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Abstract

In this short paper, we characterise graphs of order pq with p, q prime which are self-complementary and
vertex-transitive.
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1. Introduction

Throughout this paper, all graphs are simple. Let Γ = (V, E) be a graph with vertex set
V and edge set E. The complement Γ of Γ is the graph with the same vertex set V such
that for any two distinct vertices u, v ∈ V , {u, v} is an edge of Γ if and only if {u, v} is
not an edge of Γ. A graph Γ is said to be self-complementary if Γ is isomorphic to Γ.

A permutation of V is called an automorphism of the graph Γ = (V, E) if it preserves
the edge set E. The automorphism group of Γ consists of all automorphisms of Γ,
denoted by Aut Γ. A graph Γ = (V, E) is called vertex-transitive if Aut Γ is transitive
on the vertex set V .

The graphs that are both self-complementary and vertex-transitive are called self-
complementary vertex-transitive (SCVT) graphs. It is generally still hard to study
the general SCVT graphs, thus the study of small families of SCVT graphs becomes
interesting, and also provides good examples for reference. SCVT graphs of prime
order are well understood; see for example [1]. Thus, it is natural to study the next
unknown case, the graphs of order a product of two primes. Some of the basic
properties of this family of graphs have been established in the literature. In 1979,
Zelinka [20] conjectured that if there is an SCVT graph of order pq with p, q distinct
primes then both p, q are congruent to 1 modulo 4. This conjecture was verified in [7].
However, the structural description of these graphs was left open.

In this paper, we study SCVT graphs of order pq, with p, q being primes, not
necessarily distinct. Applying the methods developed in [5, 10], we successfully
classify all these graphs.
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T 1.1. Let Γ be an SCVT graph of order a product of two primes. Then Γ is
one of the following:

(i) a lexicographic product of two SCVT graphs;
(ii) a normal Cayley graph of an abelian group.

With this result in mind, we have a simple characterisation for the case where two
primes are distinct.

C 1.2. The SCVT graphs of order a product of two distinct primes are
circulants.

We make some remarks on Theorem 1.1. By the characterisation of Theorem 1.1,
we can construct all such graphs: if Γ is a lexicographic product, the SCVT graphs of
prime order are all well characterised (see [1]); if Γ is a normal Cayley graph, it can
be easily constructed by the definite group (see Section 2).

The study of SCVT graphs has a long history; see the surveys of Beezer [2] and the
first author [8]. The following is a very brief review.

A graph Γ = (V, E) is called a circulant if Aut Γ contains a cyclic subgroup which
is transitive on the vertices. Circulants are vertex-transitive graphs. The first family
of SCVT graphs was constructed as circulants by Sachs [16], and later Zelinka [20],
Mathon [12], Rao [15], Suprunenko [17], Liskovets and Poschel [11] and Jajcay and
Li [6] also studied self-complementary circulants.

In the 1990s, the orders of SCVT graphs were completely determined. Alspach
et al. [1] determined the orders of self-complementary circulants, and later Fronček
et al. [3] gave a different proof. Finally, in 1999, Muzychuck [13] completely
determined the orders of general SCVT graphs by proving that the Sylow subgraphs
are also self-complementary.

The class of edge-transitive self-complementary graphs was classified by
Zhang [21] and Peisert [14]. Most known SCVT graphs are constructed as Cayley
graphs (defined later). The first family of SCVT graphs which are not Cayley graphs
was obtained by Li and Praeger [10] in 2003. Since 2000, the study of SCVT graphs
has been significantly progressed by Li and Praeger’s work [10] and their joint work
with Guralnick et al. [5] for the vertex-primitive case. Our main theorem in this paper
heavily depends on these results.

2. Constructions

Let Γ = (V, E) be a self-complementary graph. An isomorphism σ between Γ
and Γ is called a complementing isomorphism. Since σ always interchanges Γ
and Γ, replacing σ by an odd power of σ, we may assume that σ is of 2-power
order. Moreover, σ does not fix any pair of vertices, so σ has order divisible by 4.
Furthermore, if Γ is vertex-transitive, we may assume that σ fixes a vertex v. Then σ2

only fixes v, for otherwise σ would fix a pair of vertices, which is not possible.

