and the periodic waves in a perturbed generalized
KdV equation

ut + unux + βuxxx + ε(uxx + uxxxx) = 0,

with n > 0 integer and 0 < ε� 1. Moreover, the authors in [34] discussed the limit
speed of the wave and its upper and lower bounds via the Abelian integral theory.
Applying GSPT, Mansour [25] studied the existence of the travelling wave solution
in a generalized dissipative perturbed KdV equation

ut + αunux + βuxxx + ε(auxx + b(uux)x + cuxxxx) = 0, (1.4)

where 0 < ε� 1, and the coefficients α, β, a, b, c are constants. Zhuang et al. [36]
verified the existence of the solitary wave solutions for a perturbed generalized KdV
equation

ut + αun+1ux + βuxxx + ε(uxx + uxxxx) = 0,

where 0 < ε� 1, and α and β are positive parameters.
Recall that the geometric singular perturbation theory was initially developed by

Fenichel [11–13], for studying the existence of locally invariant manifolds, of invari-
ant stable (unstable) manifolds and of invariant foliations, which are perturbed
from a so-called normally hyperbolic critical manifold and its associated centre-
stable (centre-unstable) manifolds. This theory has been greatly developed in the
past decades, see e.g. the literatures [1, 5, 23, 31] and the references therein. It also
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has diverse applications in many disciplines for verifying the existence of travelling
and periodic waves, and local and global dynamics, for instance, the vector–disease
models [24, 32], Belousov–Zhabotinskii system [10], Schrödinger equation [35],
Burgers–KdV equation [33], KPP equation [2], Camassa–Holm [9] equation
and so on.

On application of the GSPT to the systems with delay for finding travelling
waves, there are also many results, see e.g. [9, 10, 24, 32, 35]. Du et al. [9] in 2018
considered the existence of the solitary wave solution for the perturbed delayed
Camassa–Holm equation

ut − uxxt + 2kux + 3(f ∗ u)ux + τuxx = 2uxuxx + uuxxx,

where 0 < τ � 1, and the convolution f ∗ u is defined as either the local distributed
delay

(f ∗ u)(x, t) =
∫ t

−∞
f(t− s)u(x, s) ds, (1.5)

or the nonlocal distributed delay

(f ∗ u)(x, t) =
∫ t

−∞

∫ +∞

−∞
f(x− y, t− s)u(y, s) dy ds.

In the expression (1.5), the kernels

f(t) =
1
τ

e−
t
τ and f(t) =

t

τ2
e−

t
τ

are frequently adopted in the literature for delay differential equations. The first
of the two kernels is called the weak generic kernel, and the second is called the
strong generic kernel. Moreover, the two kernels are all nonnegative and satisfy∫ +∞

0

f(t) dt = 1.

In this paper, we study the existence and monotonicity of the periodic waves,
and also the existence of the solitary wave of the following perturbed generalized
KdV equation with delay

Ut + a0((f ∗ U)U2)x + a1Uxxx + τUxxxx = 0, (1.6)

where a0, a1 > 0 are constant coefficients, 0 < τ � 1 is a perturbation parameter
and the convolution f ∗ U is that in (1.5) with the weak generic kernel f(t) =
1
τ e−

t
τ . Note that ((f ∗ U)U2)x is the convection term with delay and Uxxxx is the

dissipation term. Moreover, when τ → 0, the convolution has the limit f ∗ U → U .
Thus, when τ → 0, equation (1.6) is reduced to the famous modified KdV equation

Ut + 3a0U
2Ux + a1Uxxx = 0. (1.7)

That is, equation (1.6) is a small perturbation of the modified KdV equation (1.7).
The perturbation f ∗ U contains the local distributed delay, which can be seen as
a continuous version of the discrete delay U(t− τ) with the small delay τ . Note
that the normalized weak generic kernel ensures that the steady-states are not
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affected with variations in the delay. To our knowledge, the normalized distributed
delay was introduced in many different models for further depicting their dynamics,
for instance, the Camassa–Holm equation [9], the chemostat-type model [19] and
the diffusive Nicholson’s blowflies equation [16] and so on. Hakkaev et al. [17]
studied the modified KdV equation (1.7) with a0 = 2 and a1 = 1, and obtained a
family of specific type of periodic travelling wave solutions. They further proved
the orbital stability of these periodic waves. As a bridge to prove our main results
below for equation (1.6), we achieved for equation (1.7) some other family of periodic
wave solutions than those in [17] and also a solitary wave, which was not studied
in [17]. Besides the travelling wave solutions, there are also some researches in other
directions on equation (1.7), e.g. Hayashi and Naumkin [18] studied the so-called
final state problem for equation (1.7) with a1 = 1/3, which is one of the special
cases of their general equations.

We note that equation (1.7) is also the unperturbed system with n = 2 of the
generalized dissipation perturbed KdV equation (2) in [25], i.e. (1.4) above, which
describes the waves in many applied disciplines, such as the plasma waves, the ther-
moconvective liquid layer and nonlinear electromagnetic waves and so on. Mansour
[25] constructed travelling waves of the perturbed equation (1.4), which include
the solitary waves and oscillatory kink or shock waves. Here our equation (1.6) is a
perturbation of equation (1.7), where the convection term ((f ∗ U)U2)x, as τ → 0,
has the limit u2ux. We prove not only the existence of solitary waves, but also
the existence of periodic waves for equation (1.6). Meanwhile, we establish also a
relationship between the wave speed and wavelength of periodic waves.

