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Curvature functionals on convex bodies
Kateryna Tatarko and Elisabeth M. Werner

Abstract. We investigate the weighted Lp affine surface areas which appear in the recently established
Lp Steiner formula of the Lp Brunn–Minkowski theory. We show that they are valuations on the set
of convex bodies and prove isoperimetric inequalities for them. We show that they are related to
f divergences of the cone measures of the convex body and its polar, namely the Kullback–Leibler
divergence and the Rényi divergence.

1 Introduction

In [34], an Lp Steiner formula was proved for the Lp affine surface area, namely, if a
convex body K is C2

+, then we have, for all suitable t and for all p ∈ R, p ≠ −n, that

asp(K + tBn
2 ) =

∞
∑
k=0

⎡⎢⎢⎢⎢⎣

k
∑
m=0
(

n(1−p)
n+p

k −m
)Wp

m ,k(K)
⎤⎥⎥⎥⎥⎦

tk ,(1.1)

where

asp(K) = ∫
∂K

Hn−1(x)
p

n+p

⟨x , N(x)⟩
n(p−1)

n+p

dHn−1(1.2)

is the Lp affine surface area of a convex body K, N(x) is the outer normal to K in x ∈
∂K, the boundary of K, Hn−1(x) is the Gauss curvature in x, Hn−1 is the usual surface
area measure on ∂K, and (α

k) are binomial coefficients (see (2.3)). The Euclidean unit
ball centered at 0 is denoted by Bn

2 .
Identity (1.1) is the analog of the classical Steiner formula (e.g., [13, 29]) of the

Brunn–Minkowski theory in the more recent Lp Brunn–Minkowski theory. This
theory has as its starting point Lutwak’s seminal paper [23] and it has been developed
immensely (e.g., [3–6, 14, 17, 21, 24, 41–44]). In analogy to the classical theory, the
coefficients Wp

m ,k(K) are called Lp Steiner coefficients and they are defined in [34]
for a (general) convex body K in R

n , for all k, m ∈ N ∪ {0} as
W

p
m , k(K) =

∫
∂K

⟨x , N(x)⟩m−k+ n(1−p)
n+p H

p
n+p
n−1 ∑

i1 , . . . , in−1≥0
i1+2i2+⋅⋅⋅+(n−1)in−1=m

c(n, p, m)
n−1
∏
j=1
(n − 1

j
)

i j

H i j
j dHn−1 ,
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where the H j are the jth normalized elementary symmetric functions of the principal
curvatures. The c(n, p, m) are certain binomial coefficients (see [34, 35] for the
details). The Lp Steiner coefficients were studied in [35], where it was proved, among
other results, that they are valuations on the set of convex bodies.

1.1 Main results

In this paper, we look at the Lp Steiner formula with a different focus. Expressions also
appearing naturally in formula (1.1) are weighted Lp affine surface areas, μ i⃗ − asp(K),
which we define in Section 2.2.

We investigate in detail those weighted Lp affine surface areas in Section 3. We
show that they are homogeneous of a certain degree and are invariant under rotations
and reflections. We show that they are valuations on the set of convex bodies.
Valuations have become a vitally import subject of study in convexity and affine
and differential geometry (e.g., [1, 10, 15, 16, 22, 30]). The weighted Lp affine surface
areas satisfy isoperimetric inequalities which generalize the Lp affine isoperimetric
inequalities of [23, 39]. This is shown in Theorem 3.2.

Theorem 3.2 Let s ≠ −n, r ≠ −n, t ≠ −n be real numbers. Let K be a C2
+ convex body

in R
n with centroid at the origin.

(i) If (n+r)(t−s)
(n+t)(r−s) > 1, then

μ i⃗ − asr(K) ≤ (μ i⃗ − ast(K))
(r−s)(n+t)
(t−s)(n+r) (μ i⃗ − ass(K))

(t−r)(n+s)
(t−s)(n+r) .

(ii) If (n+r)t
(n+t)r > 1, then

μ i⃗ − asr(K)
μ i⃗ − voln(K)

≤ n
n(t−r)
t(n+r) ( μ i⃗ − ast(K)

μ i⃗ − voln(K)
)

r(n+t)
t(n+r)

.

Equality holds in the above inequalities, if and only if K is an ellipsoid.

We show in Section 3.3, that the weighted Lp affine surface areas have natural
geometric interpretations in terms of certain convex bodies associated with the given
convex body K.

We prove a monotonicity behavior in the parameter p for the weighted Lp affine
surface areas which allows to establish asymptotics for the weighted Lp affine surface
areas. These asymptotics connects them to entropy powers, namely to the Kullbak–
Leibler divergence DKL of the cone measures of K and its polar K○, QK , and PK . We
quote the relevant Theorem 3.8 and refer to Section 3.4 for the details. We put

ωp
m ,k , i⃗(K) = ∫

∂K

Hn−1(x)
p

n+p

⟨x , N(x)⟩
n(p−1)

n+p

⟨x , N(x)⟩m−k
n−1
∏
j=1
{(n − 1

j
)

i j

H i j
j (x)} dHn−1(x),

and then the following theorem holds.
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Theorem 3.8 Let K be a C2
+ convex body in R

n with centroid at the origin. Then,
(i)

lim
p→∞

⎛
⎝

ωp
m ,k , i⃗(K)

ω∞m ,k , i⃗(K)
⎞
⎠

n+p

= exp(−n DKL(PK ∣∣QK)
μ i⃗ − voln(K○)

) .

