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Geothermal gradients and heterogeneous permeability are commonly observed in natural
geological formations for underground CO2 sequestration. In this study, we conduct
three-dimensional direct numerical simulations on the double-diffusive convection with
both unstable temperature and concentration gradients in homogeneous and heterogeneous
porous media. For homogeneous porous media, the root-mean-squared velocity increases
linearly with density ratio defined as the buoyancy ratio by temperature and concentration
differences. The flow structures show no remarkable changes when temperature Rayleigh
number RaT is less than its critical value, but alter from sheet-like to cellular structures
as RaT surpasses this threshold. The concentration wavenumber scales approximately as
krS ∼ Ra0.47

e with a defined effective Rayleigh number Rae. By using a scale analysis,
the concentration flux exhibits a consistent linear relation with the total driving forces for
all simulations. For heterogeneous porous media, where the Dykstra–Parsons coefficient
VDP and correlation length lr determine the spatial distribution of the permeability field,
the flow is strengthened in places with higher permeability. The velocity and concentration
flux are less affected by lr than that by VDP. For small correlation length, the flow structures
coarsen and their characteristic width generally increases with increasing heterogeneity.
For large correlation length, small structures emerge in the regions with large permeability,
which can be attributed to the intensified local Rayleigh number triggering more vigorous
convection there. The variations of concentration flux with lr and VDP can be explained
by the portion of area covered by high concentration with large vertical velocity near the
boundaries.

Key words: convection in porous media, double-diffusive convection, turbulent convection

† Email address for correspondence: yantao.yang@pku.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 999 A62-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

94
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:yantao.yang@pku.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.947&domain=pdf
https://doi.org/10.1017/jfm.2024.947


C. Hu and Y. Yang

1. Introduction

Convection in porous media has attracted significant attention in recent decades owing
to its huge relevance to geological carbon dioxide (CO2) sequestration (Ennis-King &
Paterson 2003; Riaz & Cinar 2014; Hewitt 2020), which is considered one of the most
promising approaches to reduce CO2 concentration in the atmosphere (Teng & Zhang
2018). In brief, the captured carbon dioxide is compressed into the supercritical state and
then injected into deep saline aquifers, typically regarded as porous media saturated with
brine at depths greater than 800 m (Bachu 2000). Huppert & Neufeld (2014) has reviewed
fluid mechanics involved in this geological sequestration. Upon injection, CO2 migrates
due to buoyancy and partially dissolves into brine, leading to the formation of denser
CO2-saturated brine. Gravity-induced instability at these interfaces further evolves into
convection, which in turn increases CO2 dissolution. The dissolution and convection in
porous media are important mechanisms for the stable long-term storage of underground
carbon dioxide (Ennis-King & Paterson 2003; Teng & Zhang 2018; Hewitt 2020).

In geological formations, the brine in reservoirs commonly experiences unstable
geothermal gradients in a range of 20–65 ◦C km−1 (Bachu 2003; Nordbotten, Celia
& Bachu 2005; Hu, Xu & Yang 2023). Meanwhile, the permeability of porous
media is not always homogeneous and has a spatial distribution, which is empirically
assumed to be log-normal (Chen, Zeng & Shi 2013). The present study consists of
three-dimensional (3-D) numerical simulations of double-diffusive convection (DDC)
with both gravitationally unstable temperature and concentration gradients. Both
homogeneous and heterogeneous permeability are investigated. The principal objectives
are to reveal the influences of geothermal gradients and heterogeneous permeability on
flow structures and concentration transfer.

The underground reservoirs are modelled by two parallel horizontal plates, representing
impermeable cap rock layers, with saturated porous media inside. Two typical
configurations of boundary conditions have been applied in previous studies of
single-phase convective dissolution in porous media (Hewitt 2020). One is time-evolving
one-sided convection with a fixed concentration at the top and no concentration flux at the
bottom, commonly referred to as convective dissolution. The other is statistically stable
two-sided convection with fixed temperature (or concentration) at the upper and lower
boundaries, commonly known as Rayleigh–Darcy convection (RDC) or single-component
convection. In homogeneous porous media, transient behaviours of convective fingers
and variations of concentration flux over time have been studied extensively in one-sided
convection (Xu, Chen & Zhang 2006; Hewitt, Neufeld & Lister 2013). The dissolution rate
is categorised into different regimes as time progresses (Slim 2014), and eventually enters
a decaying shutdown regime (Hewitt et al. 2013). Two-sided convection focuses on the
influence of driving force, i.e. Rayleigh number Ra, on dominant flow structures and heat
(or concentration) flux. Previous studies have revealed that the scaling between the flux Nu
and Ra varies across different Ra ranges. Otero et al. (2004) conducted two-dimensional
(2-D) numerical simulations and found Nu ∼ Ra over an intermediate range 50 � Ra �
1200 and Nu ∼ Ra0.9 from 1255 to 104. Hewitt, Neufeld & Lister (2012) found a similar
scaling Nu ∼ Ra0.95 in high-Ra range 1300 � Ra ≤ 4 × 104 in 2-D simulations. Later,
Hewitt, Neufeld & Lister (2014) extended simulations to 3-D cases and observed a fitted
linear scaling Nu = 0.0096Ra + 4.6 in the range 1750 ≤ Ra ≤ 2 × 104. More recently,
Pirozzoli et al. (2021) and De Paoli et al. (2022) have pushed Rayleigh number up to a
large value of 8 × 104, adding a sublinear corrective term that only influences moderate
Ra values. Zhu, Fu & De Paoli (2024) proposed a possible explanation for this additional
nonlinear term. The size of flow structures can be measured by the wavenumber, which
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Double-diffusive convection

follows a fitted scaling Ra0.4 in 2-D simulations (Hewitt et al. 2012) and approximately
Ra0.5 in 3-D simulations (Hewitt et al. 2014; De Paoli et al. 2022).

Early studies of DDC in homogeneous porous media focused on the onset of convection.
Using linear stability analysis, Nield (1968) obtained critical Rayleigh numbers and
corresponding critical wavenumbers under various boundary conditions of temperature
and concentration. Taunton, Lightfoot & Green (1972) extended the analysis to determine
conditions for salt fingers. Anisotropic permeability and diffusion coefficients were further
considered by Tyvand (1980) to investigate thermohaline instability. The above studies
used Darcy’s law to determine the seepage velocity. Instability of flows described by a
Brinkman model has also been explored (Wang & Tan 2009; Prakash & Gupta 2012). In
numerical simulations, Trevisan & Bejan (1987) considered the buoyancy effect solely by
temperature gradient in 2-D porous media and obtained a scaling law of mass transfer rate
for various Lewis numbers. Laboratory experiments were carried out by Griffiths (1981)
who measured the heat and salt fluxes through interfaces in a two-layer convecting system
in a Hele-Shaw cell. Murray & Chen (1989) considered the onset of DDC in a finite
box of porous medium. Persistent investigations into DDC in porous media encompass
various aspects, including horizontal throughflow (Rubin & Roth 1979), vertical vibration
(Jounet & Bardan 2001), mechanical dispersion (Rosenberg & Spera 1992), heat-releasing
concentration (Hill 2005) and nonlinear stability (Lombardo, Mulone & Straughan 2001).
Comprehensive reviews of DDC in porous media have been conducted by Trevisan &
Bejan (1990), Vafai (2005) and Nield & Bejan (2017). In our recent study (Hu et al.
2023), we systematically investigated the effects of unstable geothermal gradients on
the one-sided convection. It has been addressed that large-scale rolls induced by the
geothermal gradient can significantly influence flow structures and dissolution rates. The
long-term variation of dissolution flux over time exhibits consistent decaying behaviour
and can be modelled by a theoretical relation.

