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Abstract

The present study investigated the effects of xanthophyll supplementation on production performance, antioxidant capacity (measured

by glutathione peroxidase, superoxide dismutase (SOD), catalase, total antioxidant capacity (T-AOC), and reduced glutathione:oxidised

glutathione ratio (GSH:GSSG)) and lipid peroxidation (measured by malondialdehyde (MDA)) in breeding hens and chicks. In Expt 1,

432 hens were fed diets supplemented with 0 (control group), 20 or 40 mg xanthophyll/kg diet. Blood samples were taken at 7, 14, 21, 28

and 35 d of the trial. Liver and jejunal mucosa were sampled at 35 d. Both xanthophyll groups improved serum SOD at 21 and 28 d, serum

T-AOC at 21 d and liver T-AOC, and serum GSH:GSSG at 21, 28 and 35 d and liver GSH:GSSG. Xanthophylls also decreased serum MDA

at 21 d in hens. Expt 2 was a 2 £ 2 factorial design. Male chicks hatched from 0 or 40 mg in ovo xanthophyll/kg diet of hens were fed a diet

containing either 0 or 40 mg xanthophyll/kg diet. Liver samples were collected at 0, 7, 14 and 21 d after hatching. Blood samples were also

collected at 21 d. In ovo-deposited xanthophylls increased antioxidant capacity and decreased MDA in the liver mainly within 1 week after

hatching. Maternal effects gradually vanished during 1–2 weeks after hatching. Dietary xanthophylls increased antioxidant capacity and

decreased MDA in the liver and serum mainly from 2 weeks onwards. Data suggested that xanthophyll supplementation enhanced antioxidant

capacity and reduced lipid peroxidation in different tissues of hens and chicks.
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Carotenoids can be divided into two subgroups. One is caro-

tenes containing only hydrocarbons (such as b-carotene and

lycopene) and the other is xanthophylls containing oxygenated

substituent(s) (such as lutein, zeaxanthin and b-cryptoxanthin).

In animals, as in plants, xanthophyll lutein is believed to func-

tion in three important ways: (1) as a filter of high-energy blue

light, (2) as an antioxidant that quenches and scavenges

photo-induced reactive oxygen species(1,2) and (3) as an import-

ant immune response modulator(3,4). There is evidence that

carotenoids modify the activities of antioxidants and lipid per-

oxidation in vivo in humans and rodents. Dietary lutein could

inhibit erythrocyte phospholipid hydroperoxide formation(5),

increase blood reduced glutathione (GSH) level and protect

against DNA damage and chromosome instability(6), as well as

decrease reactive oxygen species generation, inflammation

and immunosuppression(7). Xanthophylls (mix of lutein and

zeaxanthin) could provide antioxidant protection for human

skin as measured by photoprotective activity and the lipid per-

oxidation product malondialdehyde (MDA)(8), and protected

mice against UVB-induced epidermal hyperproliferation and

acute inflammation(9). The same antioxidant and protective

effects were observed in human subjects and rodents sup-

plemented with b-carotene(10), lycopene(11,12), canthax-

anthin(13) and mixed carotenoid administration(14,15).

In addition, the antioxidant effects of carotenoids were also

revealed in vitro or ex vivo. The protective effects of lutein
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and zeaxanthin against oxidative damage of egg-yolk lecithin

liposomal membranes induced by exposure to UV radiation

and incubation with 2,20-azobis (2-methylpropionamidine)

dihydrochloride have been reported(16). Furthermore, zeax-

anthin and b-cryptoxanthin were more effective in protecting

egg-yolk phosphatidylcholine liposomes against oxidation

than b-carotene, astaxanthin, canthaxanthin and lycopene

in vitro (17). The in vitro or ex vivo antioxidant role of lyco-

pene(18), astaxanthin(19) and mixed carotenoid(20) has also

been reported.