(ii)

lim
p→0

⎛
⎝

ωp
m ,k , i⃗(K

○)
ω0

m ,k , i⃗(K
○)
⎞
⎠

n(n+p)
p

= exp(−n DKL(PK○ ∣∣QK○)
μ i⃗ − voln(K○)

) .

This leads naturally to consider more general f -divergences than just the Kullbak–
Leibler divergence. We treat that in Section 4, where we also observe that the weighted
Lp affine surface areas themselves are special f -divergences.

Throughout the paper, we assume that the convex bodies K are C2
+, i.e., K has

twice continuously differentiable boundary with strictly positive Gauss curvature
everywhere and such that 0 is the centroid of K, 0 = 1

voln(K) ∫K xdx.

2 Weighted Lp-affine surface areas

2.1 Background from differential geometry

For more information and the details in this section, we refer to, e.g., [13, 29].
Let K be a convex body of class C2 . For a point x on the boundary ∂K of K , we

denote by N(x) the unique outward unit normal vector of K at x . The map NK ∶
∂K → Sn−1 is called the spherical image map or Gauss map of K and is of class C1 . Its
differential is called the Weingarten map. The eigenvalues of the Weingarten map are
the principal curvatures k i(x) of K at x .

The jth normalized elementary symmetric functions of the principal curvatures
are denoted by H j . They are defined as follows:

H j = (
n − 1

j
)
−1

∑
1≤i1<⋅⋅⋅<i j≤n−1

k i1⋯k i j ,(2.1)

for j = 1, . . . , n − 1 and H0 = 1. Note that

H1 =
1

n − 1 ∑
1≤i≤n−1

k i

is the mean curvature, that is, the average of principal curvatures, and

Hn−1 =
n−1
∏
i=1

k i

is the Gauss curvature.
We say that K is of class C2

+ if K is of class C2 and the Gauss map ν is a diffeo-
morphism. This means in particular that NK has a smooth inverse. This assumption is
stronger than just C2 , and is equivalent to the assumption that all principal curvatures
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are strictly positive, or that the Gauss curvature Hn−1 ≠ 0. It also means that the
differential of NK , i.e., the Weingarten map, is of maximal rank everywhere.

Let K be of class C2
+. For u ∈ Rn/{0}, let ξK(u) be the unique point on the

boundary of K at which u is an outward normal vector. The map ξK is defined
on R

n/{0}. Its restriction to the sphere Sn−1 , the map ξ̄K ∶ Sn−1 → ∂K, is called the
reverse spherical image map, or reverse Gauss map. The differential of ξ̄K is called the
reverse Weingarten map. The eigenvalues of the reverse Weingarten map are called
the principal radii of curvature r1 , . . . , rn−1 of K at u ∈ Sn−1 .

The jth normalized elementary symmetric functions of the principal radii of cur-
vature are denoted by s j . In particular, s0 = 1, and for 1 ≤ j ≤ n − 1, they are defined by

s j = (
n − 1

j
)
−1

∑
1≤i1<⋅⋅⋅<i j≤n−1

r i1⋯r i j .(2.2)

Note that the principal curvatures are functions on the boundary of K and the
principal radii of curvature are functions on the sphere.

Now, we describe the connection between H j and s j . For a body K of class C2
+, we

have for u ∈ Sn−1 that ξ̄K(u) = N−1
K (u). In particular, the principal radii of curvature

are reciprocals of the principal curvatures, that is,

r i(u) =
1

k i(ξ̄K(u))
.

This implies that for x ∈ ∂K with NK(x) = u,

s j = (
n − 1

j
)
−1

∑
1≤i1<⋅⋅⋅<i j≤n−1

1
k i1(ξ̄K(u))⋯k i j(ξ̄K(u))

=
Hn−1− j

Hn−1
(ξ̄K(u)),

and

H j =
sn−1− j

sn−1
(NK(x)),

for j = 1, . . . , n − 1.

2.2 Definitions

For α ∈ R and k ∈ N, the generalized binomial coefficients are defined as

(α
k
) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if k = 0,
0, if k < 0 or α = 0,
α(α − 1)⋯(α − k + 1)

k!
, if k > 0.

(2.3)

For fixed k ∈ N, m ∈ N ∪ {0} and fixed sequence i⃗ = {i j}n−1
j=0 such that

i1 + 2i2 +⋯(n − 1)in−1 = m and all p ∈ R, p ≠ −n, we define
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ωp
m ,k , i⃗(K) = ∫

∂K

Hn−1(x)
p

n+p

⟨x , N(x)⟩
n(p−1)

n+p

⟨x , N(x)⟩m−k
n−1
∏
j=1
{(n − 1

j
)

i j

H i j
j (x)} dHn−1(x)

(2.4)

and

up
m ,k , i⃗(K) = ∫

S n−1

fK(u)
n

n+p

hK(u)
n(p−1)

n+p

hK(u)m−k

n−1
∏
j=1
(n−1

j )
i j s i j

n−1− j(u)

s
∑

j
i j+ p

n+p

n−1 (u)
dHn−1(u).(2.5)

Remark 2.1 Note that the above quantities are vanishing for polytopes. Therefore,
we will treat only C2

+ convex bodies throughout the text and then

ωp
m ,k , i⃗(K) = up

m ,k , i⃗(K).(2.6)

Denote

c(n) =
n−1
∏
j=1
(n − 1

j
)

i j

.