L 2.1. A complementing isomorphism of a self-complementary graph has order
divisible by 4.
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In Theorem 1.1, SCVT graphs of order a product of two primes are divided into two
classes. One of them is involved in the lexicographic product, defined as follows.

Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be graphs. Then the lexicographic product of Γ1

and Γ2 is the graph with vertex set V1 × V2 such that two vertices (u1, u2) and (v1, v2)
are adjacent if and only if either {u1, v1} ∈ E1, or u1 = v1 and {u2, v2} ∈ E2. This graph
is denoted by Γ1[Γ2]. The lexicographic product provides a method for constructing
SCVT graphs based on the following properties (see [2]).

L 2.2. If both Γ1 and Γ2 are self-complementary (vertex-transitive), then so is
Γ1[Γ2].

The second class of graphs in Theorem 1.1 is involved with the normal Cayley
graphs.

For a finite group R, let R# = R \ {1}, the set of all nonidentity elements of R. For a
subset S ⊆ R# with S = S −1 := {s−1 | s ∈ S }, the associated Cayley graph Cay (R, S ) is
the graph Γ = (V, E) with V = R such that two vertices a, b ∈ R are adjacent if and only
if ba−1 ∈ S . Clearly, the complement of Cay (R, S ) is the graph Cay (R, R# \ S ).

For an element g ∈ R, let

ĝ : x 7→ xg, for all x ∈ R,

the right multiplication of the element g ∈ R on the elements of R. Let R̂ = {ĝ | g ∈ R}.
Then R̂ is an automorphism subgroup of Cay (R, S ), acting regularly on V . Thus,
Cayley graphs are vertex-transitive. Conversely, for a graph Γ, if Aut Γ contains a
subgroup which is regular on the vertex set and isomorphic to a group R, then Γ is
a Cayley graph of R. In particular, a circulant is a Cayley graph of a cyclic group.
Further, we have the following simple lemma, which was proved in [4, Lemma 2.1].

L 2.3. Let Γ = Cay (R, S ). Then

NAut Γ(R̂) = R̂ : Aut (R, S ),

where Aut (R, S ) = {σ ∈ Aut (R) | S σ = S }.

In the case where R̂ is normal in Aut Γ, then Γ = Cay (R, S ) is called a normal
Cayley graph of R; refer to [19]. Lemma 2.3 tells us that every automorphism
of R which fixes the subset S (setwise) is an automorphism of the Cayley graph.
On the other hand, an automorphism of R which does not fix S induces an
isomorphism between Cayley graphs, namely, any automorphism σ ∈ Aut (R) induces
an isomorphism from Cay (R, S ) to Cay (R, S σ). Therefore, if a Cayley graph Γ =

Cay (R, S ) satisfies
S σ = R# \ S , for some σ ∈ Aut (R), (∗)

then Γ is self-complementary. In this case, the automorphism σ is a complementing
isomorphism between Γ and Γ. As we discussed before, we may assume that σ
fixes the vertex that corresponds to the identity of R. Moreover, this is the only
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vertex which σ2 fixes, that is, σ2 is a fixed-point-free automorphism of R. This
observation leads to a generic construction for self-complementary Cayley graphs;
see [10, Construction 3.1].

Let R be an abelian group of order pq with p, q prime. Then R � Z2
p or Zpq. The

next lemma tells us when R has an automorphism σ of order a power of 2 such that σ2

is fixed-point-free.

L 2.4. Let R be an abelian group of order pq where p, q are odd prime numbers.
Then there exists σ ∈ Aut (R) such that σ2 is of order a power of 2 and fixed-point-free
if and only if R � Z2

p, or R is cyclic with p, q ≡ 1 (mod 4).

P. First, assume that R = 〈a〉 × 〈b〉 � Z2
p. Let σ ∈ Aut (R) be such that

σ : a→ b, b→ a−1.

Then σ2 maps each element x ∈ R to the inverse x−1, hence σ2 is fixed-point-free, and
σ2 has order two.

Next, assume that R = 〈a〉 = Zp2 . Then Aut (R) = Zp(p−1), and thus 4 divides the
order of Aut (R) if and only if 4 divides p − 1. Moreover, if σ is an automorphism of
R of order divisible by 4, then σ2 obviously fixes no nonidentity element of R.