Maize–soyabean basal diets are used in some places (such

as USA and China) and lutein is added to these diets to

pigment skin and eggs only to satisfy consumer acceptance,

but it has been neglected for a long time whether dietary

xanthophylls play an antioxidant role in the chicken. Further-

more, there have been many studies on the activities of

antioxidant enzymes and lipid peroxidation of carotenoids in

humans and rodents in vivo, but few experiments about the

antioxidant capacity of carotenoids in vivo have been carried

out in chickens. In addition, most yolk-derived carotenoids

are deposited into the embryonic liver(21), but dietary caroten-

oids were more broadly distributed in the tissues of the

post-hatch chick(22), so there maybe different functions between

in ovo and dietary carotenoids. Besides, data are sparse regard-

ing the effects of in ovo and dietary xanthophylls on antioxidant

capacity of the progeny, so the objectives of the present study

were to investigate the effects of xanthophylls on antioxidant

capacity and lipid peroxidation in hens and chicks.

Materials and methods

Institutional and national guidelines for the care and use of

animals were followed and all experimental procedures invol-

ving animals were approved by the Committee of Animal

Experiments of South China Agricultural University (approval

ID 201004152). All efforts were made to minimise suffering.

Expt 1

Animals and diets. To examine the effects of dietary xantho-

phylls (containing 40 % lutein and 60 % zeaxanthin following

analysis; Juyuan Biochemical Company Limited) on antioxi-

dant capacity and lipid peroxidation in breeding hens,

432 hens at 34 weeks of age with similar weight (2·5 kg) and

genetic background were randomly assigned to three treat-

ments. Hens were obtained from the College of Animal

Science, South China Agricultural University and were raised

in cages in a temperature-controlled room (258C). Every

cage was an experimental unit. Each treatment was replicated

six times with twenty-four breeding hens each. Hens were fed

a control diet not supplemented with xanthophylls (as the

control group; containing 0·05 mg xanthophyll/kg following

analysis) or a xanthophyll-supplemented diet with 20 or

40 mg xanthophyll/kg (containing 20·07 and 39·94 mg xantho-

phyll/kg following analysis, respectively). Dietary xanthophyll

contents were chosen to be similar to those fed to commercial

poultry. The diets were formulated according to the Chinese

Feeding Standard of Chicken (2004) and the National Research

Council (1994). Details of the ingredient composition and calcu-

lated nutrient content of diets for hens were provided as

described previously(23), including 66 % rice, 20·18 % soyabean

meal, 2 % fishmeal, 7·35 % limestone powder, 1·54 % calcium

monohydrogen phosphate, 1·585 % wheat bran, 0·095 %

DL-methionine, 1 % premix compound and 0·25 % salt. The

experiment lasted for 35 d, and water and diet were provided

ad libitum. Production performance (egg number, total egg

weight, feed intake, broken eggs, qualified eggs and hen mor-

tality) of each replicate was recorded daily. Blood of hens

(two hens for each replicate) was sampled at 7, 14, 21, 28 and

35 d after xanthophyll supplementation. Serum was collected

after centrifugation at 1000 g for 15 min at 48C to determine

xanthophyll content, antioxidant capacity and lipid peroxi-

dation. The method to determine xanthophyll content was

described by Koutsos et al.(24). From 29 to 35 d of the trial, 510

eggs (n 85 from each replicate) were collected from the control

group or the 40 mg xanthophyll/kg diet group, and hatched

artificially to determine fertilisation rate, the hatchability of

fertilised eggs, chick birth weight and healthy chick rate. The

incubation temperature was 388C from 1 to 2 d, 37·98C from 3

to 6 d, 37·88C from 7 to 10 d, 37·68C from 11 to 15 d, 37·48C

from 16 to 18 d and 378C from 19 to 21 d. The incubation humid-

ity was 55 % from 1 to 18 d and 60 % from 19 to 21 d. The eggs

were collected from 29d of the trial because yolk carotenoid

concentration has been shown to reach a new steady state

after about 3 weeks of supplementation in the hens’ diet, as

we and other researchers have determined(23,25,26). On the 35d

of trial, two hens from each replicate (twelve hens for each treat-

ment) were weighed and slaughtered. Liver and jejunum

samples were collected immediately after slaughter. Liver was

frozen in liquid N2 and then stored at 2808C for further analysis.