Let μm ,k , i⃗ be the measure on ∂K with density

dμm ,k , i⃗(x) = c(n) ⟨x , N(x)⟩m−k
n−1
∏
j=1

H i j
j (x) dHn−1(x),

with respect to the surface measureHn−1 on ∂K , and let νm ,k , i⃗ be the measure on Sn−1

with density

dνm ,k , i⃗(u) = c(n) hm−k
K (u)

n−1
∏
j=1

s i j
n−1− j(u)

s
∑

j
i j+ p

n+p

n−1 (u)
dHn−1(u)

with respect to the surface measureHn−1 on Sn−1. To keep notations simple, we mostly
write μ i⃗ and ν i⃗ instead of μm ,k , i⃗ and νm ,k , i⃗ .

We then define the weighted Lp-affine surface areas by

μ i⃗ − asp(K) = ωp
m ,k , i⃗(K) = ∫

∂K

Hn−1(x)
p

n+p

⟨x , N(x)⟩
n(p−1)

n+p

dμ i⃗(x).(2.7)

Definition (1.2) explains that those can be considered as Lp-affine surface area
weighted by the measure μ i⃗ . In particular,

ω0
m ,k , i⃗(K) = ∫

∂K

⟨x , N(x)⟩dμ i⃗(x) = n(μ i⃗ − voln(K))
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is a weighted volume of K, weighted by the measure μ i⃗ and

ω∞m ,k , i⃗(K) = ∫
∂K

Hn−1

⟨x , N(x)⟩n dμ i⃗(x) = n(μ i⃗ − voln(K○))

is a weighted volume of K○, weighted by the measure μ i⃗ , where

K○ = {y ∈ Rn ∶ ⟨y, x⟩ ≤ 1, for all x ∈ K}

is the polar body of K.
We can take another point of view for the measure dHn−1 on Sn−1 via the density

fp(K , u) = ( fK(u)
h p−1

K (u))
n

n+p
. This density was introduced by Lutwak [23]. Then

up
m ,k , i⃗(K) = c(n) ∫

S n−1

fp(K , u)hK(u)m−k

n−1
∏
j=1

s i j
n−1− j(u)

s
∑

j
i j+ p

n+p

n−1 (u)
dHn−1(u).

2.3 Special cases

Note that

ωp
0,0,0(K) = up

0,0,0(K) = asp(K),

where we denote the sequence i⃗ = {0, . . . , 0} as 0.
1. When k = m, we get

ωp
m ,m , i⃗(K) = ∫

∂K

Hn−1(x)
p

n+p

⟨x , N(x)⟩
n(p−1)

n+p

n−1
∏
j=1
{(n − 1

j
)

i j

H i j
j (x)} dHn−1(x).

2. m = 0 implies that i⃗ = 0 and (2.4) simplifies to

ωp
0,k ,0(K) = ∫

∂K

Hn−1(x)
p

n+p

⟨x , N(x)⟩
n(p−1)

n+p +k
dHn−1(x) = asp+ k

n (n+p), −k(K)

(see [34, equation (29)]).
3. For the Euclidean unit ball Bn

2 , we get

ωp
m ,k , i⃗(B

n
2 ) = voln−1(Bn

2 )
n−1
∏
j=1
(n − 1

j
)

i j

= c(n) voln−1(∂Bn
2 ),(2.8)

which does not depend on k. Note that if i0 ≠ 0 and i1 = ⋅ ⋅ ⋅ = in−1 = 0, that is,
i⃗ = {i0 , 0, . . . , 0}, then ωp

m ,k , i⃗(B
n
2 ) = voln−1(∂Bn

2 ).
4. If p = 0, we have

ω0
m ,k , i⃗(K) = c(n)∫

∂K

⟨x , N(x)⟩m−k+1
n−1
∏
j=1

H i j
j (x) dHn−1(x).
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When in addition k = m, we get

ω0
m ,m , i⃗(K) = c(n)∫

∂K

⟨x , N(x)⟩
n−1
∏
j=1

H i j
j (x) dHn−1(x).

5. If p = ∞, we get that

ω∞m ,m , i⃗(K) = c(n)∫
∂K

Hn−1

⟨x , N(x)⟩n

n−1
∏
j=1

H i j
j (x) dHn−1(x).

3 Properties of the weighted Lp-affine surface areas

3.1 Valuation, invariance, and homogeneity

Proposition 3.1 Let K be a C2
+ convex body inR

n with centroid at the origin. Let p ∈ R,
p ≠ −n. Then ωp

m ,k , i⃗(K) is an (n n−p
n+p − k)-homogeneous valuation that is invariant

under rotations and reflections.

Proof The proof follows immediately from results in [35]. We present an outline of
the proof for completeness.

1. Valuation. As was shown in [35, Theorem 5.9], for all 1 ≤ i1 , . . . , in−1 ≤ n − 1,
1 ≤ j ≤ n − 1, and α1 , . . . , α j ≥ 0,

∫
∂K

Hn−1(x)
p

n+p

⟨x , N(x)⟩
n(p−1)

n+p

⟨x , N(x)⟩k−m
j

∏
i=1

kα j
i j

dHn−1(x)

is a valuation. It immediately follows that ωp
m ,k , i⃗(K) are valuations as the linear

combination of valuations is again a valuation.
2. Homogeneity. Similarly to [35, Theorem 5.1] we can show that ωp

m ,k , i⃗(K) are
homogeneous of order n n−p

n+p − k. Applying [35, Proposition 5.4] with T = a Id, we

get that ωp
m ,k , i⃗(K) = ak−n n−p

n+p ωp
m ,k , i⃗(aK).