Finally, assume that p , q, and R = 〈a〉 × 〈b〉 � Zp × Zq. Then Aut (R) = Aut (〈a〉) ×
Aut (〈b〉) = 〈x〉 × 〈y〉 � Zp−1 × Zq−1. If p, q ≡ 1 (mod 4), then let x1 ∈ Aut (〈a〉), y1 ∈

Aut (〈b〉) be of order four. Then (x1, y1) ∈ Aut (R) is of order four and the square
(x1, y1)2 fixes no nonidentity element of R. Conversely, suppose that p . 1 (mod 4).
Let σ ∈ Aut (R) be of order a power of 2. Then σ = (xi, y j) such that xi is of order two,
and σ2 = (x2i, y2 j) = (1, τ2 j). Clearly, σ2 fixes the element a. �

For a group R of order pq and an automorphism σ with property (∗), we can easily
construct self-complementary Cayley graphs of R as below (refer to [8]).

C 2.5. Let R be a group, and let σ ∈ Aut (R) be such that σ2 is fixed-point-
free and of 2-power order, and g−1 ∈ g〈σ

2〉 for all g ∈ R. Let Γ = Cay (R, S ) be a Cayley
graph with S defined as follows:

(1) Let ∆1, ∆2, . . . , ∆r be the 〈σ〉-orbits on R#, and label the two orbits of 〈σ2〉 on ∆i

as ∆+
i and ∆−i , where 1 ≤ i ≤ r.

(2) Set S =
⋃r

i=1 ∆
εi
i where εi = + or −. (We remark that there are 2r different choices

for such a subset S .)

L 2.6 [10, Lemma 3.2]. Each graph Γ constructed in Construction 2.5 is self-
complementary.

This construction method was generated in [9] with regard to the coset graphs.

D 2.7. Let G be a group, and let H be a core-free subgroup of G, and
S ⊂G \ H. Define the coset graph Γ = Cos(G, H, HS H) to be the digraph with vertex
set [G : H] such that Hx and Hy are adjacent if and only if yx−1 ∈ HS H.
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The following theorem provides a generic construction method for SCVT graphs.

T 2.8 (Li and Praeger [9]). Let G be a finite group, and let H be a core-
free subgroup of G. Then there exists an undirected coset graph of G with respect
to H which is self-complementary if and only if there exists an automorphism
σ ∈ Aut (G) of order a power of 2 such that Hσ = H, and for each g ∈G \ H, (HgH)σ <
{HgH, Hg−1H}.

3. Proof of the main theorem

Let Γ = (V, E) be a self-complementary graph of order pq with p, q prime. Let G =

Aut Γ, let σ be a complementing isomorphism between Γ and Γ, and let X = 〈G, σ〉.
Then σ2 ∈G, X = G.Z2. We choose σ such that o(σ) = 2 f , f ≥ 2. Since G is vertex-
transitive, without loss of generality, we assume that σ fixes a vertex v ∈ V , and so
Xv = 〈Gv, σ〉.

3.1. Primitive case We first consider the vertex-primitive case.

L 3.1. Assume that X is primitive on the vertex set V. Then p = q, and X is affine
of degree p2. Moreover, the vertex stabiliser Xv satisfies one of the following:

(i) Xv ≤ GL(1, p) o S2, and Xv 6≤ GL(1, p) × GL(1, p);
(ii) Xv ≤ ΓL(1, p2), and (|Xv|, p + 1) > 2;
(iii) Q8 ≤ Xv ≤ Zp−1 ◦ GL(2, 3);
(iv) SL(2, 5) < Xv ≤ Zp−1 ◦ SL(2, 5), where p ≡ ±1 (mod 10).

P. By [5, Theorem 1.3 and Corollary 1.4], the group X is affine, or in product
action with |V | = ( 1

2 r2(r2 + 1))`, where r is a power of an odd prime, and ` ≥ 2. In the
latter case, |V | is not a product of two primes, so X is affine of degree |V | = p2, and
p = q.

Thus, X = Z2
p : Xv where Xv ≤ GL(2, p) is irreducible on the vector space GF(p)2.