Preparation of intestinal mucosal and liver samples. The

method for preparing intestinal mucosal and liver samples

has been described previously(27). The first half of the jejunum

was cut into several 5 cm pieces, which were opened longi-

tudinally and cleaned with PBS containing 137 mM-NaCl,

2·7 mM-KCl, 10 mM-Na2HPO4 and 2 mM-KH2PO4, and a pH of

7·4. Jejunal mucosa was collected by scratching with a glass

slide for the next step and frozen in liquid N2. In brief, 9 ml

PBS at 48C was added to 1 g of intestinal mucosa or liver, fol-

lowed by homogenisation (Ultra-Turrax T8 homogeniser

(3000–5000 rpm for 1–2 min); IKA Labortechnik). The hom-

ogenates were centrifuged (4000 g for 5 min at 48C) and the

supernatant fluid was used for determining antioxidant

capacity and lipid peroxidation. Antioxidant capacity was

assessed by glutathione peroxidase (GSH-Px), superoxide dis-

mutase (SOD), catalase (CAT), total antioxidant capacity

(T-AOC) and the GSH:oxidised glutathione (GSSG) ratio

(GSH:GSSG). Lipid peroxidation was measured by MDA. Anti-

oxidant capacity and lipid peroxidation in the serum, liver and

intestinal mucosal supernatant were determined by using

commercially available kits (Nanjing Jiancheng Bioengineer-

ing Institute). The method and principle to determine anti-

oxidant indicators and lipid peroxidation using these kits

have been described elsewhere(28), and activity was normal-

ised to protein concentration as determined by the Coomassie

Blue assay. Briefly, CAT activity was determined by incubating
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in the presence of a known concentration of H2O2 and then

the reaction was quenched with ammonium molybdate. The

amount of H2O2 remaining in the reaction mixture forms a

stable coloured complex with ammonium molybdate and

the complex is measured at 405 nm using a UV–visible spec-

trophotometer (BioMate 5; Thermo). SOD activity was

measured at 550 nm using a UV–visible spectrophotometer

following the reduction of nitrite by a xanthine–xanthine oxi-

dase system which is a superoxide anion generator. GSH-Px

was assayed by the decrease in GSH, which was reflected

by a change in absorbance at 412 nm using a UV–visible spec-

trophotometer. T-AOC was determined by antioxidants

existed in the body which can reduce Fe3þ to Fe2þ. Fe2þ com-

bines with phenanthrene and forms a coloured compound

which can be measured at 520 nm using a UV–visible spectro-

photometer. GSH and GSSG were determined at 405 nm with

an automated ELISA reader (MODEL550; Bio-Rad) by using

the 3-carboxy-4-nitrophenyl disulphide circular response.

MDA was determined at 532 nm with a UV–visible spectro-

photometer by thiobarbituric acid reaction.

Expt 2

Animals and diets. To examine the effects of xanthophylls

supplied either in ovo or directly from the diet (containing

40 % lutein and 60 % zeaxanthin) on antioxidant capacity

and lipid peroxidation in chicks, a 2 £ 2 factorial arrangement

of treatments consisting of two in ovo xanthophyll levels and

two dietary xanthophyll levels was designed. To perform the

analysis, 510 eggs were collected from hens fed 0 or 40 mg

xanthophyll/kg in Expt 1. On the day of hatching, 180 healthy

male chicks from each in ovo xanthophyll treatment were

chosen randomly and assigned to one of two dietary xantho-

phyll levels: a basal diet supplemented with 0 or 40 mg

xanthophyll/kg (containing 0·07 and 40·02 mg xanthophyll/kg

following analysis, respectively). Within 12 h after hatching,

twelve chicks (0 d chicks, two for each replicate) without feed-

ing from each in ovo xanthophyll treatment were weighed and

slaughtered, and then liver samples were removed immedi-

ately after slaughter and frozen in liquid N2. There were

four groups of progeny designed as follows: parents and

chicks fed 40 mg xanthophyll/kg (HH group), parents fed

40 mg xanthophyll/kg and chicks fed 0 mg xanthophyll/kg

(HL group), parents fed 0 mg xanthophyll/kg and chicks fed

40 mg xanthophyll/kg (LH group), parents and chicks fed

0 mg xanthophyll/kg (LL group). Each of the four progeny

groups contained six replicate pens with fifteen male chicks

each. The diets were formulated according to the Chinese

Feeding Standard of Chicken (2004) and the National Research

Council (1994). Details of the ingredient composition and cal-

culated nutrient content of diets for chicks were provided as

described previously(23), including 58·69 % rice, 32·93 % soya-

bean meal, 2 % fishmeal, 1·23 % limestone powder, 1·50 %

calcium monohydrogen phosphate, 2·1 % soyabean oil,

0·25 % DL-methionine, 1 % premix compound and 0·3 % salt.