3. Invariance. If T is a rotation or a reflection, then ∣det T ∣ = 1, ∥T−1t(NK(T−1(y)))∥
= ∥NK(T−1(y))∥ = 1 and for all 1 ≤ j ≤ n − 1,

{H j(y) ∶ y ∈ ∂T(K)} = {H j (x) ∶ x ∈ ∂K}.

Thus, using these observations and [35, Proposition 5.4], we get

ωp
m ,k , i⃗(K) =

∫
∂T(K)

⟨y, NT(K)(y)⟩m−k+ n(1−p)
n+p H

p
n+p
n−1 (y)

n−1
∏
j=1
(n − 1

j
)

i j

H i j
j (y) dHn−1(y) = ωp

m ,k , i⃗(T(K)).

∎
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3.2 Inequalities

Theorem 3.2 Let s ≠ −n, r ≠ −n, t ≠ −n be real numbers. Let K be a C2
+ convex body

in R
n with centroid at the origin.

(i) If (n+r)(t−s)
(n+t)(r−s) > 1, then

μ i⃗ − asr(K) ≤ (μ i⃗ − ast(K))
(r−s)(n+t)
(t−s)(n+r) (μ i⃗ − ass(K))

(t−r)(n+s)
(t−s)(n+r) .

(ii) If (n+r)t
(n+t)r > 1, then

μ i⃗ − asr(K)
μ i⃗ − voln(K)

≤ n
n(t−r)
t(n+r)( μ i⃗ − ast(K)

μ i⃗ − voln(K)
)

r(n+t)
t(n+r)

.

Equality holds in the above inequalities, if and only if K is an ellipsoid.

Proof
(i) By Hölder’s inequality—which enforces the condition (n+r)(s−t)

(n+t)(s−r) > 1, we then
get

μ i⃗ − asr(K) = ωr
m ,k , i⃗(K)

(3.1)

= ∫
∂K

Hn−1(x)
r

n+r

⟨x , N(x)⟩ n(r−1)
n+r

⟨x , N(x)⟩m−k
n−1
∏
j=1
{(n − 1

j
)

i j

H i j
j (x)} dHn−1(x)

= ∫
∂K

⎛
⎝

Hn−1(x)
t

n+t

⟨x , N(x)⟩ n(t−1)
n+t

⎞
⎠

(r−s)(n+t)
(t−s)(n+r) ⎛

⎝
Hn−1(x)

s
n+s

⟨x , N(x)⟩ n(s−1)
n+s

⎞
⎠

(t−r)(n+s)
(t−s)(n+r)

dμ i⃗(x)

≤ (ωt
m ,k , i⃗(K))

(r−s)(n+t)
(t−s)(n+r) (ωs

m ,k , i⃗(K))
(t−r)(n+s)
(t−s)(n+r)

= (μ i⃗ − ast(K))
(r−s)(n+t)
(t−s)(n+r) (μ i⃗ − ass(K))

(t−r)(n+s)
(t−s)(n+r) .

(ii) Similarly, again using Hölder’s inequality—which now enforces the condition
(n+r)t
(n+t)r > 1,

μ i⃗ − asr(K) = ωr
m ,k , i⃗(K)

= ∫
∂K

Hn−1(x)
r

n+r

⟨x , N(x)⟩
n(r−1)

n+r

dμ i⃗(x) = ∫
∂K

⎛
⎝

Hn−1(x)
t

n+t

⟨x , N(x)⟩
n(t−1)

n+t

⎞
⎠

r(n+t)
t(n+r) dμ i⃗(x)

⟨x , N(x)⟩
(r−t)n
(n+r)t

≤ (ωt
m ,k , i⃗(K))

r(n+t)
t(n+r) (ω0

m ,k , i⃗(K))
(t−r)n
(n+r)t

= (μ i⃗ − ast(K))
r(n+t)
t(n+r)

(n(μ i⃗ − voln(K)))
n(t−r)
t(n+r)

.

The equality characterizations follow from the equality characterization of Hölder’s
inequality.
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Equality holds in (i) and (ii) if and only if equality holds in Hölder’s inequality
which happens if and only if

Hn−1

⟨x , N(x)⟩n+1 = constant

μ i⃗ -almost everywhere on ∂K. As ∂K is C2
+, {x ∈ ∂K ∶ μ i⃗(x) = 0} = ∅ and therefore

Hn−1

⟨x , N(x)⟩n+1 = constant

holds for all x ∈ ∂K. Thus, we can use the following theorem by Petty [27], which then
finishes the proof. ∎

Theorem 3.3 [27] Let K be a convex body in R
n that is C2

+. K is an ellipsoid if and
only if, for all x in ∂K ,

Hn−1

⟨x , N(x)⟩n+1 = c,

where c > 0 is a constant.

Theorem 3.4 Let K be a C2
+ convex body in R

n with centroid at the origin. If r < s < k,
then

ωp
m ,s , i⃗(K) ≤ (ω

p
m ,k , i⃗(K))

k−s
k−r (ωp

m ,r , i⃗(K))
s−r
k−r .

Equality holds if and only if K is a ball.