In particular, σ2 is a fixed-point-free automorphism of Z2
p. We first point out that p , 2

as GL(2, 2) does not contain an element of order four. Since G is transitive on V ,
|Xv : Gv| = |X : G| = 2. Let M be a maximal subgroup of GL(2, p) containing Xv. Then
M is one of the following (see [18, page 417]):

GL(1, p) o S2; ΓL(1, p2); Zp−1 ◦ GL(2, 3); Zp−1 ◦ SL(2, 5) with p ≡ ±1(mod 10).

If M = GL(1, p) o S2, since Xv is irreducible, Xv 6≤ GL(1, p) × GL(1, p), as in part (i).
For the case M = ΓL(1, p2), if (|Xv|, p + 1) ≤ 2, then Xv is conjugate to a subgroup of
GL(1, p) o S2, and so part (i) or (ii) is satisfied. For the case M = Zp−1 ◦ GL(2, 3), if
Xv does not contain Q8, then part (i) or (ii) is satisfied, and if Xv ≥ Q8, then part (iii) is
satisfied. Finally, for M = Zp−1 ◦ SL(2, 5), we may assume that Xv is not a subgroup
of GL(1, p) o S2, ΓL(1, p2) and Zp−1 ◦ GL(2, 3). Thus, Xv is insoluble and contains
SL(2, 5), and as Xv has a subgroup Gv of index 2, we further have Xv > SL(2, 5), as in
part (iv). �
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3.2. Imprimitive case In this subsection, we consider the case where X is
imprimitive on V . Let B be a nontrivial X-invariant partition of V , called a block
system of the action of X on V . Each element B ∈ B is called a block. Without loss
of generality, we assume that |B| = q. Then each block has size p. Denote by [B]Γ
the induced subgraph of Γ on B, namely, the graph whose vertex set is B and whose
edge set consists of all edges of Γ which lie inside B. The quotient graph ΓB of Γ is
the graph with vertex set B such that two vertices B,C ∈ B are adjacent if and only if
some u ∈ B and some v ∈C are adjacent in Γ.

To treat the imprimitive case, we need a result of Li and Praeger [10].

T 3.2. Assume that X is imprimitive on V. Then:

(i) the induced subgraph [B]Γ is self-complementary, GB
B ≤ Aut [B]Γ, and σ induces

a complementing isomorphism between [B]Γ and [B]Γ;
(ii) there is a self-complementary graph Σ with vertex set B such that GB ≤ Aut Σ

and each element of XB \GB is a complementing isomorphism between Σ and Σ.

L 3.3. Using the notation defined above, we have Zp C XB
B ≤ AGL(1, p), and

Zq C XB ≤ AGL(1, q).

P. By Theorem 3.2(i) the induced subgraph [B]Γ on B is self-complementary.
Thus, GB

B is not 2-transitive, and neither is XB
B . Since |B| = p, it follows that Zp C XB

B ≤

AGL(1, p).
Similarly, by Theorem 3.2(ii), GB is not 2-transitive, and neither is XB. Hence we

conclude that Zq C XB ≤ AGL(1, q). �

L 3.4. The action of X on B is unfaithful.

P. Suppose that X � XB is faithful. By Lemma 3.3, we have X � XB ≤
AGL(1, q) � Zq : Zq−1, and all the q′-subgroups of X are cyclic. Note that Gv is
core-free in G, so by Theorem 2.8 it follows that σ fixes no double cosets GvgGv,
that is, GvgσGv ,GvgGv for each g ∈G \Gv. Since |X : Xv| = pq, it follows that
Gv < Xv is properly contained in a Hall q′-subgroup Xq′ , that is, Gv < Xq′ ≤ Zq−1.
Note that σ ∈ Xv < Xq′ , so σ centralises all elements in Xq′ . In particular, for any
h ∈ (Xq′

⋂
G) \Gv, we have GvhσGv = GvhGv, which is not possible. Therefore, X is

not faithful on B. �

Let K = X(B) be the kernel of X acting on B. Then 1 , K C X by Lemma 3.4, and
1 , KB C XB

B for some B ∈ B. Thus, KB = Zp : Zr for some r dividing p − 1. For two
blocks B,C ∈ B, we denote by [B,C] the subgraph of Γ with vertex set B ∪C and edge
set consisting of all the edges of Γ between B and C.

L 3.5. If p2 | |K|, then Γ = Γ1[Γ2], where Γ1 and Γ2 are self-complementary
circulants of order q and p, respectively.