Dietary xanthophyll levels were chosen to be similar to

those fed to commercial poultry. Chicks were housed in bat-

tery cages, and water and diet were provided ad libitum.

The experiment lasted for 21 d, and growth performance (aver-

age daily feed intake, average daily gain and gain:feed ratio) of

chicks was analysed after the experiment. From each of the four

groups, six chicks (one for each replicate) were slaughtered and

liver samples were collected at 7, 14 and 21 d after hatching. In

addition, blood samples were also collected at 21 d after hatch-

ing from six chicks from each of the four groups. Blood samples

were not collected at 0, 7 and 14 d after hatching because the

chicks were too little to collect enough blood for determination

of antioxidant capacity and lipid peroxidation.

Preparation of blood and liver samples

Preparation of liver and blood samples and determination of

antioxidant capacity and lipid peroxidation in serum and

liver homogenate supernatant were the same as in Expt 1.

Statistical analysis

Statistical analysis of data was performed using SAS 8.1

(SAS Institute Inc.). Fertilisation rate, hatchability of fertilised

eggs, chick birth weight, healthy chick rate, antioxidant

capacity and lipid peroxidation in 0 d chicks were analysed

by the t test between the two treatments. For analysing pro-

duction performance, antioxidant capacity and lipid peroxi-

dation in breeding hens, one-way ANOVA were performed

to test for the effect of dietary xanthophylls in hens. For

growth performance at 21 d of chicks, and antioxidant

capacity and lipid peroxidation at 7, 14 and 21 d of chicks,

data were analysed by using two-way ANOVA. The model

included the main effects of in ovo, diet and their interaction.

Replicate was used as the experimental unit. Results are pre-

sented as means and pooled standard errors. When the main

effect(s) or interaction was significant, differences among

means were determined using Tukey’s honestly significant

difference. Differences between means were considered sig-

nificant at P#0·05.

Results

Effects of xanthophylls on antioxidant capacity and lipid
peroxidation in hens

The addition of 20 or 40 mg xanthophyll/kg had no effect on

the production performance of hens, and maternal xantho-

phyll addition did not affect fertilisation rate, hatchability of

fertilised eggs, chick birth weight and healthy chick rate

(data not shown). Supplementation of 20 or 40 mg xantho-

phyll/kg increased serum SOD activity at 21 and 28 d com-

pared with the control, and serum T-AOC at 21 d and liver

T-AOC were elevated by both 20 and 40 mg xanthophyll/kg

supplementation (Table 1). In addition, supplementation of

20 or 40 mg xanthophyll/kg also increased serum GSH:GSSG

at 21, 28 and 35 d and liver GSH:GSSG. Serum MDA level at

21 d was decreased in both xanthophyll groups compared

with the control. Supplementation of 40 mg xanthophyll/kg

also reduced serum MDA at 28 and 35 d and jejunal mucosal

MDA. There was no difference in CAT and GSH-Px activities

among the treatments (data not shown).

Effects of xanthophylls in hens and chicks 979
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Effects of xanthophylls on antioxidant capacity and lipid
peroxidation in chicks

Xanthophylls from in ovo, diet or their interaction had no effect

on the growth performance of chicks (data not shown). In ovo

xanthophylls enhanced liver GSH-Px activity at 0 d, liver T-AOC

at 0 d and serum T-AOC, and liver GSH:GSSG at 7 and 14 d

(Table 2). Liver MDA levels at 0 and 7 d were decreased by

in ovo xanthophyll addition. Dietary xanthophyll supplemen-

tation promoted liver GSH-Px activity at 14 d, serum T-AOC,

and liver GSH:GSSG at 14 and 21 d and serum GSH:GSSG.

The addition of dietary xanthophylls also reduced liver MDA

at 21 d and serum MDA. There was no difference in CAT and

SOD activities with in ovo or dietary xanthophyll supplemen-

tation (data not shown). In addition, liver GSH-Px activity at

14 d, serum T-AOC, liver GSH:GSSG at 7 and 14 d were

enhanced in the HH group compared with the LL group. Liver

GSH:GSSG at 7 d was increased in the HH group compared

with the LH group.