Proof

ωp
m ,s , i⃗(K) = ∫

∂K

Hn−1(x)
p

n+p

⟨x , N(x)⟩
n(p−1)

n+p

⟨x , N(x)⟩m−s
n−1
∏
j=1
{(n − 1

j
)

i j

H i j
j (x)} dHn−1(x)

= ∫
∂K

⎛
⎝

Hn−1(x)
p

n+p

⟨x , N(x)⟩
n(p−1)

n+p

⟨x , N(x)⟩m−k c(n)
n−1
∏
j=1

H i j
j
⎞
⎠

s−r
k−r

(3.2)

⋅
⎛
⎝

Hn−1(x)
p

n+p

⟨x , N(x)⟩
n(p−1)

n+p

⟨x , N(x)⟩m−r c(n)
n−1
∏
j=1

H i j
j
⎞
⎠

k−s
k−r

dHn−1(x)

≤ (ωp
m ,k , i⃗(K))

s−r
k−r (ωp

m ,r , i⃗(K))
k−s
k−r .

Equality holds if and only if equality holds in Hölder’s inequality which happens if
and only if ⟨x , N(x)⟩ = constant if and only if K is a ball. ∎

Remark 3.5 When i⃗ = 0 and k = 0, we recover Lp affine isoperimetric inequalities
of [39].

We also obtain monotonicity behaviors.
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Corollary 3.6 Let K be a C2
+ convex body inR

n with centroid at the origin. Let p ≠ −n
be a real number.

(i) The function p → (
ω p

m ,k , i⃗
(K)

ω0
m ,k , i⃗
(K))

n+p
p

is increasing in p ∈ (−n,∞) and p ∈ (−∞,−n).

(ii) The function p → (
ω p

m ,k , i⃗
(K)

ω0
m ,k , i⃗
(K))

n+p
is decreasing in p ∈ (−n,∞) and p ∈

(−∞,−n).
(iii) The inequalities are strict unless K is an ellipsoid.

Proof The statement (i) follows immediately from Theorem 3.2(ii). The statement
(ii) follows from Theorem 3.2(i), by letting s →∞. The statement (iii) follows from
the equality characterizations. ∎

3.3 Geometric interpretations

We recall several constructions of convex bodies associated with a given convex
body K. Namely:

1. Weighted floating bodies [36]
Let K be a convex body in R

n and denote by λ the Lebesgue measure on R
n . Let

s ≥ 0, and let f ∶ K → R be an integrable function such that f > 0 λ-a.e. The weighted
floating body F(K , f , s) was defined in [36] (see also [3–4]) as the intersection of all
closed half-spaces H+ whose defining hyperplanes H cut off a set of ( f λ)-measure
less than or equal to s from K,

F(K , f , s) = ⋂
∫K∩H− f d λ≤s

H+.

It was shown in [36] that

2(voln−1(Bn−1
2 )

n + 1
)

2
n+1

lim
s→0+

voln(K) − voln(F(K , f , s))
s 2

n+1
= ∫

∂K

H
1

n+1
n−1

f 2
n+1

dHn−1 .

2. Surface bodies [33]
Let K be a convex body, and let f ∶ ∂K → R be a nonnegative, integrable function with
∫∂K f Hn−1 = 1. The probability measure P f is the measure on ∂K with density f. Let
s ≥ 0. The surface body S(K , f , s) was defined in [33] as the intersection of all the
closed half-spaces H+ whose defining hyperplanes H cut off a set of P f -measure less
than or equal to s from ∂K,

S(K , f , s) = ⋂
P f (∂K∩H−)≤s

H+.

It was shown in [33] that

2(voln−1(Bn−1
2 ))

2
n−1

lim
s→0+

voln(K) − voln(S(K , f , s))
s 2

n−1
= ∫

∂K

H
1

n−1
n−1

f 2
n−1

dHn−1 .
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3. Random polytopes [32]
A random polytope is the convex hull of finitely many points that are chosen with

respect to a probability measure. In [32], random polytopes are considered where the
points are chosen from ∂K with respect to P f , where f ∶ ∂K → R is an integrable,
nonnegative function with ∫∂K f dHn−1 = 1 and d P f = f dHn−1. Then the expected
volume of such a random polytope is

E( f , N) = E(P f , N) = ∫
∂K
⋯∫

∂K
voln([x1 , . . . , xN])dP f (x1) . . . dP f (xN),

where [x1 , . . . , xN] is the convex hull of the points x1 , . . . , xN . It was shown in [32]
that under mild smoothness assumptions on K,

lim
N→∞

voln(K) −E( f , N)
( 1

N )
2

n−1
= cn ∫

∂K

H
1

n−1
n−1

f 2
n−1

dHn−1 ,

where cn =
(n−1)

n+1
n−1 �(n+1+ 2

n−1 )

2(n+1)!(voln−2(∂Bn−1
2 ))

2
n−1

.

4. Ulam floating bodies [19]
Given a Borel measure μ on R

n , the metronoid associated with μ was introduced
by Huang and Slomka [18] and is the convex set defined by

M(μ) = ⋃
0≤ f≤1,
∫Rn f d μ=1

{∫
Rn

y f (y) dμ (y)},

where the union is taken over all functions 0 ≤ f ≤ 1 for which ∫Rn f dμ = 1 and
∫Rn y f (y) dμ (y) exists. The metronoidMδ(K) is generated by the uniform measure
on K with total mass δ−1 ∣K∣. Namely, let 1K be the characteristic function of K,
and let μ be the measure whose density with respect to Lebesgue measure is δ−11K .
Then Mδ(K) ∶=M(μ). In [19] weighted variations of Mδ(K)were defined where the
weight is given by a positive continuous function f ∶ K → R,

Mδ(K , f ) ∶=M( f (x)
δ

1K (x) dx).