The remaining part of this paper is organized as follows. Section 2 recalls the
Fenichel first invariant manifold theorem, which will be used in the proof of our main
results, theorems 2.1 and 2.2, which will be stated also in this section. Section 3
is a proof of theorem 2.1, which is separated in three subsections. The first one
is on persistence of the periodic orbits of the unperturbed system (1.7) under the
small perturbation via the Melnikov method. These periodic orbits provide periodic
waves of equation (1.6). The second one is on properties of the limit wave speed
of the periodic wave. The third one determines the existence of the solitary waves
for 0 < τ � 1. Section 4 is a proof of theorem 2.2, where we also provide more
information on monotonicity and boundedness of the periods of the period waves.
The last section is a conclusion.

2. Preliminaries and the main results

In this section, we first recall some fundamental known results on the Fenichel
invariant manifold theory. Then we present our main results.

2.1. Preliminaries

In this subsection, we recall the Fenichel invariant manifold theorem for slow–fast
systems, or singularly perturbed systems. Consider the slow–fast systems

x′(t) = f(x, y, ε),
y′(t) = εg(x, y, ε), (x, y) ∈ R

n × R
m (2.1)
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where ε > 0 is a small real parameter, and f and g are C∞ functions in their
variables. Here, the prime is the derivative in the time t. For ε �= 0, after the time
rescaling τ = εt, system (2.1) can be written as

εẋ(τ) = f(x, y, ε),
ẏ(τ) = g(x, y, ε), (x, y) ∈ R

n × R
m. (2.2)

Systems (2.1) and (2.2) are called, respectively, the fast and slow systems, and their
limits when ε→ 0

x′(t) = f(x, y, 0),
y′(t) = 0, (x, y) ∈ R

n × R
m

and

0 = f(x, y, 0),
ẏ(τ) = g(x, y, 0), (x, y) ∈ R

n × R
m.

are called the layer and reduced systems, respectively.
The set Ω := {(x, y) ∈ R

n × R
m| f(x, y, 0) = 0} is called a critical set, and it plays

a key role in the study of dynamics of system (2.1). Choose a connected branch Ω0

of Ω. If the Jacobian matrix of f(x, y, 0) with respect to x restricted to Ω0 has all
eigenvalues with nonvanishing real parts, we call Ω0 normally hyperbolic.

A subset M of R
n × R

m is locally invariant under the flow of system (2.1) if it
has a neighbourhood U , as long as an orbit of the system leaves M , it will leave U .

We now state the Fenichel first invariant manifold theorem [9, 13, 21], which
will be one of our main tools in the next proofs of theorems 2.1 and 2.2.
Fenichel first invariant manifold theorem. Assume that

• M0 is a compact, normally hyperbolic critical manifold of system (2.1), and

• it has a coordinate expression M0 := {x = ψ(y)| y ∈ K0} with K0 ⊂ R
m

compact and ψ(y) ∈ C∞(K0).

Then for ε > 0 sufficiently small, system (2.1) has a locally invariant Cr manifold
Mε, with any prescribed r ∈ N, which has the expression x = ψε(y), x ∈ K0, such
that

lim
ε→0

ψε(y) = ψ(y), y ∈ K0.

Restricted to Mε, system (2.1) is reduced to

ẏ(τ) = g(ψε(y), y, ε), (2.3)

which, as ε→ 0, has the limit ẏ(τ) = g(ψ(y), y, 0).
The Fenichel first invariant manifold theorem indicates that in the normally

hyperbolic case, system (2.3) is a regular perturbation of the reduced system
ẏ(τ) = g(ψ(y), y, 0). Consequently, all hyperbolic and structurally stable objectives
of the reduced system will be preserved by system (2.3) for 0 < ε� 1.
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2.2. Statement of the main results

In this subsection, we present our main results. Since we want to find the trav-
elling wave solution of equation (1.6), we set U(x, t) = φ(ξ) = φ(x− ct). Then
equation (1.6) becomes the next ordinary differential equation

− cφ′ + a0(η1φ2)′ + a1φ
′′′ + τφ′′′′ = 0, (2.4)

where ′ = d
dξ , and

η1 =
∫ +∞

0

1
τ

e−
s
τ φ(ξ + cs) ds.

Integrating equation (2.4) with respect to ξ and omitting the integral constant, we
obtain the following equation

− cφ+ a0η1φ
2 + a1φ

′′ + τφ′′′ = 0. (2.5)

After the rescalings φ(ξ) =
√
cu(z) and ξ = z√

c
, equation (2.5) can be further

written in

− u+ a0ηu
2 + a1ü+

√
cτ

...
u = 0. (2.6)

Here the dot denotes the derivative in z, and

η =
∫ +∞

0

1
τ

e−
s
τ u(z + c

3
2 s) ds. (2.7)

Direct computations show that η → u as τ → 0. Thus, when τ → 0, equation (2.6)
has the limit

− u+ a0u
3 + a1ü = 0, (2.8)

which is called unperturbed equation of equation (2.6). Equation (2.8) can be
written in an equivalent way as the following Hamiltonian system

u̇ = v, v̇ = wu− bu3,

with the Hamiltonian

H(u, v) =
v2

2
− wu2

2
+
bu4

4
,

where w = a−1
1 > 0 and b = a0a

−1
1 > 0. The level curve H(u, v) = h is

• a homoclinic orbit of the Hamiltonian system at the origin in the half plane
u > 0 when h = 0,

• a periodic orbit for each h ∈ (−1/(4a0a1), 0), which is in the interior region
enclosed by the homoclinic orbit,

• the centre when h = −1/(4a0a1).