Discussion

The health benefits of lutein and zeaxanthin have attrac-

ted public attention because they may protect against the

development of cataract, macular degeneration, cancer and

heart disease(29). Evidence suggests that the action of caroten-

oids on immunity and diseases may be mediated, at least

in part, by their ability to quench reactive oxygen species(30).

In Expt 1, a novel and important finding of the present

study was that xanthophylls could influence antioxidant

capacity and lipid peroxidation in breeding hens in vivo. Gen-

erally speaking, antioxidant capacity of hens was enhanced

after xanthophyll supplementation for 21 d. This is consistent

with changes in serum carotenoid concentrations in hens

following dietary supplementation that we observed in a pre-

vious study(23), which indicated that serum carotenoids reach

a new steady state after 21 d of xanthophyll supplementation.

Higher SOD activity at 21 and 28 d was observed in the present

study, and the same in vivo results have been reported in

mice supplemented with canthaxanthin(13), rats supplemented

with astaxanthin, lutein or b-carotene(31), and human subjects

supplemented with b-carotene(10). The present findings on

MDA agree with several carotenoid researches on human sub-

jects and rodents(8,10,12), which have reported that carotenoid

supplementation decreased MDA in plasma, liver and skin.

CAT activity was not affected by xanthophylls in hens and

chicks, as revealed by the present results, and in mice added

with lutein(6), but some papers have also reported that CAT

Table 1. Effects of xanthophylls on superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reduced glutathione:
oxidised glutathione ratio (GSH:GSSG) and malondialdehyde (MDA) in the serum, liver and jejunal mucosa of hens*

(Mean values with their standard errors, n 6)

Items Control 20 mg xanthophyll 40 mg xanthophyll Pooled SEM P

Serum SOD (U/ml)
7 d 136·17 130·35 143·15 4·32 0·146
14 d 136·90 140·53 145·91 3·03 0·140
21 d 133·26a 147·08b 154·35b 3·75 0·004
28 d 134·86a 147·22b 147·81b 3·26 0·021
35 d 148·10 157·99 153·33 4·71 0·358

Liver SOD (U/mg protein) 430·20 433·62 394·01 16·38 0·200
Jejunal mucosal SOD (U/mg protein) 572·63 545·10 596·41 43·07 0·707
Serum T-AOC (U/ml)

7 d 3·43 3·39 3·58 0·58 0·972
14 d 3·04 3·58 3·58 0·37 0·511
21 d 2·61a 3·43b 3·47b 0·20 0·011
28 d 2·92 3·25 3·39 0·27 0·461
35 d 3·02 3·35 3·33 0·25 0·602

Liver T-AOC (U/mg protein) 1·46a 1·80b 1·77b 0·08 0·012
Jejunal mucosal T-AOC (U/mg protein) 1·59 1·80 1·80 0·17 0·614
Serum GSH:GSSG

7 d 18·45 18·00 19·52 0·75 0·364
14 d 19·11 19·72 19·56 0·46 0·632
21 d 15·45a 24·79b 25·67b 1·06 0·000
28 d 17·86a 25·84b 25·57b 1·05 0·000
35 d 18·39a 24·60b 24·02b 1·28 0·006

Liver GSH:GSSG 5·75a 7·80b 7·70b 0·49 0·016
Jejunal mucosal GSH:GSSG 11·87 13·27 13·50 0·85 0·362
Serum MDA (nmol/ml)

7 d 3·59 3·21 3·41 0·35 0·750
14 d 3·74 2·98 2·95 0·40 0·314
21 d 4·04a 2·78b 2·53b 0·29 0·004
28 d 3·81a 2·75a,b 2·58b 0·33 0·039
35 d 3·86a 2·68a,b 2·55b 0·37 0·043