Another important factor to consider is permeability heterogeneity quantified by the
Dykstra–Parsons coefficient VDP, which ranges from 0, indicating perfect homogeneity,
to 1, signifying maximum heterogeneity. Buoyancy-driven convection in heterogeneous
porous media has been investigated theoretically, numerically and experimentally. The
effects of heterogeneity on the onset of convection in porous media have been discussed
extensively in a series of studies (Nield & Kuznetsov 2007a,b; Nield, Kuznetsov &
Simmons 2010; Nield & Kuznetsov 2011). Braester & Vadasz (1993) utilised a perturbation
expansion method to study weak heterogeneity. Heterogeneous permeability can be
generated by many methods. For instance, Soboleva (2018) introduced inhomogeneity
using multiple horizontal layers at different porosity and permeability. Mahyapour
et al. (2022) employed the sequential Gaussian simulation method to produce random
permeability fields and studied the effects of permeability heterogeneity on one-sided
convective dissolution. Farajzadeh et al. (2010) used spectral methods to generate 2-D
fields with various correlation lengths and VDP. They concluded three flow regimes
(fingering, dispersive and channeling) for density-driven natural convection flow through
numerical simulations, which adopts the ideas of Waggoner, Castillo & Lake (1992),
and found the heterogeneity is not related to the mass of dissolved CO2. Similar results
were given by Ranganathan et al. (2012). However, an increase in total dissolved CO2
with heterogeneity was observed by Kong & Saar (2013). Experimental set-ups include
a sloping permeability jump in a saturated two-layered porous medium (Bharath &
Flynn 2021), a Hele-Shaw cell with a thin horizontal layer of circular impermeable discs
(Salibindla et al. 2018) and packed stratified plastic resin particles with different average
diameter (Wang et al. 2017). As for DDC, Kuznetsov & Nield (2008, 2012) analytically
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studied the onset of convection using linear stability theory. Islam, Lashgari & Sephernoori
(2014b) numerically investigated 2-D convective dissolution with geothermal gradients.
Results revealed that dissolution is enhanced with increasing both solutal Rayleigh number
and heterogeneity level, and the geothermal effect has a minor effect on overall dissolution
process.

The rest of the paper is organised as follows. In § 2, we describe the governing equations
and corresponding numerical methods, as well as the control parameter spaces and
methods for generating heterogeneous permeability fields. In § 3, we analyse numerical
results of DDC in homogeneous porous media, including flow structures and fluxes. In
§ 4, we focus on variations of permeability heterogeneity in both RDC and DDC. Finally,
we summarise our results in § 5.

2. Methodology

2.1. Governing equations
In a Cartesian coordinate x = (x, y, z), we consider a 3-D cell containing fluid-saturated
porous media bounded by two horizontal plates with a uniform porosity φ. The cell has
a height of H, and its length and width are both L. The permeability of porous media is
either homogeneous, characterised by a constant value K̄, or heterogeneous, defined by a
spatial function K(x) = K̄f (x) following a certain distribution. Here f (x) is a normalised
function to describe permeability heterogeneity, with an average value of unity over the
entire domain. Note that the permeability is generally considered a second-order tensor
with anisotropy in the horizontal and vertical directions (Rapaka et al. 2009; Green &
Ennis-King 2014; De Paoli, Zonta & Soldati 2017; Nield & Bejan 2017). For simplicity,
we assume isotropic permeability in this study. The details of generating a heterogeneous
permeability field are discussed in the following section. The cell is maintained at a
constant concentration at the top and zero concentration at the bottom. Meanwhile, there
is a consistent unstable geothermal gradient across the domain against the direction of
gravity. In other words, the saturated porous media are heated from below and cooled
from above. We denote concentration and temperature as S and T , respectively. The top and
bottom boundaries are marked with subscripts ‘top’ and ‘bot’, respectively. The density of
fluid follows a linear relation as ρ = ρ0[1 − βT(T − Ttop) + βS(S − Sbot)], where βT and
βS are linear coefficients of expansion and ρ0 is a reference value. The governing equations
of an incompressible Darcian flow with both heat and mass transfer read

∇ · u = 0, (2.1a)

u = −K(x)

μ
[∇p + (βSS − βTT)ρ0gez], (2.1b)

(ρc)m

(ρcp)f

∂T
∂t

= −u · ∇T + κm∇2T, (2.1c)

φ
∂S
∂t

= −u · ∇S + φκS∇2S. (2.1d)

Here u is the seepage velocity, p is the pressure, g is the gravitational acceleration, ez is
the vertical unit vector opposite to direction of gravity, μ is fluid viscosity, (ρc)m is the
overall heat capacity of solid and fluid, (ρcp)f is the heat capacity of fluid, κm is the overall
thermal diffusivity and κS is the molecular diffusivity of concentration field, respectively.
The subscript ‘m’ represents the combination of both the solid matrix and saturated fluid,
whereas ‘f ’ represents the fluid alone. Note that local thermal equilibrium is assumed in
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Double-diffusive convection

(2.1c). Periodicity is imposed on the horizontal directions, namely, the x and y dimensions,
for all variables. The boundary conditions at the bottom and top boundaries are

uz = 0, T = Tbot, S = Sbot, at z = 0, (2.2a)

uz = 0, T = Ttop, S = Stop, at z = H. (2.2b)

The above governing equations are non-dimensionalised by the height H, the
temperature difference �T = Tbot − Ttop, the concentration difference �S = Stop − Sbot,
the characteristic velocity Uc = K̄gρ0βS�S/μ, and the characteristic time scale tc =
φH/Uc, respectively. Then the non-dimensionalised equations are

∇ · u = 0, (2.3a)

u = [−∇p + (ΛT − S)ez] f (x), (2.3b)

σ
∂T
∂t

= −u · ∇T + Le
RaS

∇2T, (2.3c)

∂S
∂t

= −u · ∇S + 1
RaS

∇2S. (2.3d)

In the remainder of this article, all variables are dimensionless unless otherwise
mentioned. Note that both the temperature and concentration differences are positive,
which means the two scalars simultaneously drive convective motions.

There are four dimensionless control parameters in the above equations, including the
heat capacity ratio σ , the Lewis number Le, the concentration Rayleigh number RaS and
the temperature Rayleigh number RaT , which are respectively defined as

σ = (ρc)m

φ(ρcp)f
, Le = κm

φκS
, RaS = K̄Hgρ0βS�S

κSμφ
, RaT = K̄Hgρ0βT�T

κmμ
. (2.4a–d)

The density ratio Λ = (βT�T)/(βS�S) = RaTLe/RaS can be assembled to measure
the strength of the temperature difference relative to the concentration difference. The
non-dimensionalised boundary conditions at the bottom and top boundaries then become

uz = 0, T = 1, S = 0, at z = 0, (2.5a)

uz = 0, T = 0, S = 1, at z = 1. (2.5b)

2.2. Permeability heterogeneity
Before solving the governing equations, the heterogeneous permeability field must be
properly generated as a reflection of realistic geological formations. Permeability in
natural geological formations is empirically assumed to follow a log-normal distribution.
Thus, the normalised permeability function f (x) is modelled by the exponential of a
random Gaussian field G(x) which has zero mean and unit standard deviation (Oliver
1995; Camhi, Meiburg & Ruith 2000; Abrahamsen, Kvernelv & Barker 2018). The
autocovariance function of G(x) is given as C(x) = exp(−(x/lr)2) where lr denotes the
non-dimensionalised correlation length. We use the Dykstra–Parsons coefficient VDP to
measure the strength of heterogeneity. When permeability is log-normally distributed, VDP
can be expressed as VDP = 1 − e−sln k , where sln k is the standard deviation of logarithmic
f (x) (Kong & Saar 2013). Consequently, the normalised permeability function f (x) can be
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expressed as

f (x) = exp

(
−s2

ln k
2

+ sln kG

)
. (2.6)

2.3. Numerical details
To numerically solve the governing equations (2.3) with boundary conditions (2.5), we first
take the divergence of (2.3b) and combine it with continuity equation (2.3a). An equation
for pressure can be obtained as

∇ · ( f ∇p) = ∂

∂z
[(ΛT − S)f ], (2.7)

with boundary conditions as

∂p
∂z

∣∣∣∣
z=0,1

= (ΛT − S)|z=0,1. (2.8)

For homogeneous porous media, f (x) equals one in the entire domain. Equation (2.7)
reduces into a Poisson’s equation, which can be solved by the same numerical method
as described in Hu et al. (2023). Specifically, apply Fourier transform in the horizontal
directions and solve a set of tridiagonal systems in the vertical direction. However, f (x)

becomes spatially dependent when considering heterogeneity. Equation (2.7) is generally
a Poisson’s equation with variable coefficients and can no longer be solved by a fast direct
algorithm. Therefore, an iterative V-cycle multigrid method is employed (Briggs, Henson
& McCormick 2000). The iteration stops when the divergence of velocity field is less
than 10−6. After solving the pressure field, the velocity can be calculated using (2.3b).
The advection–diffusion equations for temperature and concentration can then be solved
by the scheme described in Ostilla-Mónico et al. (2015). Initially, the concentration and
temperature fields have vertically linear distributions based on their boundary values.