We remark that for h < −1/(4a0a1) or h > 0, the level curve H(u, v) = h is out of
our interest.
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Now we can state our main results. The first one is on the existence of periodic
waves and of a solitary wave, and their limiting properties.

Theorem 2.1. For equation (1.6), there exists a sufficiently small τ∗ > 0, such that
for τ ∈ (0, τ∗), the following results hold.

(a) For h ∈ (−1/(4a0a1), 0), equation (1.6) has a travelling wave solution

U =
√
cu(τ, h, c, z),

with the wave speed c = c(τ, h) > 0, where u(τ, h, c, z) is a solution of equation
(2.6) satisfying

∂

∂z
u(τ, h, c, 0) = 0,

∂2

∂z2
u(τ, h, c, 0) > 0 for h < 0.

(b) The limit lim
τ→0

u(τ, h, c, z) = u0(h, z) holds uniformly in z, where u0(h, z) is a

solution of equation (2.8) on the level curve H = h ∈ (−1/(4a0a1), 0].

(c) For h ∈ (−1/(4a0a1), 0), the function u(τ, h, c, z) � 0 represents a periodic
wave of equation (1.6). Whereas, for h = 0, the function u(τ, h, c, z) � 0
indicates a solitary wave of equation (1.6).

(d) The wave speed c = c(τ, h) is smooth in both τ and h, and satisfies
lim
τ→0

c(τ, h) = c0(h), with c0(h) ∈ [7/(4a1), 2/a1) a decreasing smooth function

on (−1/(4a0a1), 0] and having the limits

lim
h→− 1

4a0a1

c0(h) =
2
a1
, lim
h→0

c0(h) =
7

4a1
.

The second one provides a relation between the wave speed and the wavelength
of the periodic wave of equation (1.6).

Theorem 2.2. For 0 < τ � 1, the wave speed c0 and the wavelength λ0 of the
periodic wave solution to equation (1.6) satisfy

c0 = c̃0(λ0), c̃′0(λ0) < 0, λ0 ∈ (a1π,+∞).

In the next section, we will prove theorem 2.1. The proof of theorem 2.2 will be
given in § 4. In both sections, we will provide more information on the properties
of the periods and the wave speeds of the periodic waves, respectively.

3. The proof of theorem 2.1

This section is a proof of theorem 2.1. We separate it in three subsections, which
are on the existence of periodic waves, properties of wave speeds and the solitary
wave.
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3.1. Existence of periodic waves

Write the third-order differential equation (2.6) in an equivalent way as a system
of the first-order ordinary differential equations

u̇ = v,

v̇ = p,
√
cτ ṗ = u− a0ηu

2 − a1p.

(3.1)

Differentiating expression (2.7) with respect to z yields c
3
2 τ η̇ = η − u. It together

with (3.1) forms the following system

u̇ = v,

v̇ = p,
√
cτ ṗ = u− a0ηu

2 − a1p,

c
3
2 τ η̇ = η − u.

(3.2)

For τ > 0 sufficiently small, system (3.2) is a singularly perturbed system with two
fast variables p and η, and two slow variables u and v.

According to the singular perturbation theory, we consider the critical set

M0 =
{
(u, v, p, η)| p = a−1

1 u− a0a
−1
1 ηu2, η = u

}
,

which is a two-dimensional smooth manifold. Restricted to this critical manifold,
the reduced system of system (3.2) is

u̇ = v,

v̇ = wu− bu3,
(3.3)

where w = a−1
1 > 0, b = a0a

−1
1 > 0. Obviously, the reduced system (3.3) has three

equilibria: (0, 0) a saddle, and (±
√
w/b, 0) both centres. Note that system (3.3) is

a Hamiltonian one, with the Hamiltonian

H(u, v) =
v2

2
− wu2

2
+
bu4

4
,

which has two symmetric homoclinic orbits to the origin contained in the level set
H(u, v) = 0, and a family of periodic orbits of the reduced system contained in the
level set H(u, v) = h for h ∈ (−w2/(4b), 0).

Now we are back to the full system (3.2). When τ �= 0, the slow system (3.2)
can be written in an equivalent way, via the time rescaling z = τs, as the next fast
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system

du

ds
= τv,

dv

ds
= τp,

√
c
dp

ds
= u− a0ηu

2 − a1p,

c
3
2
dη

ds
= η − u.

(3.4)

Some easy calculations show that the linearized matrix of (3.4) restricted to M0 is
⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

1√
c
(1 − 2a0ηu) 0 − a1√

c
− a0√

c
u2

−c−
3
2 0 0 c

−
3
2

⎞
⎟⎟⎟⎟⎟⎟⎠
,

which has four eigenvalues: 0, 0,−a1c
− 1

2 , c−
3
2 . This means that the critical manifold

M0 is normally hyperbolic. By the Fenichel first invariant manifold theorem, for
0 < τ � 1, system (3.2) has an invariant slow manifold Mτ , which can be expressed
as

Mτ =
{
(u, v, p, η) ∈ R

4| p = a−1
1 u− a0a

−1
1 ηu2 + g(u, v, τ), η = u+ h(u, v, τ)

}
,

where g and h depend smoothly on their variables, and g(u, v, 0) = h(u, v, 0) = 0.
To compute the asymptotic expression of the functions g and h, we expand them
in the parameter τ as

g(u, v, τ) = τg1(u, v) + τ2g2(u, v) + · · · ,
h(u, v, τ) = τh1(u, v) + τ2h2(u, v) + · · · .