Liver MDA (nmol/mg protein) 2·93 2·42 2·50 0·25 0·336
Jejunal mucosal MDA (nmol/mg protein) 5·29a 3·98a,b 3·59b 0·37 0·014

a,b Mean values within a row with unlike superscript letters were significantly different (P,0·05).
* 1 unit of SOD is defined as the amount of enzyme that inhibits the rate of hydroxylamine oxidation by 50% in the reaction system. 1 unit of T-AOC
is defined as the optical density value that increases 0·01 per min in the reaction system.
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activity was affected by carotenoids in rodents(13,31,32). The con-

flict was also observed with GSH-Px activity in the present study

and other experiments(11,13). It is difficult to compare the change

in antioxidant enzymes between studies because of the discor-

dance of methodological conditions, such as animal species,

environment (housing condition and density), dosage and

type of carotenoids used, the interaction with other antioxidants

(vitamin C and vitamin E), and the oxidant stress challenge. The

major determinant of redox status in mammalian cells is GSH, a

tripeptide thiol that couples with its disulphide form (GSSG)(33).

Redox status depends on the relative amounts of reduced

and oxidised partners of these major redox molecules, and

GSH:GSSG reflects the redox status within the cell. The

glutathione system acts as a homeostatic redox buffer and the

oxidised partner predominates under oxidative conditions(34).

The present results showed that xanthophylls increased serum

GSH:GSSG, strongly suggesting that addition of xanthophylls

enhanced the antioxidant capacity of the body. Similar results

were also reported in mice fed a diet added with lutein(6) and

in hamsters fed a diet added with lycopene(11).

Serum SOD activity at 21 and 28 d, and serum T-AOC at 21 d

of hens were increased in the 40 mg xanthophyll/kg group

compared with the control, but all these effects were not

observed at 35 d, which indicated that the control group, to

some extent, also elevated the body antioxidant capacity

after 35 d on a non-xanthophyll-supplemented diet. We

assumed that the body in a carotenoid-depleted state for a

long time (35 d in the present experiment) may modulate

the activities of antioxidant enzymes through utilising other

antioxidants (such as tocopherol). This could counteract

the disadvantage of decreased antioxidant enzymes and lead

to a reduction of the concentration of other antioxidants.

The speculation was supported by evidence that b þ g-toco-

pherol was lower in eggs, and liver and yolk sac membrane

of newly hatched chicks from hens on a wheat-based diet

compared with a maize-based diet(35) and that xanthophylls

(lutein and zeaxanthin) could protect tocopherol from the oxi-

dative loss(36). The same protective effects against tocopherol

decrease in liver and plasma have also been reported for

canthaxanthin(37), lycopene and b-carotene(36). In addition,

lower MDA of jejunal mucosa was observed by xanthophyll

supplementation, the same increased effects were also noted

in liver T-AOC and GSH:GSSG when adding dietary xantho-

phylls. These data demonstrate that xanthophylls also play

an important role in antioxidant capacity and lipid peroxi-

dation in the liver and jejunum of hens. Besides, the mean

values of CAT varied widely between the serum, liver and

intestinal mucosa of hens (2·01 U/ml, 15·77 U/mg protein

and 4·17 U/mg protein, respectively), implying different anti-

oxidant enzymes and agents may play a leading role in the

antioxidant defence of different tissues. (One unit of CAT is

defined as the amount of enzyme that catalyses the conversion

of 1 mmol hydrogen peroxide per S in the reaction system.)

The same results can be observed for SOD.

In Expt 2, in ovo or dietary xanthophylls signifi-

cantly increased antioxidant capacity and decreased lipid

Table 2. Effects of in ovo and dietary xanthophylls on glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), reduced
glutathione:oxidised glutathione ratio (GSH:GSSG) and malondialdehyde (MDA) in the serum and liver of chicks*

(Mean values with their standard errors, n 6)

þ In ovo 2 In ovo P

Items þDiet 2Diet þDiet 2Diet Pooled SEM In ovo Diet In ovo £ diet

Serum GSH-Px (U/ml) 475·74 475·46 486·52 487·38 14·88 0·455 0·985 0·970
Liver GSH-Px (U/mg protein)

0 d 671·96a 671·96a 538·62b 538·62b 37·34 0·030 – –
7 d 323·18 360·39 320·46 331·72 22·71 0·498 0·299 0·574
14 d 415·39a 335·37a,b 377·31a,b 316·74b 24·55 0·262 0·010 0·696
21 d 502·28 480·91 487·04 446·86 47·11 0·607 0·521 0·844