In this study, the Lewis number and heat capacity ratio are fixed at Le = 100 and
σ = 1, respectively. The parameter spaces are shown in figure 1. For homogeneous porous
media, we explore four concentration Rayleigh numbers ranging from 103 to 104 and six
temperature Rayleigh numbers ranging from zero, i.e. without geothermal gradient, to
300. The Rayleigh numbers fall within ranges estimated by Hu et al. (2023) for realistic
conditions in CO2 sequestration, with the concentration Rayleigh number up to 105 and
the temperature Rayleigh number as high as 103. For heterogeneous cases, we fix the
concentration Rayleigh number at 103 and the temperature Rayleigh numbers at zero or
50. The two parameters concerning heterogeneity are correlation length lr, ranging from
0.1 to 1.0, and the Dykstra–Parsons coefficient VDP, ranging from 0.1 to 0.6. Previous
studies on permeability heterogeneity in porous media in the context of CO2 sequestration
have considered various ranges of the Dykstra–Parsons coefficient and correlation length
(Waggoner et al. 1992; Jensen et al. 1997; Camhi et al. 2000; Farajzadeh et al. 2010; de
Dreuzy et al. 2012; Ranganathan et al. 2012; Kong & Saar 2013; Islam et al. 2014a,b). To
conclude, VDP and lr vary in the ranges 0.01 ≤ VDP ≤ 0.9 and 0.01 ≤ lr ≤ 3, respectively.
Therefore, the parameters explored in this study are representative of realistic conditions.

3. Homogeneous porous media

In the context of convection in homogeneous porous media, our major concern is how
the geothermal gradient influences flow dynamics and transport properties compared with
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(a) (b)

Figure 1. Parameter spaces for (a) homogeneous and (b) heterogeneous porous media. Note that we set
RaS = 103 and RaT = 0 or 50 in heterogeneous porous media.

convection in the absence of such a gradient. To examine such influences, we conduct
numerical simulations in the concentration Rayleigh number range 103 ≤ RaS ≤ 104. For
each RaS, the temperature Rayleigh number ranges from 0 ≤ RaT ≤ 300. Note that the
critical Rayleigh number for single-component RDC is Racr = 4π2 (Lapwood 1948),
which is slightly less than 40. An instinctual assumption is that the temperature gradient
barely influences the flow when RaT is less than Racr. In this circumstance, temperature is
more like a passive scalar driven by concentration convective motions.

3.1. Alternation of flow structures

3.1.1. Root-mean-square of velocity field urms

We first look at the time- and volume-averaged root-mean-square (r.m.s.) of velocity
field urms as shown in figure 2. The observation in figure 2(a) is evident that
urms shows no significant change for RaT = 0 and 10 regardless of RaS. However,
when considering a constant concentration Rayleigh number, urms demonstrates an
approximately linear escalation with increasing RaT for values exceeding 40. It is
noteworthy that the slope differs for various RaS values. For clarification, the observed
decrease in urms with increasing RaS at a fixed temperature Rayleigh number is due
to the non-dimensionalisation of variables used in our study. The dimensional velocity
should increase with stronger driving forces. Exploring the variations of urms with the
density ratio Λ, we observe a consistent linear trend in the data with respect to Λ.
A linear best-fit model of urms = 0.115(Λ + 1) is also depicted in figure 2(b). Such a
linear tendency can be explained by the fact that the total driving forces of convection
include density differences induced by both concentration and temperature differences.
However, only concentration difference is used when non-dimensionalising the governing
equations, resulting in a (Λ + 1) term for the non-dimensionalised urms.

Recently, Zhu et al. (2024) have presented a theoretical relation for the r.m.s. of velocity
urms (or the corresponding Péclet number Pe), the Nusselt number Nu and the Rayleigh
number Ra in single-component convective porous media flows. Similarly, we can obtain
a relation in the double-diffusive scenario for urms, the Nusselt and Rayleigh numbers,
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1.5
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0.9
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2
/
Pe

2 e

1.0

1.1

RaT = 0
RaT = 10
RaT = 40
RaT = 100
RaT = 200
RaT = 300

RaT = 0RaS = 103

RaS = 104

RaS = 2 × 103

RaS = 5 × 103
RaT = 10
RaT = 40
RaT = 100
RaT = 200
RaT = 300

(a) (b) (c)

Figure 2. Root-mean-square of time- and volume-averaged velocity varies with (a) temperature Rayleigh
number RaT and (b) density ratio Λ. The grey dashed line in (b) is a linear fit urms = 0.115(Λ + 1). The
ratio of Péclet number Pe to its analytical relation Pee against RaS is plotted in (c), with the grey dashed line
indicating unity value.

which reads

Pe2 = RaS[ΛLe(NuT − 1) + (NuS − 1)], (3.1)

where Pe = RaSurms. The derivation details are provided in Appendix B. The ratio of
numerical measurements to the theoretical relation is depicted in figure 2(c). The results
demonstrate excellent agreement between the measurements and theory, both for RaT = 0
and for RaT > 0.

3.1.2. Structures of the flow
The flow structures exhibit variations with concentration and temperature Rayleigh
numbers. Figure 3 presents horizontal slices of vertical velocity, concentration, and
temperature at z = 0.5 for two concentration Rayleigh numbers. To analyse the impacts
of different temperature gradients, the subfigures are organised in descending rows
corresponding to increasing RaT . For a fixed RaS, it is notable that only when RaT is
greater than 40 do the flow structures alter significantly. When RaT = 0 and 10, the
concentration field comprises randomly distributed column-like structures of comparable
size. In other words, the flow is almost unaffected if RaT < Racr, aligning with the
aforementioned assumption. However, as RaT surpasses Racr, either concentration or
temperature difference can independently drive convection, while their combined effect
leads to more intricate flow patterns. The concentration field displays sheet-like structures
and cellular structures with elongated borders where concentration reaches maximum or
minimum. The interfaces of concentration structure in horizontal directions become more
distinct as RaT increases for a fixed RaS when RaT > Racr (see figure 3c–e).

It is worth noting that the temperature structures display variations at an identical RaT
when the concentration Rayleigh number differs. This suggests that the density ratio
also influences the flow structures. For instance, when Ra = 103 and RaT = 100 (density
ratio corresponding to Λ = 10), parallel sheet-like structures prevail in the left panel of
figure 3(d). The temperature field is similar to convection solely driven by temperature
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Figure 3. Horizontal slices of vertical velocity, concentration and temperature at z = 0.5. The left three
columns correspond to RaS = 103, and the right three columns to RaS = 104. Each row represents a
temperature Rayleigh number, ranging from (a) 0 to (e) 300.

at RaT = 100. However, when Ra = 104 and RaT = 100 (density ratio corresponding to
Λ = 1), parallel sheets break down and reorganise. This is due to the differing relative
strengths of buoyancy induced by temperature and concentration. In the former case,
Λ = 10 indicates the flow is primarily driven by temperature difference, resulting in
structures similar to those solely driven by RaT = 100. In the latter case, the buoyant forces
from concentration and temperature are equivalent, leading to deviations from structures
of RDC driven by either RaS = 104 or RaT = 100.

Furthermore, upon comparing temperature and concentration slices under identical
control parameters, it is evident that concentration structures typically concentrate in
the centre of corresponding temperature structures, where the vertical velocity attains
its maximum. This observation implies high concentration can be transported quickly
from the top plate to the bottom in these areas and vice versa. To further illustrate such
implications, vertical slices of concentration at y = 0.5L for RaS = 104 are presented in
figure 4. For large RaT , the concentration structures consist of numerous short fingers
emerging from the boundaries and a few long plumes extending across the entire vertical
direction, reflecting the footprints of large-scale rolls induced by temperature. As RaT
increases, more and more concentration fingers are confined within a short vertical
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Figure 4. Vertical slices of concentration at y = 0.5L for RaS = 104: (a) RaT = 0, (b) RaT = 10,
(c) RaT = 40, (d) RaT = 100, (e) RaT = 200 and ( f ) RaT = 300.

distance apart from the top and bottom boundaries, and the plumes become thinner. In
addition, mixing is enhanced and concentration is more homogenised in the bulk region
for increasing temperature gradient.