(3.5)

Plugging the expression of Mτ with (3.5) into the slow system (3.2), we obtain

√
cτ

(
v

a1
− a0

a1
η̇u2 − 2a0

a1
ηuv +O(τ)

)
= −a1g1τ − a1g1τ

2 + o(τ2),

c
3
2 τ

(
v + τ(

∂h1

∂u
u̇+

∂h1

∂v
v̇) + o(τ)

)
= τh1(u, v) + τ2h2(u, v) + o(τ2).

Equating the coefficients of τ1 in the both sides of the above equations yields

g1(u, v) = −
√
c

a1

(
v

a1
− 3a0

a1
u2v

)
,

h1(u, v) = c
3
2 v.
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Then the slow manifold Mτ has a more precise expression

p =
u

a1
− a0

a1
u3 −

√
c

a1

(
a0cu

2v +
v

a1
− 3a0

a1
u2v

)
τ + o(τ),

η = u+ c

3
2 τv + o(τ),

(u, v) ∈ R
2.

Restricted to the invariant slow manifold Mτ , the slow system (3.2) is reduced to
the following two-dimensional system

u̇ = v,

v̇ = wu− bu3 −
√
c

a1

(
a0cu

2v +
v

a1
− 3a0

a1
u2v

)
τ + o(τ),

(3.6)

with w = a−1
1 > 0 and b = a0a

−1
1 > 0. By the Fenichel invariant manifold theorem,

it follows that system (3.6) is a regular perturbation of system (3.3).
Now we investigate the existence of the periodic orbits of system (3.6), which are

the perturbation of the periodic orbits inside the period annulus of the Hamiltonian
system (3.3). We should mention that the periodic orbits of system (3.6) is also the
periodic orbits of system (3.2), and so they provide the periodic waves of equation
(1.6).

To prove the existence of the periodic orbits of system (3.6), we will use the Mel-
nikov method. Fix an initial data (α, 0) with 0 < α <

√
w/b, and let (uτ (z), vτ (z))

be the solution of system (3.6) satisfying (uτ , vτ )(0) = (α, 0). Then there exist
z1 > 0 and z2 < 0, so that

vτ (z) > 0 for 0 < z < z1, vτ (z1) = 0

and

vτ (z) < 0 for z2 < z < 0, vτ (z2) = 0.

Let (α, 0) be the point on the level curve H(uτ , vτ ) = h for h ∈ (−w2/(4b), 0).
Then α is a monotonic function in h. For exhibiting dependence of the solution
(uτ (z), vτ (z)) on all the variables and parameters that are involved, we also write

uτ (z) = u(τ, h, c, z), vτ (z) = v(τ, h, c, z).

Direct calculation by (3.6) gives

∂

∂z
u(τ, h, c, 0) = 0,

∂2

∂z2
u(τ, h, c, 0) > 0.

According to Carr [4, Chapter 4], we define the function

Φ(h, c, τ) :=
∫ z1

z2

Ḣ(uτ , vτ ) dz, (3.7)

where Ḣ is the derivative of the Hamiltonian H along the orbit of system (3.6).
Some calculations show that

Ḣ(uτ , vτ ) =
τ
√
c

a1

(
a0cu

2
τv

2
τ +

v2
τ

a1
− 3a0

a1
u2

τv
2
τ +O(τ)

)
. (3.8)
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Note that Φ(h, c, τ) is, in fact, the difference of the values of H at the two first
intersecting points of the positive and negative orbits passing (α, 0) with the positive
u-axis, i.e.

Φ(h, c, τ) = H(uτ (z1), vτ (z1)) −H(uτ (z2), vτ (z2)).

Hence, Φ(h, c, τ) = 0 if and only if (uτ (z), vτ (z)) is a periodic solution of system
(3.6).

Our next goal is to find solutions c = c(h, τ) of Φ(h, c, τ) = 0. By (3.7) and (3.8),
we have the expression

Φ(h, c, τ) = τ Φ̃(h, c, τ),

and the limit

lim
τ→0

Φ̃(h, c, τ) =
∫ z10

z20

√
c

a1
(a0cu0

2v0
2 +

v0
2

a1
− 3a0

a1
u0

2v0
2) dz =:

√
ca−2

1 M(h, c),

which follows from the classical qualitative theory, where (u0, v0) is the solution of
the unperturbed system (3.3) starting from the initial point (α, 0), and z10 and z20
are respectively the positive and negative times of this orbit arriving again at the
u-axis. After these manipulations, we can write Φ(h, c, τ) in (3.7) as

Φ(h, c, τ) =
√
ca−2

1 M(h, c)τ +O(τ2).

The function M(h, c) is called the Melnikov function, or the Pontryagin–Melnikov
function.

Note that
∂M

∂c
(h, c) = a0a1

∫ z10

z20

u0
2v0

2 dz > 0.

So for each h = H(α, 0) ∈ (−w2/(4b), 0), the functional equation M(h, c) = 0 has
a unique simple solution c = c0(h), whose precise expression will be obtained from
(3.10) below. Hence, it follows from the implicit function theorem that for each
h = H(α, 0) ∈ (−w2/(4b), 0), the functional equation Φ(h, c, τ) = 0 has a unique
simple solution c = c(h, τ) defined in a small neighbourhood of (h, 0). This proves
that for any h = H(α, 0) ∈ (−w2/(4b), 0), and 0 < τ � 1, if c = c(h, τ) system (3.6)
has an isolated periodic orbit passing (α, 0) in the (u, v) plane. Consequently, system
(3.2) has an isolated periodic orbit when c = c(h, τ). It provides a periodic wave of
equation (1.6).