It was shown in [19] that

lim
δ→0+

voln (K) − voln (Mδ(K , f ))
δ 2

n+1
= 2 n + 1

n + 3
(voln−1(Bn−1

2 )
n + 1

)
2

n+1

∫
∂K

H
1

n+1
n−1

f 2
n+1

dHn−1 .

This leads to geometric interpretations of the weighted Lp-affine surface areas in
terms of these associated bodies. That is, if we let

f (x) = Hn−1(x)
n(1−p)
2(n+p)

[c(n)H i j
j (x)]

n+1
2
⟨x , N(x)⟩(

n(p−1)
n+p +k−m) n+1

2
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in the case of weighted floating bodies and Ulam floating bodies, and

f (x) = Hn−1(x)
2p+n(1−p)

2(n+p)

[c(n)H i j
j (x)]

n−1
2
⟨x , N(x)⟩(

n(p−1)
n+p +k−m) n−1

2

in the case of surface bodies and random polytopes, respectively, and denote by K f ,s
the corresponding associated body, i.e.,

K f ,s = F(K , f , s), or K f ,s = S(K , f , s), or K f ,s =Ms(K , f ), or voln(K f ,s) = E( f , N),

then, with the properly adjusted constant cn , we get the following proposition.

Proposition 3.7 Let K be a C2
+ convex body in R

n with centroid at the origin. Let
p ≠ −n be a real number.

cn lim
s→0

voln(K) − voln(K f ,s)
s 2

n−1
= ωp

m ,k , i⃗(K).

3.4 Asymptotics for the weighted Lp-affine surface areas

Let (X , μ) be a measure space, and let dP = pdμ and Q = qdμ be measures in X
that are absolutely continuous with respect to the measure μ. The Kullback–Leibler
divergence or relative entropy from P to Q is defined as in [11]

DKL(P∣∣Q) = ∫
X

p log p
q

dμ.(3.3)

The information inequality (also called Gibb’s inequality) [11] holds for the Kullback–
Leibler divergence. Let P and Q be as above, then

DKL(P∣∣Q) ≥ 0(3.4)

with equality if and only if P = Q.
We will apply this when (X , μ) = (∂K , μ i⃗), where K is C2

+ and densities p and q
with respect to μ i⃗ given by

pK(x) =
Hn−1

⟨x , N(x)⟩n , qK(x) = ⟨x , N(x)⟩.(3.5)

We let

PK =
Hn−1

⟨x , N(x)⟩n μ i⃗ , QK = ⟨x , N(x)⟩μ i⃗ .(3.6)

Recall that classical cone measure cmK on ∂K is defined as follows: for every
measurable set A ⊆ ∂K ,

cmK(A) = voln({ta ∶ a ∈ A, t ∈ [0, 1]}).
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It is wellknown (see, e.g., [26] for a proof) that the measures Hn−1
⟨x ,N(x)⟩n H

n−1 and
⟨x , N(x)⟩Hn−1 are the cone measures of K and K○,

cmK(A) =
1
n ∫

A

⟨x , N(x)⟩Hn−1(x), cmK○(A) =
1
n ∫

A

Hn−1

⟨x , N(x)⟩n H
n−1(x).

The interpretation of cmK○ as the “cone measure of K○” is via the Gauss map on K○,
NK○ ∶ ∂K○ → Sn−1 , x ;→ NK○(x) and the inverse of the Gauss map on KNK ∶ ∂K →
Sn−1 , x ;→ NK(x),

N−1
K NK○ cmK○ ,

where we use NK(x) to emphasize that it is the normal vector of a body K at x ∈ ∂K.
We now define the weighted cone measures μ i⃗ − cmK of K and μ i⃗ − cmK○ of K○ by

μ i⃗ − cmK =
1
n ∫

A

⟨x , N(x)⟩μ i⃗(x),(3.7)

μ i⃗ − cmK○(A) =
1
n ∫

A

Hn−1

⟨x , N(x)⟩n μ i⃗(x).(3.8)

We show that the limits of the weighted Lp affine surface areas are entropy powers.

Theorem 3.8 Let K be a C2
+ convex body in R

n with centroid at the origin.
(i)

lim
p→∞

⎛
⎝

ωp
m ,k , i⃗(K)

ω∞m ,k , i⃗(K)
⎞
⎠

n+p

= exp(−n DKL(PK ∣∣QK)
μ i⃗ − voln(K○)

) .

(ii)

lim
p→0

⎛
⎝

ωp
m ,k , i⃗(K

○)
ω0

m ,k , i⃗(K
○)
⎞
⎠

n(n+p)
p

= exp(−n DKL(PK○ ∣∣QK○)
μ i⃗ − voln(K○)

) .