The horizontal slices in figure 3 indicate that the structure sizes vary with the
Rayleigh numbers. The size of dominant structures is typically quantified by the mean
radial wavenumber at the centre plane z = 0.5. Consider a 2-D power spectrum of the
concentration slice at z = 0.5, E(kx, ky), where kx and ky are the wavenumbers in the x
and y directions, respectively. The time-averaged radial wavenumber for concentration is
defined as

krS =
〈∫∫ √

k2
x + k2

yE(kx, ky) dkx dky∫∫
E(kx, ky) dkx dky

〉
. (3.2)

In 3-D RDC, numerical measurements have provided fitted scalings of kr ≈ 0.17Ra0.52

by Hewitt et al. (2014) and kr ≈ 0.25Ra0.49 by De Paoli et al. (2022). In figure 5(a), we
present the variations of krS with both concentration and temperature Rayleigh numbers.
Results from De Paoli et al. (2022) are also included for comparison, showing good
agreement with our results at RaT = 0. For the case RaT = 10, krS is nearly the same
as for RaT = 0 at a fixed RaS. However, when RaT ≥ 40, the wavenumber does not follow
the approximate 1/2 power scaling with RaS. Here, we define an effective Rayleigh number
Rae to indicate the total driving buoyant forces of both concentration and temperature as

Rae ≡ RaS + LeRaT = RaS(1 + Λ). (3.3)

After plotting krS against Rae in a logarithmic coordinate in figure 5(b), we find that the
averaged radial wavenumber exhibits a linear increase with the effective Rayleigh number.
The best data fitting results in

krS ≈ 0.23Ra0.47
e . (3.4)

The fitting exponent and coefficient are close to the fitted scaling by De Paoli et al. (2022).
Although our numerical measurements do not perfectly collapse on the best-fit line, the
fitted scaling successfully captures the trend of structure size varying with the Rayleigh
numbers.
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Figure 5. The mean radial wavenumber krS of concentration field at z = 0.5 against (a) the concentration
Rayleigh number RaS and (b) the effective Rayleigh number Rae = RaS + LeRaT . The black empty circles in
(a) represent 3-D numerical results from De Paoli et al. (2022) in single-component RDC. The grey dashed
line in (b) is the best power fit krS = 0.23Ra0.47
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Figure 6. Concentration mean profiles: (a) RaS = 103, (b) RaS = 2 × 103, (c) RaS = 5 × 103 and
(d) RaS = 104. Line colours from blue to red represent increasing temperature Rayleigh number.

3.1.3. Concentration mean profiles
In figure 6 we plot the concentration mean profiles for all cases in the parameter space. The
symbol angle brackets stand for an average over time and (x, y) planes. For each profile,
there are two distinct boundary layers near the top and bottom plates, and the concentration
is approximately linear with height in the bulk regions around the centre. For a fixed RaS,
the thickness of boundary layers decreases and the concentration gradient near the centre
changes from positive to negative with increasing RaT . We measure the concentration
gradient GS in the range 0.4 ≤ z ≤ 0.6 and plot its dependence on RaS and RaT in figure 7.
Then GS becomes negative when RaT is larger than 40 for all explored RaS. In other words,
the concentration gradient in the bulk is opposite to that imposed on the vertical boundaries
provided that RaT exceeds the critical Racr. Such a phenomenon can be attributed to the
fact that increasing RaT for a fixed RaS is equivalent to increasing density ratio, resulting in
a higher vertical velocity. Flow with high vertical velocity can transfer high concentration
quickly from the top to the bottom with little diffusion, and vice versa. Consequently, the
concentration gradient in the bulk becomes negative. A positive value of the concentration
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Figure 7. Concentration gradient calculated in the range 0.4 ≤ z ≤ 0.6.

gradient is expected at low RaT . However, it is noteworthy that the minimum GS occurs at
RaT = 10 with two lower concentration Rayleigh numbers, RaS = 103 and 2 × 103. In the
context of RDC, De Paoli et al. (2022) reported similar counter-gradient flux regions at
the edge of thermal boundary layer at small Rayleigh numbers (Ra = 103 in their cases),
ascribing this phenomenon to vertical plumes that carry their momentum and temperature
almost unchanged across the fluid layer. These regions tend to diminish with increasing
Ra. Based on our current numerical results, we can only offer a qualitative description
of this phenomenon rather than a definitive explanation. In our cases, although only a
very small RaT is introduced at RaS = 103 and 2 × 103, the nonlinear interaction between
concentration and temperature results in extending the counter-gradient flux regions into
the bulk and can significantly invert the concentration gradient.

3.2. Variation of fluxes with RaS and RaT

The non-dimensionalised concentration flux is defined as the mean value of the vertical
concentration gradient at the top and bottom boundaries:

NuS = 1
2

(〈
∂S
∂z

∣∣∣∣
z=0

+ ∂S
∂z

∣∣∣∣
z=1

〉)
, (3.5)

where 〈·〉 denotes averaging over time and horizontal directions. The definition of the
heat flux NuT is similar. Previous studies have analysed heat or concentration transfer in
3-D single-component RDC and concluded a nearly linear scaling law Nu ∼ α0Ra at high
Rayleigh numbers in the range 1750 ≤ Ra ≤ 2 × 104 with the linear coefficient α0 around
0.01 (Hewitt et al. 2014). However, it is not always the case when considering an additional
aiding temperature gradient.

3.2.1. Numerical measurements
The variance of concentration flux with RaS and RaT is shown in figure 8. In figure 8(a),
for the cases RaT = 0, 10, 40, the linear relation can still retain for the RaS range we
explored and their curves almost collapse. For comparison, the linear relation NuS =
0.0096RaS + 4.6 given by (Hewitt et al. 2014) is also depicted in figure 8(a). This indicates
that when the temperature Rayleigh number is small, it merely influences concentration
flux. However, for the cases RaT = 100, 200 and 300, the variations with RaS are clearly
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Figure 8. The variance of concentration flux with (a) concentration Rayleigh number and (b) temperature
Rayleigh number. The grey dashed line in (a) indicates a linear relation obtained by Hewitt et al. (2014) in 3-D
RDC.

nonlinear, with an elevation at two smaller concentration Rayleigh numbers RaS = 103

and 2 × 103. In figure 8(b), the fluxes for two higher RaS do not change significantly.
However, for two lower RaS = 103 and 2 × 103, the fluxes increase linearly with RaT and
is nearly independent of RaS when temperature Rayleigh number exceeds 100. As a result,
the fluxes change remarkably only when concentration Rayleigh number is small and
temperature Rayleigh number is large compared with RDC without a temperature gradient.
In other words, the flux increment is highly related to the density ratio. After rescaling
concentration flux with the effective Rayleigh number Rae in figure 9, we find that it
decreases with density ratio and asymptotically attains a constant value. This asymptote
will be explained by the scale analysis in the following section.

3.2.2. Scale analysis for concentration-dominant and temperature-dominant flow
Examine two contrasting scenarios with both high-RaS and RaT characterised by the
density ratio, with one corresponding to the concentration-dominant regime where Λ � 1
and the other to the temperature-dominant regime with Λ � 1. In the former case, the
dominant driving forces for the flow are concentration, while in the latter, temperature
takes precedence.

The concentration-dominant flow in the boundary layers is featured by the horizontal
and vertical length scales as x(or y) ∼ H and z ∼ δS, respectively. The scales of the
velocity are (U, V, W). The scale equivalences recommended by the governing equations
are

U
H

∼ W
δS

, W ∼ Kg�ρ∗
S

μ
, U

�T∗

H
∼ κT

�T∗

δ2
T

, W
�S∗

δS
∼ φκS

�S∗

δ2
S

. (3.6a–d)
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Figure 9. The variation of (a) concentration and (b) heat flux rescaled by the effective Rayleigh number with
density ratio. The grey dashed lines are (3.6a–d) given by scale analysis.