Up to now, we have proved statements (a), (b) and (c) of theorem 2.1 on the
periodic waves.

Next we will study the properties of the wave speed c(h, τ) associated to the
periodic wave of equation (1.6).

3.2. Properties of the wave speed of the periodic wave

This subsection is to investigate the properties of the limit wave speed
c0(h) of c(τ, h) as τ → 0, where c(τ, h) is the wave speed of the periodic
wave to equation (1.6), which is determined by the solutions (uτ (z), vτ (z)) =
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(u(τ, h, c(h, τ), z), v(τ, h, c(h, τ), z)) of system (3.2) with (uτ (0), vτ (0)) = (α, 0).
Recall that the relation between α and h is given by H(α, 0) = h ∈ (−w2/(4b), 0),

First, for h = H(α, 0) ∈ (−w2/(4b), 0), one has∫ z10

z20

u0
2v0

2 dz =
∫ z10

z20

(u0
2 − w

b
)u̇0 du0 +

w

b

∫ z10

z20

v0
2 dz

= −2
∫ z10

z20

u0
2v0

2 dz +
1
b

∫ z10

z20

ü2
0 dz +

w

b

∫ z10

z20

v0
2 dz.

It follows that ∫ z10

z20

u0
2v0

2 dz =
1
3b

∫ z10

z20

ü2
0 dz +

w

3b

∫ z10

z20

v0
2 dz.

Then the equation M(h, c) = 0 is equivalent to

(a0a1c− 3a0)
∫ z10

z20

u0
2v0

2 dz +
∫ z10

z20

v0
2 dz = 0, (3.9)

and is further equivalent to

1
a0a1c− 3a0

= − 1
3b

∫ z10

z20
ü2

0 dz∫ z10

z20
u̇2

0 dz
− w

3b
, (3.10)

with 0 < c < 3a−1
1 = 3w.

Next, for simplification to notations, we replace (u0(z), v0(z)) by (u(z), v(z)). Set
k = 4h ∈ (−1/(a0a1), 0), and let α(k) and β(k) be the two positive real roots of the
equation

2wu2 − bu4 + k = 0, (3.11)

with 0 < α(k) < β(k). Recall that the functional equation (3.11) is, in fact,
H(u, 0) = k/4. Let

v := E(u) =
√

2wu2 − bu4 + k, u ∈ [α(k), β(k)],

be the closed segment γ+
0 of the periodic orbit Γ0(k) over the u-axis, which is

contained in H(u, v) = k/4. Let

P (k) :=
1
2

∫ z10

z20

ü2 dz, Q(k) :=
1
2

∫ z10

z20

u̇2 dz.

Then by (3.3) one has

P (k) =
1
2

∫ z10

z20

(wu− bu3)2 dz =
√

2
∫ β

α

w2u2 + b2u6 − 2wbu4

E(u)
du,

Q(k) =
1
2

∫ z10

z20

u̇2 dz =
√

2
2

∫ β

α

E(u) du.

(3.12)

For k ∈ (−1/(a0a1), 0), we denote by c(k) the solution of equation (3.9), instead
of the previous c0(h). The next result characterizes the properties of the limit c(k)
of the wave speed of the periodic wave.
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Proposition 3.1. The function c(k) has the next properties:

c′(k) < 0, k ∈
( −1
a0a1

, 0
)
,

lim
k→−1/(a0a1)

c =
2
a1
, lim

k→0
c =

7
4a1

.

To prove this proposition, according to (3.9), (3.10) and (3.12), we define the
functions

Jn(k) =
∫ β

α

unE(u) du, n = 0, 1, 2, · · · .

Then

J ′
n(k) =

1
2

∫ β

α

un

E(u)
du,

which follows from E(u) =
√

2wu2 − bu4 + k and dE
dk = 1

2E . Under these notations,
P and Q can be written as

P = 2
√

2w2J ′
2(k) + 2

√
2b2J ′

6(k) − 4
√

2wbJ ′
4(k),

Q =
√

2
2
J0(k).

(3.13)

Since E2 = 2wu2 − bu4 + k, we have

E
dE
du

= 2wu− 2bu3.

Lemma 3.2.

⎛
⎝ J0

J1

J2

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

4k
3

0
4w
3

0
w2

b
+ k 0

4wk
15b

0
16w2 + 12kb

15b

⎞
⎟⎟⎟⎟⎠

⎛
⎝ J ′

0

J ′
1

J ′
2

⎞
⎠

Proof. Hereafter, for simplicity, we omit the upper and lower limits of the integrals.
Direct calculations show that

J0 =
∫

(2wu2 − bu4 + k)
du
E

=
∫ (

2wu2 − u(wu− EdE
2du

) + k

)
du
E

= w

∫
u2

E
du+

1
2

∫
u dE + k

∫
du
E

= 2wJ ′
2 −

1
2
J0 + 2kJ ′

0.

It induces

J0 =
4k
3
J ′

0 +
4w
3
J ′

2.

Similar manipulation gives the expressions of J1 and J2 in J ′
0, J

′
1 and J ′

2. �
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Next result exhibits the expressions of J3, J4, J5 and J6 in J0, J1 and J2.

Lemma 3.3.

J3 =
w

b
J1,

J4 =
8w
7b
J2 +

k

7b
J0,

J5 =
5w2 + kb

4b2
J1,

J6 =
4wk
21b2

J0 +
2
9

96w2 + 21kb
14b2

J2.