Proof (i) We use L’Hospital’s rule

lim
p→∞

ln
⎛
⎜
⎝
⎛
⎝

ωp
m ,k , i⃗(K)

ω∞m ,k , i⃗(K)
⎞
⎠

n+p⎞
⎟
⎠
= lim

p→∞

ln(
ω p

m ,k , i⃗
(K)

ω∞
m ,k , i⃗
(K))

(n + p)−1 = − lim
p→∞

(n + p)2
d

d p (ωp
m ,k , i⃗(K))

ωp
m ,k , i⃗(K)

= − lim
p→∞

(n + p)2

ωp
m ,k , i⃗(K)

∫
∂K

d
d p
⎛
⎝

exp
⎛
⎝

ln
⎛
⎝

Hn−1(x)
p

n+p

⟨x , NK(x)⟩
n(p−1)

n+p

⎞
⎠
⎞
⎠
⎞
⎠

dμ i⃗(x)

= − lim
p→∞

n
ωp

m ,k , i⃗(K)
∫
∂K

Hn−1(x)
p

n+p

⟨x , N(x)⟩
n(p−1)

n+p

ln( Hn−1(x)
⟨x , NK(x)⟩n+1 )dμ i⃗(x)

https://doi.org/10.4153/S0008439522000716 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000716


774 K. Tatarko and E. Werner

= − n
ω∞m ,k , i⃗(K)

∫
∂K

Hn−1(x)
⟨x , NK(x)⟩n ln( Hn−1(x)

⟨x , NK(x)⟩n+1 )dμ i⃗(x)

= − n
ω∞m ,k , i⃗(K)

DKL(PK ∣∣QK).

(ii) We use L’Hospital’s rule

lim
p→0

ln
⎛
⎜⎜
⎝

⎛
⎝

ωp
m ,k , i⃗(K

○)
ω0

m ,k , i⃗(K
○)
⎞
⎠

n(n+p)
p ⎞
⎟⎟
⎠
= lim

p→0
n

ln(
ω p

m ,k , i⃗
(K○)

ω0
m ,k , i⃗
(K○))

p(n + p)−1 = lim
p→0
(n + p)2

d
d p ωp

m ,k , i⃗(K
○)

ωp
m ,k , i⃗(K

○)

= lim
p→0

(n + p)2

ωp
m ,k , i⃗(K

○) ∫
∂K○

d
d p
⎛
⎝

exp
⎛
⎝

ln
⎛
⎝

Hn−1(x)
p

n+p

⟨x , NK○(x)⟩
n(p−1)

n+p

⎞
⎠
⎞
⎠
⎞
⎠

dμ i⃗(x)

= lim
p→0

n
ωp

m ,k , i⃗(K
○) ∫

∂K○

Hn−1(x)
p

n+p

⟨x , NK○(x)⟩
n(p−1)

n+p

ln( Hn−1(x)
⟨x , NK○(x)⟩n+1 )dμ i⃗(x)

= n
ω0

m ,k , i⃗(K
○) ∫

∂K○
⟨x , NK○(x)⟩ ln( Hn−1(x)

⟨x , NK○(x)⟩n+1 )dμ i⃗(x)

= − n
ω0

m ,k , i⃗(K
○)DKL(QK○ ∣∣PK○).

∎

4 f -divergence

The results in the previous section lead naturally to consider more general
f -divergences than just the Kullback–Leibler divergence.

4.1 Background on f -divergence.

In information theory, probability theory and statistics, an f -divergence is a functional
that measures the difference between two (probability) distributions. This notion was
introduced by Csiszár [12], and independently Morimoto [25] and Ali and Silvery [2].

Let (X , μ) be a measure space, and let P = pμ and Q = qμ be (probability)
measures on X that are absolutely continuous with respect to the measure μ. Let f ∶
(0,∞) → R be a convex or a concave function. The ∗-adjoint function f ∗ ∶ (0,∞) →
R of f is defined by

f ∗(t) = t f (1/t), t ∈ (0,∞).(4.1)

It is obvious that ( f ∗)∗ = f and that f ∗ is again convex, if f is convex, respectively,
concave, if f is concave. Then the f -divergence D f (P, Q) of the measures P and Q is
defined by

D f (P, Q) = ∫{pq>0}
f ( p

q
) qdμ + f (0) Q ({x ∈ X ∶ p(x) = 0})

+ f ∗(0) P ({x ∈ X ∶ q(x) = 0}) ,(4.2)
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provided the expressions exist. Here,

f (0) = lim
t↓0

f (t) and f ∗(0) = lim
t↓0

f ∗(t).(4.3)

We make the convention that 0 ⋅ ∞ = 0.
Please note that

D f (P, Q) = D f ∗(Q , P).(4.4)

With (4.3) and as

f ∗(0) P ({x ∈ X ∶ q(x) = 0}) = ∫{q=0}
f ∗ ( q

p
) pdμ = ∫{q=0}

f ( p
q
) qdμ,

we can write in short

D f (P, Q) = ∫
X

f ( p
q
) qdμ.(4.5)

Examples of f -divergences are as follows:
1. For f (t) = t ln t (with ∗-adjoint function f ∗(t) = − ln t), the f -divergence is

Kullback–Leibler divergence or relative entropy from P to Q (see [11])

DKL(P∥Q) = ∫
X

p ln p
q

dμ.(4.6)

2. For the convex or concave functions f (t) = tα , we obtain the Hellinger integrals
(e.g., [20])

Hα(P, Q) = ∫
X

pα q1−α dμ.(4.7)

Those are related to the Rényi divergence of order α, α ≠ 1, introduced by Rényi [28]
(for α > 0) as

Dα(P∥Q) =
1

α − 1
ln(∫

X
pα q1−α dμ) = 1

α − 1
ln (Hα(P, Q)) .(4.8)

The case α = 1 is the relative entropy DKL(P∥Q).
More on f -divergence can be found in, e.g., [7–9, 20, 37, 38, 40].