The above equivalences can yield

NuS1 ∼ δS

H
∼ RaS, NuT1 ∼ δT

H
∼ RaSLe−1/2. (3.7a,b)

Similarly, the scale equivalences for temperature-dominant flow are

U
H

∼ W
δT

, W ∼ Kg�ρ∗
T

μ
, U

�T∗

H
∼ κT

�T∗

δ2
T

,
δS

δT
W

�S∗

δS
∼ φκS

�S∗

δ2
S

. (3.8a–d)

The above equivalences can yield

NuS2 ∼ RaTLe1/2, NuT2 ∼ RaT . (3.9a,b)

A straightforward assumption of the concentration and heat flux in a flow driven by both
concentration and temperature gradients is that NuS = α0(RaS + RaTLe1/2) and NuT =
α0(RaSLe−1/2 + RaT), which can be alternatively written as

NuS

Rae
= (1 − Le−1/2)α0

Λ + 1
+ Le−1/2α0,

NuT

Rae
= (Le−1/2 − Le−1)α0

Λ + 1
+ Le−1α0.

(3.10a,b)
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Using the aforementioned α0 ≈ 0.01 and the fixed Le = 100, then the above relation can
be simplified to

NuS

Rae
= 0.009

Λ + 1
+ 0.001,

NuT

Rae
= 0.0009

Λ + 1
+ 0.0001. (3.11a,b)

The above relations are also depicted in figure 9. The numerical measurements for
concentration flux are in good agreement with the relation derived from scale analysis for
all density ratios we have explored. However, the correlation for NuT displays a significant
discrepancy, particularly at low density ratios, roughly Λ < 5, and mostly at RaT < 100.
This disparity arises because the linear scaling of flux and Rayleigh number is more precise
at high-Ra conditions, typically exceeding 103, for single-component RDC (Hewitt et al.
2014). The parameter space of RaT investigated in this study does not fall within the
high-Ra range. Consequently, the heat flux measurements deviate from the scaling analysis
relation at low density ratios.

3.3. Influence of domain size
To minimise the influence of horizontally periodic boundary conditions, the computational
domain must be chosen carefully to ensure the presence of sufficient convective cells.
To investigate the effect of domain size, we conduct a series of simulations at fixed
Rayleigh numbers, RaS = 104 and RaT = 100, with six different aspect ratios A =
1/8, 1/4, 1/2, 1, 2 and 4. The aspect ratio is defined as the ratio of domain width in
the x direction to height in the z direction. The simulation details are summarised in
table 2 in Appendix A. Horizontal slices of concentration near the top boundary at
z = 0.99 are shown in figure 10(a–f ) with increasing A. The narrow width in the
x direction significantly affects flow structures. For small aspect ratios, the flow is
confined in the x direction, leading to strips parallel to x direction because of horizontal
periodicity (see figure 10a,b). As the aspect ratio increases, flow structures evolve into
more complex formations and convective cells are more visible. We also analyse the
mean radial wavenumber for concentration at z = 0.9 to examine its variation with A
in figure 10(g). Here krS decreases with increasing A and remains almost constant for
A ≥ 1. Considering the variations in flow structures and krS, we employ a computational
domain of size 4H × 4H × H for all simulations. It is reasonable to conclude that this
domain size is sufficient to capture the flow structures.

4. Heterogeneous porous media

The permeability field is generated as described in the previous section. Here, two typical
examples with different correlation lengths and the same Dykstra–Parsons coefficient are
presented in figure 11. The spatial distribution of permeability is distinct. The increase of
lr results in two effects on the distribution of permeability. On the one hand, the region
of relatively larger permeability (darker region in figure 11) is more concentrated over a
wide area. On the other hand, the maximum value of permeability becomes smaller. In
our simulations, the ratio of maximum and minimum of generated permeability can reach
O(103), which limits the explored Rayleigh number to a moderate value, i.e. RaS = 103,
in the context of permeability heterogeneity due to computational cost.
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Figure 10. Influence of domain width at different aspect ratiosA. Horizontal slices of concentration near the
top boundary at z = 0.99 are presented in (a–f ) corresponding toA = 1/8, 1/4, 1/2, 1, 2 and 4, respectively.
The mean radial wavenumber for concentration slices at z = 0.9 is presented in (g).
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Figure 11. Examples of generated permeability field f with VDP = 0.6: (a) lr = 0.1; (b) lr = 1.0.
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Figure 12. Four realisations of permeability field with lr = 0.1, VDP = 0.3 are generated and marked as R1
to R4. Flow structures and statistical results of these realisations at Rayleigh numbers RaS = 103, RaT = 0
are presented. (a,b) Horizontal slices of concentration and normalised permeability at z = 0.9, respectively.
(c) Variations of Nusselt number and r.m.s. velocity with realisations.

4.1. Validation for various realisations
In this study, the permeability fields are generated by a statistical random Gaussian
field. It is necessary to prove that the numerical results are independent of realisations.
To validate such an independence, we generate four realisations of permeability field
under the same set of parameters with lr = 0.1 and VDP = 0.3. Numerical simulations
have been conducted at Rayleigh numbers RaS = 103, RaT = 0 for these realisations.
Simulation details are provided in Appendix A. Figure 12(a,b) show horizontal slices of
concentration and the normalised permeability field at z = 0.9, which exhibits similar
structures regardless of realisations. The statistical concentration Nusselt number and
r.m.s. velocity in figure 12(c) remain almost constant values for the four realisations.
The maximum relative error, defined as the absolute error between the measurements and
the mean value, divided by the mean value itself, is 1.48 % for NuS and 0.76 % for urms.
Therefore, it is reasonable to conclude that our results are independent of realisations of
the permeability field.

4.2. Single-component convection at RaS = 103

First, we consider convection solely driven by concentration at a fixed Rayleigh number
RaS = 103. By varying lr from 0.1 to 1.0, and VDP from 0.1 to 0.6, the flow patterns
and global responses vary accordingly. It is anticipated that higher permeability values are
prone to manifest as heterogeneity strengthens. Meanwhile, the flow tends to preferentially
traverse regions with greater permeability, where the resistance is weaker. As a result, the
flow becomes more concentrated, and the velocity magnitude amplifies notably at these
preferential locations.

Flow structures in our simulations shown in figure 13 are consistent with the above
inferences. It is notable that velocity and concentration structures are largely influenced
by both correlation length and heterogeneity intensity. When lr = 0.1 (see the left three
columns of figure 13), i.e. for a small correlation length, large values of permeability
are confined in small spots with diameter equivalent to lr. If the porous medium is
homogeneous, the concentration slice near the top boundary comprises hexagonal cells
with distinct boundary lines. This pattern persists when VDP is small. However, as VDP
increases, those boundary lines disperse horizontally and become coarser. The hexagonal
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Figure 13. Horizontal slices of permeability, vertical velocity and concentration at z = 0.9. The left three
columns correspond to lr = 0.1, and the right three columns to lr = 1.0. Each row represents a Dykstra–Parsons
coefficient, ranging from (a) 0.1 to (c) 0.6. The Rayleigh numbers are RaS = 103 and RaT = 0 for all
simulations.
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Figure 14. In (a–c) the controlling parameters are set at RaS = 103, RaT = 0, lr = 0.1 and VDP = 0.1.
(a) Horizontal slices of concentration at z = 0.9. (b) Binary contour of (a) with dark region indicating
S ≥ S̄ + σS. (c) Skeleton of (b) extracted by the Matlab bwskel function. (d) Variation of structure width with
VDP at RaS = 103, RaT = 0 and lr = 0.1.

convection cells are difficult to recognise when VDP = 0.6. Such coarseness indicates the
intensified horizontal dispersion as heterogeneity strengthens for small lr. To quantitatively
describe this effect, we identify the boundaries of convection cells with regions where
S ≥ S̄ + σS in the horizontal slice of concentration. This allows us to generate a binary
field as shown in figure 14(b). Utilising the Matlab bwskel function, we extract the skeleton
of above binary field in figure 14(c). By dividing the area of dark region in the binary
field by the length of skeleton, we define a characteristic structure width Wd to as a
measure of horizontal dispersion effect for small correlation length. Its variation with VDP
in figure 14(d) shows that the structure width generally increases with heterogeneity levels,
except for one point VDP = 0.1 at the very beginning.
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Figure 15. The variation of correlation coefficient Cr with VDP.