Proof. The proof follows from the similar calculations as those to lemma 3.2. �

Furthermore, we need to compute the expressions of the second-order derivatives
of J0 and J2.

Lemma 3.4.
(
J ′′

0

J ′′
2

)
= Δ(k)

(
−k −w − wk

b
k

)(
J ′

0

J ′
2

)
, Δ(k) =

b

4k(w2 + kb)
.

Proof. According to lemma 3.2, we have

J = A(k)J ′, (3.14)

where J = (J0, J2)T and

A(k) =

⎛
⎜⎝

4k
3

4w
3

4wk
15b

16w2 + 12kb
15b

⎞
⎟⎠ .

Then the lemma follows from

J ′ = A′J ′ +AJ ′′,

and

A−1(E −A′) = Δ(k)
( −k −w − wkb−1 k

)
.

Here

A−1 =
1

4k(w2 + kb)
(

4w2 + 3kb −5bw − wk 5bk
)
. (3.15)

�
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Combining (3.13) and lemmas 3.2 and 3.3 together with some direct calculations,
one gets

P (k) = −
√

2w
2

J0 +
3
√

2b
2

J2.

Let

X(k) =
P (k)
Q(k)

= −w + 3b
J2

J0
.

By (3.10) one has

c(k) =
3
a1

(
1 − 1

a1X(k) + 1

)
. (3.16)

Observe that the monotonicity of c(k) and X(k) is coincident. We turn to study
monotonicity of X(k). It is determined clearly by the properties of J0 and J2. Set

B(p, q) =
∫ 1

0

xp−1(1 − x)q−1 dx, p > 0, q > 0,

which is the beta function.

Lemma 3.5.

J0(0) =
w
√

2w
b

B

(
1,

3
2

)
, J2(0) =

2w2
√

2w
b2

B

(
2,

3
2

)
,

J2(0)
J0(0)

=
4w
5b
.

Proof. By definition, one has clearly α(0) = 0, β(0) =
√

2wb−1, and

J0(0) =
∫ √

2w
b

0

√
2wu2 − bu4 du.

Simple calculations show that

J0(0) =
1
2

∫ 2w
b

0

√
2w − btdt =

√
2w
2

∫ 2w
b

0

√
1 − bt

2w
dt =

w
√

2w
b

B

(
1,

3
2

)
.

The expression J2(0) follows from the similar calculations. Applying the relation
between the beta and gamma functions

B(p, q) =
Γ(p)Γ(q)
Γ(p+ q)

, Γ(s+ 1) = sΓ(s),

yields

J2(0)
J0(0)

=
4w
5b
.

Recall that Γ(s) =
∫ +∞
0

xs−1 e−x dx. �
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Lemma 3.6.

lim
k→−w2

b

J2(k)
J0(k)

=
w

b
.

Proof. Since 0 < α(k) � u � β(k) along the periodic orbit, one has
∫
α2E(u) du �

∫
u2E(u) du �

∫
β2E(u) du.

It follows

α2 � J2(k)
J0(k)

� β2.

Since α2 → w

b
and β2 → w

b
as k → −w

2

b
, we arrive the conclusion. �

Lemma 3.7. If X ′(k0) = 0 for some −w
2

b
< k0 < 0, then X ′′(k0) < 0.

Proof. The assumption X ′(k0) = 0 is equivalent to J ′
2(k0)J0(k0) = J2(k0)J ′

0(k0),
i.e.

J2(k0)
J0(k0)

=
J ′

2(k0)
J ′

0(k0)
, (3.17)

because J0(k0), J ′
0(k0) > 0. Let

X̃(k) =
J2(k)
J0(k)

, X̂(k) =
J ′

2(k)
J ′

0(k)
.

Then

J2 = J0X̃, J ′
2 = J ′

0X̃ + J0X̃
′, J ′′

2 = J ′′
0 X̃ + 2J ′

0X̃
′ + J0X̃

′′,

and

J ′
2 = J ′

0X̂, J ′′
2 = J ′′

0 X̂ + J ′
0X̂

′.

Note that the sign of X ′′(k0) coincides with that of X̃ ′′(k0), and that X̃ ′(k0) = 0
and X̃(k0) = X̂(k0) by (3.17). Then

X̃ ′′(k0) =
J ′′

2 − J ′′
0 X̃ − 2J ′

0X̃
′

J0

∣∣∣∣∣
k=k0

=
J ′′

0 (X̂ − X̃) + J ′
0X̂

′

J0

∣∣∣∣∣
k=k0

=
J ′

0(k0)
J0(k0)

X̂ ′(k0),

and

X̂ ′(k0) =
J ′′

2 (k0)J ′
0(k0) − J ′

2(k0)J ′′
0 (k0)

(J ′
0(k0))2

lemma 3.4= Δ(k0)
(

2k0X̂(k0) + wX̂2(k0) − k0w

b

)
.
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Obviously, 2k0X̂(k0) + wX̂2(k0) − k0w/b is always positive, and Δ(k0) is negative.
It follows that X̂ ′(k0) < 0. Consequently

X̃ ′′(k0) =
J ′

0(k0)
J0(k0)

X̂ ′(k0) < 0. �

Lemma 3.8. If X ′(k0) = 0 for −w
2

b
< k0 < 0, then X(k0) ∈ (

7w
5
, 2w).