Serum T-AOC (U/ml) 4·23a 3·56a,b 3·52a,b 2·63b 0·31 0·015 0·020 0·743
Liver T-AOC (U/mg protein)

0 d 2·39a 2·39a 1·37b 1·37b 0·28 0·029 – –
7 d 1·71 1·64 1·46 1·38 0·15 0·110 0·651 0·992
14 d 2·78 2·70 2·63 2·59 0·18 0·469 0·760 0·913
21 d 2·76 2·45 2·35 2·50 0·31 0·576 0·807 0·472

Serum GSH:GSSG 20·82 18·19 20·23 16·96 1·25 0·476 0·029 0·801
Liver GSH:GSSG

0 d 15·09 15·09 10·68 10·68 1·48 0·062 – –
7 d 16·53a 13·11a,b 8·48b 6·82b 2·03 0·002 0·226 0·669
14 d 12·93a 8·93a,b 9·83a,b 6·53b 1·16 0·028 0·005 0·764
21 d 12·92 9·46 10·52 7·91 1·30 0·144 0·030 0·745

Serum MDA (nmol/ml) 1·31 1·67 1·59 1·92 0·16 0·103 0·040 0·936
Liver MDA (nmol/mg protein)

0 d 2·60a 2·60a 3·47b 3·47b 0·22 0·018 – –
7 d 1·81 1·74 2·22 2·54 0·21 0·008 0·533 0·358
14 d 1·82 2·09 2·15 2·73 0·26 0·081 0·121 0·559
21 d 1·98 2·51 2·34 3·18 0·31 0·106 0·038 0·614

a,b Mean values within a row with unlike superscript letters were significantly different (P,0·05).
* 1 unit of GSH-Px is defined as the amount of enzyme that catalyses the conversion of 1 mmol GSH per min in the reaction system. 1 unit of T-AOC is defined
as the optical density value increases 0·01 per min in the reaction system.
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peroxidation in chicks. For a precocial species such as the

chicken, metabolic rate and oxygen consumption increase

rapidly(38), which may cause oxidative stress, so it is helpful

and meaningful if an effective antioxidant system is built. Gen-

erally speaking, maternal xanthophylls enhanced antioxidant

capacity and reduced lipid peroxidation mainly at 0–7 d after

hatching. During 7–14 d after hatching, the maternal antioxi-

dant effects gradually disappeared and the progeny’s diet

began to take over. Dietary xanthophylls increased antioxidant

capacity and decreased lipid peroxidation of the body mainly

from 2 weeks onwards. The antioxidant results were consistent

with liver carotenoid change of chicks, as we and other

researchers have determined(23,25). Furthermore, liver GSH-Px

activity at 14 d of chicks was increased by dietary xanthophylls,

but this effect was not observed at 21 d, indicating that chicks in

a carotenoid-depleted state may also up-regulate antioxidant

enzymes through utilising other antioxidants (such as toco-

pherol) as discussed above. Moreover, the liver MDA level

and GSH-Px activity were higher in all four groups on the day

of hatching than in 7-d-old chicks. Therefore, we inferred that

the most serious oxidative stress happened immediately after

hatching as proved by the MDA level, and the body needs to

raise antioxidant enzymes (GSH-Px) to counteract the negative

effects produced by serious oxidative stress. According to our

knowledge, the present study is the most extensive paper

measuring the effects of xanthophylls on antioxidant capacity

and lipid peroxidation in parents and progeny.

In conclusion, xanthophyll supplementation in the diet

enhanced antioxidant capacity in the serum and liver and

decreased lipid peroxidation in the serum and intestinal

mucosa of breeding hens. The antioxidant role of in ovo-sup-

plied xanthophylls mainly lasted for at least the first week

after hatching in the liver and serum of chicks, whereas dietary

xanthophylls played an important antioxidant role mainly from

2 weeks onwards. In addition, the different responses of antiox-

idant enzymes, antioxidant agent and MDA to xanthophyll sup-

plementation between breeding hens and chicks may be due to

their different roles in oxidative stress. The present results also

showed that maternal xanthophyll nutrition plays an important

antioxidant role for progeny, which may have a significant

implication for animals and humans.
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