When lr = 1.0 (see the right three columns of figure 13), the correlation length is larger
than the typical size of convection cells in RDC in homogeneous porous media. The
flow patterns are different from simulations with small lr. Increasing VDP leads to the
merger and reorganisation of convection cells, resulting in a coexistence of both large
cells and small structures. Furthermore, the residence of small structures corresponds
to regions with large permeability. This phenomenon is contributed to by the fact that
the local Rayleigh number is proportional to permeability and comparably large over
a wide range (larger than the given overall RaS = 103), thus triggering more vigorous
convection locally. Previous investigations (Hewitt et al. 2014; Pirozzoli et al. 2021; De
Paoli et al. 2022) into convection in porous media have revealed that convection scales
become smaller as Rayleigh numbers increase. Hence, smaller structures emerge when
VDP is large, owing to intensified convective motions occurring at locations characterised
by higher permeability. This intensification also extends to the vertical velocity in these
regions.

To provide a quantitative description of how permeability influences the velocity
field, the correlation coefficient Cr of permeability and magnitude of vertical velocity
is calculated and presented in figure 15. The coefficient demonstrates a linear increase
with heterogeneity and is largely unaffected by the specified correlation lengths. As the
porous media exhibit greater heterogeneity, the correlation between permeability and the
magnitude of vertical velocity strengthens, which is consistent with our expectations.

Figure 16(a) shows the variation of urms with correlation length lr. When the
heterogeneity is relatively weak, saying VDP = 0.1 ∼ 0.3, urms is nearly unchanged and
close to that of the homogeneous simulation. Only when VDP is large does urms remarkably
deviate from homogeneous value. Yet it does not largely vary with the correlation length.
For comparison, in figure 16(b), it is clear that urms monotonically increases with VDP,
which is consistent with the fact that maximum permeability increases with VDP. The
three coloured lines roughly collapse, suggesting that the correlation length has minor
effect on urms compared with the strength of heterogeneity. In other words, the statistical
velocity remains nearly unchanged regardless of how the permeability field with the same
level of heterogeneity is spatially distributed.

Another important global response is the concentration flux at the upper and lower
walls characterised by Nusselt number. In figure 17(a), NuS shows non-monotonic
variations with increasing heterogeneity for a fixed correlation length. For lr = 0.1, the
flux is always larger than that of the homogeneous case and reaches the maximum at a
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Figure 16. The variations of r.m.s. of velocity urms with (a) correlation length lr and (b) Dykstra–Parsons
coefficient VDP. The Rayleigh numbers are RaS = 103 and RaT = 0 for all simulations. The grey dashed line
represents the corresponding value in homogeneous porous media under the same Rayleigh number.
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Figure 17. The variations of (a) concentration flux NuS and (b) portion of area ΩSu containing both high
concentration and downward velocity at z = 0.1 with Dykstra–Parsons coefficient VDP. The Rayleigh numbers
are RaS = 103 and RaT = 0 for all simulations.

moderate heterogeneity. For the other two lr, the flux fluctuates around the homogeneous
value as VDP increases. The NuS decreases from a relatively large value from VDP = 0.5 to
VDP = 0.6 compared with other VDP on the green curve. The relative variation, defined as
the absolute error between current NuS and NuS in homogeneous convection divided by the
homogeneous value, is 7.7 % at VDP = 0.6. Although we are not able to disentangle the
different variations between three explored lr, the non-monotonic behaviour observed can
be attributed to the ability of the flow to transport high concentration from top to bottom,
which is quantified by the portion of area ΩSu containing both high concentration and
downward velocity. Specifically, we calculate the total area in the z = 0.1 plane satisfying
S′ > Sstd and u′

z < −ustd
z , and then divide it by the area of the plane. Here, S′ and u′

z are the
deviations from the horizontally averaged concentration and vertical velocity, respectively,
and Sstd and ustd

z are the corresponding standard deviations. The variations of ΩSu in
figure 17(b) also exhibit non-monotonic behaviour, aligning with the trends of NuS in
figure 17(a).

4.3. DDC at RaS = 103, RaT = 50
In the last subsection, the driving force only consists of concentration difference. In this
subsection, an additional driving force stemming from an aiding temperature difference is
introduced, maintaining a fixed temperature Rayleigh number of RaT = 50. The parameter
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Figure 18. Horizontal slices of permeability, vertical velocity and concentration at z = 0.9. The left three
columns correspond to lr = 0.1, and the right three columns to lr = 1.0. The Rayleigh numbers are RaS = 103

and RaT = 50 for all simulations.

lr varies from 0.1 to 1.0, and VDP ranges from 0.1 to 0.6. The permeability field for each
lr and VDP remains the same as the previous subsection.

From our earlier discussion on DDC in homogeneous porous media, we know that for
the specified driving forces of RaS = 103 and RaT = 50, the predominant flow structures
manifest as vertically parallel sheet-like formations. In figure 18, we present typical
structures of vertical velocity and concentration considering permeability heterogeneity.
Compared with those in the absence of a temperature Rayleigh number, we observe
similar variations for different VDP values at a fixed lr. Specifically, when lr is small (see
the left three columns of figure 18), horizontal dispersion and coarseness of sheet-like
concentration structures are noticeable. The parallel characteristic of flow structures seems
to vanish as heterogeneity becomes strong. When lr is large (see the right three columns of
figure 18), parallel sheets begin to interconnect and interact with each other with increasing
VDP. In addition, flow velocities are more pronounced in regions characterised by higher
permeability.

In contrast to the non-monotonic variations observed in the concentration flux NuS
for single-component convection in heterogeneous porous media, the flux NuS exhibits
a consistent decrease with increasing VDP across all three correlation lengths, as shown
in figure 19(a) for DDC. Furthermore, the flux considering permeability heterogeneity
is generally lower than that of homogeneous convection under the same driving forces.
Similar to the analysis in the absence of RaT , we calculate the portion of area with high
concentration and downward velocity. The decreasing behaviour of NuS is well captured
by the decreasing ΩSu in figure 19(b), indicating that the flow becomes less effective at
transporting concentration from top to bottom with greater heterogeneity, regardless of the
correlation lengths.
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Figure 19. The variations of (a) concentration flux NuS and (b) portion of area ΩSu containing both high
concentration and downward velocity at z = 0.1 with Dykstra–Parsons coefficient VDP. The Rayleigh numbers
are RaS = 103 and RaT = 50 for all simulations.

4.4. Qualitative comparisons with previous findings
Previous studies on permeability heterogeneity have primarily focused on the convective
dissolution process, or the above-mentioned one-sided convection. While direct
comparisons between their results and ours are not feasible due to different boundary
conditions at the bottom, we can analyse the influences of various control parameters and
gain valuable insights.

Specifically, Ranganathan et al. (2012) and Farajzadeh et al. (2010) investigated
single-component convective dissolution in heterogeneous porous media, where a no-flux
condition for concentration is employed on the bottom boundary. Our findings are
consistent with their observations in that the correlation length has a minor effect on the
dissolution rate (concentration flux in our study) compared with the heterogeneity level.
In addition, flow pattern regimes differ at various correlation lengths and heterogeneity
levels. For instance, the flow structures at small VDP are similar to those in the
homogeneous case, while at large VDP and small lr, the flow is more dispersive. However,
we also noted some differences in the variations of the dissolution rate (concentration flux
in our study) with heterogeneity levels, which we attribute to different boundary conditions
for concentration at the bottom, resulting in a time-evolving transient process in their
studies and a statistically steady state in ours. In addition, the coexistence of both large
and small structures at large lr and VDP is not observed in their studies. This difference
can be attributed to the dimensional differences between their 2-D simulations and our
3-D simulations.