Proof. According to lemma 3.2, we have

3J0 = 4kJ ′
0 + 4wJ ′

2, (3.18)

and

15bJ2 = 4wkJ ′
0 + (16w2 + 12kb)J ′

2. (3.19)

Subtracting the multiplication of (3.18) by 4w with (3.19) gives

12wJ0 − 15bJ2 = 12wkJ ′
0 − 12kbJ ′

2.

It can be written, via lemma 3.2, as

4w − 5b
J2

J0
= 4k

(
w
J ′

0

J0
− b

J ′
2

J0

)
= 4k

(
w − b

J ′
2

J ′
0

)
J ′

0

J0
.

Since
J ′

0(k0)
J0(k0)

> 0 and X̃(k0) = X̂(k0), we get

4k0(4w − 5bX̃(k0))(w − bX̃(k0)) > 0.

This shows
4w
5b

< X̃(k0) <
w

b
.

Moreover, by lemmas 3.5 and 3.6, we get

lim
k→−w2

b

X(k) = lim
k→−w2

b

(
−w + 3b

J2(k)
J0(k)

)
= 2w,

lim
k→0

X(k) = lim
k→0

(
−w + 3b

J2(k)
J0(k)

)
=

7w
5
.

This proves the lemma. �

Combining lemmas 3.7 and 3.8 we achieve the next result.

Lemma 3.9. For −w
2

b
< k < 0, we have X ′(k) < 0 and X(k) ∈ (

7w
5 , 2w

)
.

Lemmas 3.7, 3.8 and 3.9 together with equation (3.16) verify the two limits of
c(k) in proposition 3.1. This completes the proof of the proposition.

By proposition 3.1 and its proof, we have proved statement (d) of theorem 2.1.
In the next subsection, we will prove statements (a), (b) and (c) of theorem 2.1

on the solitary wave.
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3.3. Existence of the solitary wave

Subsection 3.1 provides a proof on the existence of the periodic waves of equation
(1.6), which is a result from the perturbation of a period annulus of a Hamiltonian
system with the total energy belonging to (−w2/(4b), 0). This subsection is to prove
the existence of the solitary wave, which bifurcates from the homoclinic orbit of
system (3.3) in the u > 0 half plane. To prove the existence of the solitary wave of
equation (1.6), we only need to prove the existence of the homoclinic orbit of system
(3.6) at the origin. Let γ1 := (u1(z), v1(z)) be the 1-dimensional unstable manifold
of system (3.6) at the origin with v1(z) > 0, and let γ2 := (u2(z), v2(z)) be the
1-dimensional stable manifold of system (3.6) at the origin with v2(z) < 0. Then
for 0 < τ � 1, the two invariant manifolds will intersect the positive u-axis. We
denote these two intersecting points as their initial points of the unstable and stable
manifolds. Then we have v1(0) = 0 and v1(z) > 0 for −∞ < z < 0, and v2(0) = 0
and v(z) < 0 for 0 < z < +∞.

To prove the existence of a homoclinic orbit at the origin, we need to prove
that the stable and unstable manifolds at the origin coincide on the positive u-axis.
This is the same as u1(0) = u2(0), which is equivalent to H(u1(0), 0) = H(u2(0), 0).
Recall that H(u, v) = 0 contains the homoclinic orbit γ0 at the origin of the
unperturbed system (3.3), and that when τ → 0, γ1 ∪ γ2 has γ0 as their limit.

To find the conditions ensuring H(u1(0), 0) = H(u2(0), 0), we define

Ψ(c, τ) :=
∫ 0

−∞
Ḣ(u1, v1) dz −

∫ +∞

0

Ḣ(u2, v2) dz.

By the standard Melnikov method together with some calculations, one gets from
(3.6) that

Ψ(c, τ) = τM(c) +O(τ2),

where

M(c) =
∫ +∞

−∞

(
v

wu− bu3

)
∧

(
0 −

√
c

a1
(a0cu

2v +
v

a1
− 3a0

a1
u2v)

)
dz

= −
∫ +∞

−∞

√
c

a1
(a0cu

2v2 +
v2

a1
− 3a0

a1
u2v2) dz

= −
√
c

a2
1

(
(a0a1c− 3a0)

∫ +∞

−∞
u2v2 dz +

∫ +∞

−∞
v2 dz

)
,

where (u(z), v(z)) is the homoclinic orbit of system (3.3), the unperturbed system
of system (3.6). Recall that the wedge operator ∧ is defined as f ∧ g = f1g2 − f2g1
for f = (f1, f2) and g = (g1, g2).

Obviously, the Melnikov function M(c) has a unique positive zero, which is
simple, and is denoted by c = c0. The implicit function theorem shows that for
0 < τ � 1, Ψ(c, τ) = 0 has a unique positive solution c = c(τ), which satisfies
limτ→0 c(τ) = c0. This proves the existence of the homoclinic orbit at the origin
for system (3.6) when c = c(τ) for 0 < τ � 1. Consequently, equation (1.6) has a

https://doi.org/10.1017/prm.2023.88 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.88


Periodic and solitary waves 19

solitary wave solution with the wave speed c = c(τ), whose leading term in the
expansion in τ is

c0 = lim
k→0

3
a1

(
1 − 1

a1X(k) + 1

)
=

7
4a1

.

Here k andX(k) have the same definitions as those in subsection 3.2, with difference
only in replacing the limits α and β of the integrals by 0 and u(0), respectively.

Up to now, we have completed the proof of statements (a), (b) and (c) of theorem
2.1 on the solitary wave, and consequently of the theorem.