4.2 f -divergence for the μ i⃗ -measure

In [38], f -divergence with respect to the surface area measure μK was introduced for
a convex body K in R

n with 0 in its interior. We now introduce similarly f -divergence
with respect to the measure μ i⃗ .

Definition 4.1 Let f ∶ (0,∞) → R be a convex or concave function. Let pK and qK
be as in (3.5). Then the f -divergence D f (PK , QK) of a convex body K in R

n with
respect to the μ i⃗ -measure is
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D f (PK , QK) = ∫
∂K

f ( pK

qK
) qK dμ i⃗

= ∫
∂K

f ( Hn−1

⟨x , N(x)⟩n+1 ) ⟨x , N(x)⟩dμ i⃗ .

In particular, for f (t) = t log t, we recover the above Kullback–Leibler divergences
of Section 3.4 and for f (t) = t

p
n+p , we obtain the weighted Lp-affine surface areas.

Remarks (i) By (4.4),

D f (QK , PK) = ∫
∂K

f ( qK

pK
) pK dμ i⃗ = D f ∗(PK , QK)

= ∫
∂K

f ∗ ( pK

qK
) qK dμ i⃗(4.9)

= ∫
∂K

f (voln(K○)⟨x , NK(x)⟩n+1

voln(K)Hn−1(x)
) Hn−1(x) dHn−1

n voln(K○)⟨x , NK(x)⟩n .

(ii) f -divergences can also be expressed as integrals over Sn−1,

D f (PK , QK) = ∫
S n−1

f ( voln(K)
voln(K○) fK(u)hK(u)n+1 )

hK(u) fK(u)
n voln(K)

dσ(4.10)

and

D f (QK , PK) = ∫
S n−1

f (voln(K○) fK(u)hK(u)n+1

voln(K)
) dσK

n voln(K○)hK(u)n .(4.11)

(iii) Similar to (4.10) and (4.11), one can define mixed f -divergences for n convex
bodies inR

n . We will not treat those here but will concentrate on f -divergence for one
convex body. We also refer to [41], where they have been investigated for functions in
Conv(0,∞).

Proposition 4.1 Let f ∶ (0,∞) → R be a concave function. Then

D f (PK , QK) ≤ f ( μ i⃗ − voln(K○)
μ i⃗ − voln(K)

) μ i⃗ − voln(K).

If f is convex, the inequality is reversed. If f is linear, equality holds in Proposition 4.1. If
f is not linear, equality holds iff K is an ellipsoid.

Proof Let f ∶ (0,∞) → R be a concave function. By Jensen’s inequality,

D f (PK , QK) = (∫
∂K

f ( Hn−1

⟨x , N(x)⟩n+1 ) ⟨x , N(x)⟩ dμ i⃗
μ i⃗ − voln(K)

) μ i⃗ − voln(K)

≤ f (∫
∂K

Hn−1

⟨x , N(x)⟩n+1 ⟨x , N(x)⟩ dμ i⃗
μ i⃗ − voln(K)

) μ i⃗ − voln(K)

= f ( μ i⃗ − voln(K○
μ i⃗ − voln(K)

) μ i⃗ − voln(K).
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Equality holds in Jensen’s inequality iff either f is linear or pK
qK

is constant. Indeed, if
f (t) = at + b, then

D f (PK , QK) = ∫
∂K
(a pK

qK
+ b) qK dμ i⃗ = a∫

∂K
pK dμ i⃗ + b∫

∂K
qK dμ i⃗

= a μ i⃗ − voln(K○) + b μ i⃗ − voln(K).

If f is not linear, equality holds iff pK
qK
= c, where c is a constant. By the above quoted

Theorem 3.3 of Petty, this holds iff K is an ellipsoid. Note that the constant c is different
from 0, as we assume that K is C2

+. ∎

Now we show that D f (PK , QK) are valuations, i.e., for convex bodies K and L such
that K ∪ L is convex,

D f (PK∪L , QK∪L) + D f (PK∩L , QK∩L) = D f (PK , QK) + D f (PL , QL).(4.12)

Proposition 4.2 Let K be a convex body in R
n with the origin in its interior, and let

f ∶ (0,∞) → R be a convex function. Then D f (PK , QK) are valuations.

Proof To prove (4.12), we proceed as in Schütt [31]. For completeness, we include
the argument. We decompose

∂(K ∪ L) = (∂K ∩ ∂L) ∪ (∂K ∩ Lc) ∪ (K c ∩ ∂L),
∂(K ∩ L) = (∂K ∩ ∂L) ∪ (∂K ∩ intL) ∪ (intK ∩ ∂L),

∂K = (∂K ∩ ∂L) ∪ (∂K ∩ Lc) ∪ (∂K ∩ intL),
∂L = (∂K ∩ ∂L) ∪ (∂K c ∩ ∂L) ∪ (intK ∩ ∂L),

where all unions on the right-hand side are disjoint. Note that for x such that the
curvatures κK(x), κL(x), κK∪L(x), and κK∩L(x) exist,

⟨x , NK(x)⟩ = ⟨x , NL(x)⟩ = ⟨x , NK∩L(x)⟩ = ⟨x , NK∪L(x)⟩(4.13)

and

κK∪L(x) =min{κK(x),κL(x)}, κK∩L(x) =max{κK(x),κL(x)}.(4.14)

To prove (4.12), we split the involved integral using the above decompositions (4.13)
and (4.14). ∎
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