Islam et al. (2014b) studied convective dissolution with geothermal gradients in
reservoirs with permeability variations. They found that CO2 dissolution is enhanced with
increasing both RaS and VDP, which differs from the variations of NuS in our study. They
also concluded that the geothermal effect has a minor effect on the overall dissolution
process, which seems contradictory to our results. However, a detailed examination of
their parameters reveals consistent results regarding the effect of the geothermal gradient,
with the concentration Rayleigh number of 102 ≤ RaS ≤ 104, the buoyancy ratio of 2 ≤
N ≤ 100, and a fixed Lewis number of 310. The definition of N is N = βc�c/βT�T =
RaS/(LeRaT), which is exactly the reciprocal of the density ratio Λ in our study. In
other words, their density ratio ranges from 0.01 ≤ Λ ≤ 0.5. Using the relation Λ =
LeRaT/RaS, the temperature Rayleigh number ranges from 0.0032 � RaT � 16.13. Our
results, as well as those in Hu et al. (2023), show that within these ranges of density
ratio and temperature Rayleigh number, the geothermal gradient has a minor effect on
dissolution.
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5. Conclusion

In conclusion, we have investigated 3-D DDC in homogeneous and heterogeneous porous
media by direct numerical simulations. The temperature and concentration gradients are
set to be gravitationally unstable, with the fluid being cold saturated at the top boundary
and warm fresh at the bottom. The Lewis number and heat capacity ratio are fixed at 100
and 1, respectively, in our simulations.

For homogeneous porous media, the concentration Rayleigh number RaS ranges from
103 to 104, and the temperature Rayleigh number RaT ranges from 0 to 300. Numerical
measurements of r.m.s. velocity exhibits linear scaling with the density ratio defined
as Λ = RaTLe/RaS. The linearity is related to the fact that the total driving forces of
convection originate from density differences by both temperature and concentration
differences. A theoretical relation between the r.m.s. velocity, concentration Rayleigh
numbers, and Nusselt numbers is obtained by a volumed average of the governing
equations. The numerical measurements show excellent agreement with the theoretical
predictions. For a fixed RaS, the flow structures show significant changes when RaT
exceeds Racr compared with single-component convection. The temperature field mainly
consists of large-scale structures, which interact with concentration finger structures at a
relatively smaller scale. Flow patterns alter from sheet-like structures to cellular structures
as RaT increases. The density ratio also influences flow structures. The size of dominant
structures is typically quantified by the mean radial wavenumber krS at the centre plane
z = 0.5. By defining an effective Rayleigh number as Rae = RaS + LeRaT , the mean radial
wavenumber roughly scales as krS ≈ 0.23Ra0.47

e . Although this scale is a loose power fit of
the measurements, it can capture the trend of variations. By analysing the mean profiles of
concentration, a negative concentration gradient in the bulk region is observed when RaT is
larger than 40, which is opposite to the imposed concentration gradient on the boundaries.
The non-dimensionalised fluxes are measured as the mean value on two boundaries. The
concentration flux NuS increases with increasing RaS for a fixed RaT . Utilising the scale
analysis, we obtain unified predictions for both NuS and NuT by assuming a linear relation.
The prediction of NuS agrees well with numerical measurements, while NuT deviates from
its prediction when Λ is roughly less than 5. The influence of domain size is also included.
Results reveal that our size of computational domain 4H × 4H × H is sufficient to capture
the flow structures and can provide reliable statistics.

For heterogeneous porous media, the concentration Rayleigh number is fixed at RaS =
103. The permeability field is generated at various Dykstra–Parsons coefficients VDP and
correlation lengths lr using a random Gaussian field. Here VDP ranges from 0.1 to 0.6, and
lr ranges from 0.1 to 1. Validation for various realisations with lr = 0.1 and VDP = 0.3
shows that our results are independent of permeability realisations. Both single-component
convection (RaT = 0) and DDC (RaT = 50) are considered. It is expected that the
flow travels more rapidly at locations with larger permeability, where the resistance is
smaller. When RaT = 0, the cellular structures in homogeneous porous media coarsen as
heterogeneity strengthens for small correlation length lr = 0.1. The typical width of flow
structures generally increases with increasing heterogeneity levels except for VDP = 0.1.
However, if correlation length lr = 1 is larger than typical size of convective cells in
homogeneous porous media at the same RaS, the concentration structures consist of
both large cells and small structures for VDP = 0.6. Variations of r.m.s. velocity and
concentration flux indicate that correlation length has a minor effect compared with VDP.
When RaT = 50, parallel sheet structures are dominant in the absence of heterogeneity.
For small lr, increasing VDP also results in the coarseness of sheet structures, which
alters largely when VDP = 0.6. For large lr, parallel sheets begin to interconnect at a
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moderate heterogeneity VDP = 0.3. The concentration flux displays a decreasing tendency
with increasing heterogeneity regardless of correlation lengths. The variations in the
concentration flux are related to the flow’s ability to transport high concentration from top
to bottom, which is quantified by the portion of area containing both high concentration
and downward velocity. Finally, we have compared our results with previous findings from
the literature.

Overall, our study provides insights into the role of unstable geothermal gradients
in canonical two-sided RDC, considering both homogeneous and heterogeneous porous
media. From the perspective of convection, geothermal gradients should indeed be
considered and have significant influences on the mass transfer in porous media systems.
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Appendix A. Summary of numerical details

The simulation details of DDC in homogeneous porous media are listed in table 1 with
fixed Lewis number Le = 100 and heat capacity ratio σ = 1. Details to explore influence
of domain size are listed in table 2 with fixed Rayleigh numbers RaS = 104, RaT = 100.
Details to validate that results are independent of permeability realisations are listed in
table 3. Details of convection in heterogeneous porous media are listed in table 4 for
single-component convection and table 5 for DDC, respectively.

Appendix B. Details of exact relation for Pe

Similar to the analysis in Zhu et al. (2024), a theoretical relation for Pe, the Nusselt and
Rayleigh numbers are presented in this appendix. An alternative definition of Nusselt
numbers is

NuT = RaS

Le
〈uzT〉A −

〈
∂T
∂z

〉
A
, NuS = −RaS〈uzS〉A +

〈
∂S
∂z

〉
A
. (B1a,b)

Here 〈·〉A denotes an average over time and a horizontal surface A. By taking the dot
product of u with both sides of (2.3b) and combining it with the incompressible continuity
(2.3a), we obtain

|u|2 = −∇ · ( pu) + (ΛT − S)uz. (B2)

The time and volume average (indicating by 〈·〉) reads

〈|u|2〉 = − 1
L2

∫∫
∂S

( pu) · n̂ dS + Λ〈Tuz〉 − 〈Suz〉, (B3)

where L is the dimensionless aspect ratio, ∂S is the boundary surface of the domain and n̂
is the normal unit vector for the surface elements. The first term on the right-hand side of
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RaS RaT Λ L/H Nx(mx) Ny(my) Nz(mz) Nt NuS NuT urms

RaS = 103 0 0 4 384(1) 384(1) 96(1) 100 12.53 1.00 0.11
10 1 4 384(1) 384(1) 96(1) 100 12.38 1.02 0.12
40 4 4 384(1) 384(1) 96(1) 100 14.43 1.22 0.32

100 10 4 384(1) 384(1) 192(1) 100 27.84 2.69 1.31
200 20 4 384(1) 384(1) 192(1) 100 39.41 3.93 2.43
300 30 4 576(2) 576(2) 192(2) 5 54.92 5.38 3.63

RaS = 2 × 103 0 0 4 768(1) 768(1) 144(1) 80 23.12 1.00 0.11
10 0.5 4 768(1) 768(1) 144(1) 80 23.61 1.06 0.11
40 2 4 768(1) 768(1) 144(1) 80 20.97 1.31 0.20

100 5 4 768(1) 768(1) 192(1) 80 29.64 2.73 0.67
200 10 4 768(1) 768(1) 192(1) 80 39.71 3.96 1.23
300 15 4 768(1) 768(1) 288(1) 80 54.82 5.30 1.80

RaS = 5 × 103 0 0 4 1152(1) 1152(1) 192(1) 40 51.96 1.00 0.10
10 0.2 4 1152(1) 1152(1) 192(1) 40 52.49 1.13 0.10
40 0.8 4 1152(1) 1152(1) 288(1) 40 52.60 1.63 0.14

100 2 4 1536(1) 1536(1) 288(1) 20 55.85 2.94 0.30
200 4 4 1536(1) 1536(1) 288(1) 20 51.95 4.16 0.51
300 6 4 1536(1) 1536(1) 288(1) 20 58.50 5.59 0.75

RaS = 104 0 0 4 2304(1) 2304(1) 288(1) 10 99.30 1.00 0.10
10 0.1 4 2304(1) 2304(1) 288(1) 10 100.44 1.26 0.10
40 0.4 4 2304(1) 2304(1) 288(1) 10 102.00 1.97 0.12

100 1 4 2304(1) 2304(1) 384(1) 10 101.72 3.36 0.18
200 2 4 2304(1) 2304(1) 576(1) 10 104.99 4.79 0.29
300 3 4 2304(1) 2304(1) 576(1) 10 97.01 6.04 0.40

Table 1. Summary of simulations for DDC in homogeneous porous media. Columns from left to right are the
concentration Rayleigh number, temperature Rayleigh number, density ratio, aspect ratio, resolutions in the
x-axis, y-axis, z-axis (with refinement factors for multiple resolutions), non-dimensionalised simulating time,
averaged concentration flux, heat flux and r.m.s. velocity, respectively.