4. The wavelength and wave speed

In this last section, we further study the properties of the wavelength and the
wave speed. Let Tτ (k) be the period of the periodic orbit for system (2.6), and let
T (k) := limτ→0 Tτ (k). Then T (k) is the period of the periodic solution u(z) := uk(z)
of equation (2.8). Recall that (uk(z), vk(z)) is the periodic orbit of system (3.3),
which is contained in the level curve H = k/4. Note that system (3.3) is symmetric
with respect to (v, z) → (−v,−z), it follows that

∫ β

α

du
v

=
∫ T

2

0

dz =
T

2
,

where α = α(k) and β = β(k) are the u coordinates of the intersection points of
the periodic orbit with u-axis. Then

T = 2
∫ β

α

du
v

= 2
√

2
∫ β

α

du
E(u)

= 4
√

2J ′
0(k).

Moreover, via simple calculation, one has

T ′(k) = 4
√

2J ′′
0 (k) =

√
2b

k(w2 + kb)
(−kJ ′

0 − wJ ′
2) = −3

√
2J0 > 0.

This verifies the next result.

Lemma 4.1. T ′(k) > 0 for k ∈ (−1/(a0a1), 0).

Finally, we consider the limits of T (k) at the endpoints of its domain. For
obtaining the limit at −w2/b = −1/(a0a1), we first prove the next result.

Lemma 4.2.

lim
k→−w2

b

J0

w2 + kb
=

π

4b
√
w
.
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Proof. By definition of α(k) and β(k), one gets

E2(u) = b(u− α)(β − u)(α+ u)(β + u) = −bu4 + b(α2 + β2)u2 − bα2β2.

Obviously, b(α2 + β2) = 2w and bα2β2 = −k. It follows that −α2(2w − bα2) = k,
and

(α2 − β2)2 = (α2 + β2)2 − 4α2β2 =
4w2 + 4α2b(α2b− 2w)

b2
.

Consequently,

lim
k→−w2

b

J0

w2 + kb
= lim

k→−w2
b

∫ β

α

√
b(u2 − α2)(β2 − u2)du

w2 + α2b(bα2 − 2w)
.

Obviously,
∫ β

α

√
b(u2 − α2)(β2 − u2) du =

√
b

2

∫ β2

α2

√
(m− α2)(β2 −m)√

m
dm,

√
b

2β

∫ β2

α2

√
(m− α2)(β2 −m) dm �

√
b

2

∫ β2

α2

√
(m− α2)(β2 −m)√

m
dm

�
√
b

2α

∫ β2

α2

√
(m− α2)(β2 −m) dm,

and
∫ β2

α2

√
(m− α2)(β2 −m) dm =

π

8
(β2 − α2)2 =

π

2
w2 + α2b(α2b− 2w)

b2
.

In addition,

lim
k→−w2

b

α = lim
k→−w2

b

β = lim
k→−w2

b

u =
√
w

b
.

One gets

lim
k→−w2

b

√
b

2β

∫ β2

α2

√
(m− α2)(β2 −m) dm

w2 + α2b(bα2 − 2w)
=

π

4b
√
w
,

lim
k→−w2

b

√
b

2α

∫ β2

α2

√
(m− α2)(β2 −m) dm

w2 + α2b(bα2 − 2w)
=

π

4b
√
w
.

Then the lemma follows from these last facts. �

Having the result in lemma 4.2, we can obtain the limit of the limit period.

Lemma 4.3.

lim
k→0

T = +∞, lim
k→−w2

b

T = lim
k→−w2

b

4
√

2J ′
0 =

√
2a1π.
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Proof. The first limit follows easily from the fact that the periodic orbit approaches
the saddle during the limit process. The second limit follows from

lim
k→−w2

b

J ′
0

(3.14),(3.15)
= lim

k→−w2
b

J0

4k(w2 + kb)

(
4w2 + 3kb− 5bw

J2

J0

)

lemma 3.5= lim
k→−w2

b

bJ0

w2 + kb

lemma 4.2=
π

4
√
w
.

�

Recall from § 3.2 that ξ = z/
√
c for getting equation (2.6). Then the wavelength

λ0 of the periodic wave of equation (1.6) is λ0 = T/
√
c0 with c0 satisfying (3.10).

According to proposition 3.1, lemmas 4.1 and 4.3, we have the next result.

Lemma 4.4. For k ∈ (−1/(a0a1), 0), it holds λ′0(k) > 0, and

lim
k→0

λ0 = +∞, lim
k→−1/(a0a1)

λ0 = a1π.

Proof of theorem 2.2. It follows from proposition 3.1, lemma 4.4 and the properties
of the derivatives of composite functions. �

5. Conclusion

In this paper, we have considered only the situation u > 0. In fact, the techniques
can also be applied to the situation u < 0.

In addition, we have discussed here only the modified KdV equation with the
weak generic delay kernel. If the kernel is replaced by the strong generic delay
kernel, we can obtain similar results as those in theorems 2.1 and 2.2. Due to this
reason, we omit the analysis on this case. For more general kernels, we do not
know if this method is applicable or not. From our point of view, if the kernel is
too general, it is hopeless. For some other special kernels, we need to explore new
techniques to handle them.

The determination on the stability of those travelling waves obtained in theorem
2.1 for system (1.6) will be a good work. But up to now, we know very little
about their further properties, so we have no idea to deal with their stability at
the moment. On the solitary waves founded in theorem 2.1, another question is to
know whether the solitary waves behave like solitons. We think these two questions
are interesting and meaningful, and deserve to be further studied.
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