P. Let B1 = B and let B2 ∈ B be distinct from B. Consider the subgraph
[B1, B2]. Since X is transitive on the q blocks, relabelling if necessary, we assume
that B = {B1, B2, . . . , Bq} such that [Bi, Bi+1] � [B1, B2] for all i ∈ {1, . . . , q − 1}.
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Let P be a Sylow p-subgroup of K, and let P(B) be the kernel of P acting on B. Then
P/P(B) � PB � Zp, and P(B) , 1. Hence P(B) acts nontrivially on some Bk with k , 1.
Without loss of generality, assume that k is the smallest integer with this property.
Then P(B) ≤ P(Bk−1) is transitive on Bk as |Bk| = p. Notice that K is transitive on Bk−1. If
[B1, B2] is nonempty, then so is [Bk−1, Bk], and we have [B1, B2] � [Bk−1, Bk] = Kp,p.
Therefore, for any two blocks B,C ∈ B, either [B,C] is empty, or [B,C] = Kp,p. Let
E′ = E \ (

⋃q
i=1 Bi × Bi). Then Γ′ = (V, E′) � ΓB[Kp]. Since σ preserves the block

system B, σ maps ΓB[Kp] to ΓB[Kp], and so ΓB is self-complementary.
Let Γ1 = ΓB and Γ2 = [B]Γ. Then Γ = Γ1[Γ2]. By Theorem 3.2 the induced

subgraph [B]Γ = Γ2 is also self-complementary. Thus the proof is complete. �

L 3.6. Assume that p2 does not divide |K|. Then X = R : Xv, where R is abelian of
order pq, and regular on V.

P. Suppose that 1 , K(B) C K. Then there exists B′ ∈ B such that K(B) acts on
B′ transitively, and hence p | |K(B)|. This yields that p2 divides |K|, which is a
contradiction. So K � KB = Zp : Zr for some r dividing p − 1. Now XB = Zq : Zs with
s | (q − 1) and s , 1. We consider the extension

X = K.XB = (Zp : Zr).(Zq : Zs).

Let P be a Sylow p-subgroup of K. Then P � Zp is normal in X, and Aut (P) = Zp−1

is abelian. Thus, X/CX(P) ≤ Aut (P) is abelian, and so CX(P) ≥ P.Q, where Q is the
unique Sylow q-subgroup of XB. Since |P.Q| = pq, either P.Q � Zpq is cyclic, or p = q
and P.Q � Z2

p. Letting R = P.Q, we have that R is abelian, and regular on V . Therefore,
X = R : Xv. �

3.3. Proofs of the main results The proof of Theorem 1.1 can now be given briefly
as follows.

P  T 1.1. Let Γ = (V, E) be an SCVT graph of order pq with p, q prime.
Let G = Aut Γ, and let σ be a complementing isomorphism between Γ and Γ. Let
X = 〈G, σ〉.

If X is primitive on the vertex set V , then by Lemma 3.1, Γ is a normal Cayley graph
of Z2

p.
If X is imprimitive on V , then, by Lemmas 3.5 and 3.6, Theorem 1.1 holds. �

The proof of Corollary 1.2 follows from the lemma below.

L 3.7. If p , q, then either:

(i) Γ = Γ1[Γ2], where Γ1 and Γ2 are self-complementary circulants of order q and
p, respectively; or

(ii) Aut Γ = Zpq : H, where H < Zp−1 × Zq−1.

In particular, Γ is a circulant.
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P. Since p , q, it follows that X is imprimitive by Lemma 3.1. By Lemmas 3.5
and 3.6, either part (i) or part (ii) is satisfied. If Γ satisfies part (ii), then Aut Γ = Zpq :
H, and it follows from Lemma 2.3 that H < Aut (Zpq) = Zp−1 × Zq−1.

Assume that Γ = Γ1[Γ2]. Then Aut Γ2 o Aut Γ1 ≤ Aut Γ. Let x ∈ Aut Γ2, y ∈ Aut Γ1

be of order p and q, respectively. Note that 〈y〉 cyclically permutes the q entries of the
base group, so z = (x, 1, . . . , 1)y has order pq, and 〈z〉 is regular on the vertex set of Γ.
Thus, Γ is a circulant. �
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