RaS RaT Λ Lx/H × Ly/H Nx(mx) Ny(my) Nz(mz) Nt NuS NuT urms

104 100 1 1/8 × 1 96(1) 768(1) 384(1) 80 105.89 3.11 0.18
1/4 × 1 192(1) 768(1) 384(1) 80 102.11 2.86 0.17
1/2 × 1 384(1) 768(1) 384(1) 80 98.40 3.04 0.17
1 × 1 768(1) 768(1) 384(1) 40 94.62 3.13 0.18
2 × 2 1152(1) 1152(1) 384(1) 20 99.92 3.13 0.18
4 × 4 2304(1) 2304(1) 384(1) 10 101.72 3.36 0.18

Table 2. Summary of simulations to explore the influence of domain size in DDC in homogeneous porous
media. The Rayleigh numbers are fixed at RaS = 104 and RaT = 100. Columns from left to right are the
concentration Rayleigh number, temperature Rayleigh number, density ratio, aspect ratio, resolutions in the
x-axis, y-axis, z-axis (with refinement factors for multiple resolutions), non-dimensionalised simulating time,
averaged concentration flux, heat flux and r.m.s. velocity, respectively.

(B3) vanishes due to the non-penetration boundary condition:

1
L2

∫∫
∂S

( pu) · n̂ dS = − 1
L2

∫∫
∂S(z=0)

puz dS + 1
L2

∫∫
∂S(z=1)

puz dS = 0. (B4)
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lr VDP L Nx(mx) Ny(my) Nz(mz) Nt NuS urms

0.1 0.3 4 576(1) 576(1) 192(1) 40 13.79 0.117
13.60 0.116
13.99 0.118
13.77 0.117

Table 3. Summary of simulations for single-component convection at RaS = 103, RaT = 0 in heterogeneous
porous media for the validation of realisations. Columns from left to right are the correlation length,
Dykstra–Parsons coefficient, aspect ratio, resolutions in the x-axis, y-axis, z-axis (with refinement factors for
multiple resolutions), non-dimensionalised simulating time, averaged concentration flux and r.m.s. velocity,
respectively.

lr VDP L Nx(mx) Ny(my) Nz(mz) Nt NuS urms

0.1 0.1 4 384(1) 384(1) 192(1) 60 12.93 0.110
0.2 4 384(1) 384(1) 192(1) 60 13.52 0.113
0.3 4 576(1) 576(1) 192(1) 40 13.79 0.117
0.5 4 1536(1) 1536(1) 192(1) 5 13.75 0.125
0.6 4 1152(1) 1152(1) 192(1) 10 12.76 0.130

0.5 0.1 4 384(1) 384(1) 192(1) 60 12.21 0.107
0.2 4 384(1) 384(1) 192(1) 60 12.86 0.110
0.3 4 384(1) 384(1) 192(1) 40 12.52 0.111
0.5 4 768(1) 768(1) 192(1) 20 12.75 0.122
0.6 4 1152(1) 1152(1) 192(1) 10 11.51 0.158

1 0.1 4 384(1) 384(1) 192(1) 60 12.66 0.109
0.2 4 384(1) 384(1) 192(1) 60 12.39 0.109
0.3 4 384(1) 384(1) 192(1) 40 12.10 0.113
0.5 4 768(1) 768(1) 192(1) 20 13.02 0.130
0.6 4 1152(1) 1152(1) 192(1) 10 12.40 0.148

Table 4. Summary of simulations for single-component convection at RaS = 103 in heterogeneous porous
media. Columns from left to right are the correlation length, Dykstra–Parsons coefficient, aspect ratio,
resolutions in the x-axis, y-axis, z-axis (with refinement factors for multiple resolutions), non-dimensionalised
simulating time, averaged concentration flux and r.m.s. velocity, respectively.

The second term on the right-hand side of (B3) can be written as

〈Tuz〉 =
∫ 1

0
〈Tuz〉A dz = Le

RaS

∫ 1

0

(
NuT +

〈
∂T
∂z

〉
A

)
dz = Le

RaS

∫ 1

0

(
NuT + ∂〈T〉A

∂z

)
dz

= Le
RaS

(NuT + 〈T〉A(z=1) − 〈T〉A(z=0)) = Le
RaS

(NuT − 1). (B5)

The last term on the right-hand side of (B3) can be written as

〈Suz〉 =
∫ 1

0
〈Suz〉A dz = 1

RaS

∫ 1

0

(
−NuS +

〈
∂S
∂z

〉
A

)
dz = 1

RaS

∫ 1

0

(
−NuS + ∂〈S〉A

∂z

)
dz

= 1
RaS

(−NuS + 〈S〉A(z=1) − 〈S〉A(z=0)) = 1
RaS

(−NuS + 1). (B6)
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Double-diffusive convection

lr VDP L Nx(mx) Ny(my) Nz(mz) Nt NuS NuT urms

0.1 0.1 4 384(1) 384(1) 192(1) 60 17.76 1.53 0.532
0.2 4 384(1) 384(1) 192(1) 60 17.56 1.52 0.531
0.3 4 576(1) 576(1) 192(1) 40 17.61 1.47 0.514
0.5 4 1536(1) 1536(1) 192(1) 5 16.29 1.28 0.432
0.6 4 1728(1) 1728(1) 192(1) 4 15.70 1.22 0.449

0.5 0.1 4 384(1) 384(1) 192(1) 60 17.57 1.53 0.539
0.2 4 384(1) 384(1) 192(1) 60 17.41 1.52 0.546
0.3 4 384(1) 384(1) 192(1) 40 16.71 1.50 0.558
0.5 4 768(1) 768(1) 192(1) 20 15.76 1.47 0.638
0.6 4 1536(1) 1536(1) 192(1) 5 13.33 1.47 0.888

1 0.1 4 384(1) 384(1) 192(1) 60 17.41 1.54 0.542
0.2 4 384(1) 384(1) 192(1) 60 17.05 1.54 0.559
0.3 4 384(1) 384(1) 192(1) 40 16.48 1.52 0.599
0.5 4 768(1) 768(1) 192(1) 20 15.87 1.52 0.686
0.6 4 1536(1) 1536(1) 192(1) 5 15.12 1.54 0.787

Table 5. Summary of simulations for DDC at RaS = 103 and RaT = 50 in heterogeneous porous media.
Columns from left to right are the correlation length, Dykstra–Parsons coefficient, aspect ratio, resolutions
in the x-axis, y-axis, z-axis (with refinement factors for multiple resolutions), non-dimensionalised simulating
time, averaged concentration flux, heat flux and r.m.s. velocity, respectively.

Therefore, an analytical relation for the mean velocity square can be obtained as

〈|u|2〉 = ΛLe
RaS

(NuT − 1) + 1
RaS

(NuS − 1). (B7)

Introducing the Péclet number as

Pe = Uc
√

〈|u|2〉H
κS

= RaS

√
〈|u|2〉, (B8)

with Uc = K̄gρ0βS�S/μ, we finally obtain an analytical relation

Pe2 = RaS[ΛLe(NuT − 1) + (NuS − 1)]. (B9)
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