
J. Inst. Math. Jussieu (2021) 20(5), 1455–1496

doi:10.1017/S1474748019000537

1455

DENSITY RESULTS FOR SPECIALIZATION SETS OF
GALOIS COVERS
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Abstract We provide evidence for this conclusion: given a finite Galois cover f : X → P1
Q of group G,

almost all (in a density sense) realizations of G over Q do not occur as specializations of f . We show that
this holds if the number of branch points of f is sufficiently large, under the abc-conjecture and, possibly,
the lower bound predicted by the Malle conjecture for the number of Galois extensions of Q of given

group and bounded discriminant. This widely extends a result of Granville on the lack of Q-rational
points on quadratic twists of hyperelliptic curves over Q with large genus, under the abc-conjecture
(a diophantine reformulation of the case G = Z/2Z of our result). As a further evidence, we exhibit a

few finite groups G for which the above conclusion holds unconditionally for almost all covers of P1
Q

of group G. We also introduce a local–global principle for specializations of Galois covers f : X → P1
Q

and show that it often fails if f has abelian Galois group and sufficiently many branch points, under
the abc-conjecture. On the one hand, such a local–global conclusion underscores the ‘smallness’ of the

specialization set of a Galois cover of P1
Q. On the other hand, it allows to generate conditionally ‘many’

curves over Q failing the Hasse principle, thus generalizing a recent result of Clark and Watson devoted
to the hyperelliptic case.
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1. Introduction

Given a finite Galois extension E of the rational function field Q(T ), and a point t0 ∈
P1(Q), there is a well-known notion of specialization Et0/Q (see § 2.2.1 for more details).
If E is the splitting field of a monic separable polynomial P(T, Y ) ∈ Q[T ][Y ] and t0 ∈ Q
is such that P(t0, Y ) is separable, then the field Et0 is the splitting field over Q of P(t0, Y ).

The specialization process has been much studied toward the inverse Galois problem,
which asks whether every finite group G occurs as the Galois group of a finite Galois
extension F/Q. In that case, we shall say that such an extension F/Q is a G-extension.
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Indeed, if E/Q(T ) is a finite Galois extension with Galois group G, then Hilbert’s
irreducibility theorem asserts that the specialization Et0/Q still has Galois group G for
infinitely many t0 ∈ Q. Moreover, if E/Q(T ) is Q-regular (i.e., if Q is algebraically closed in
E), in which case we shall say that E/Q(T ) is a regular G-extension, and if G 6= {1}, then
infinitely many linearly disjoint G-extensions of Q occur as specializations of E/Q(T ).
In fact, most known realizations over Q of finite non-abelian simple groups G have been
obtained by specializing regular G-extensions of Q(T ), generally derived from the rigidity
method. See the books [20, 36, 38, 41] for more details and references within.

Recent progress has been made on the set Sp(E) of all specializations of a given regular

G-extension E/Q(T ). For example, for many groups G, no regular G-extension E/Q(T )
is parametric, i.e., Sp(E) does not contain all G-extensions of Q (see [26] and [27, § 7]).

Another result by Dèbes [13] gives a lower bound for the number of G-extensions of Q
with bounded discriminant lying in the set Sp(E) for a given regular G-extension E/Q(T ).
An even more fundamental question was raised in [14, 17]: does the set Sp(E), a collection

of arithmetic objects, characterize the extension E/Q(T ), a geometric one?

1.1. A central question

Given a regular G-extension E/Q(T ), the main purpose of this paper is to further study
the set Sp(E) and to provide evidence for this striking conclusion: this set is in general
‘small’, i.e., ‘almost all’ G-extensions of Q do not lie in the set Sp(E).

Let us make this more precise. Given an integer x > 1, let S(G, x) denote the set of all

G-extensions F/Q such that |dF | 6 x , where dF denotes the absolute discriminant of F .

By Hermite’s theorem, the set S(G, x) is finite. Moreover, say that the set Sp(E) of all

specializations of a given regular G-extension E/Q(T ) is of density zero if the equality

|Sp(E)∩S(G, x)| = o(|S(G, x)|) holds as x tends to ∞.

Question 1.1. Let G be a finite group. Is it true that the specialization set Sp(E) of a given

regular G-extension E/Q(T ), not in some ‘small’ exceptional list, is of density zero?

The reason why we have to consider an exceptional list in Question 1.1 is that, for

some regular G-extensions E/Q(T ), the specialization set Sp(E) is not of density zero. For

example, this happens for all parametric extensions E/Q(T ), in which case a fully opposite

conclusion holds. However, all extensions which are known to satisfy this property are in

fact generic (that is, remain parametric after every base change) and, in particular, are

all of genus 0 and belong to a very short list (see [17, Theorem 1.6] for more details).
In addition to the generic extensions E/Q(T ), there are some more counterexamples

in genus 1. For instance, results of Vatsal [40], Byeon [5], and later Byeon–Jeon–Kim [6]
about rank 1 quadratic twists of elliptic curves yield infinite families of separable degree
3 polynomials P(T ) ∈ Z[T ] such that a positive proportion of all quadratic extensions of
Q occur as specializations of the extension Q(T )(

√
P(T ))/Q(T ). More generally, under

Goldfeld’s conjecture, 50% of all quadratic extensions of Q are expected to be reached
by specializing the function field extension corresponding to an elliptic curve over Q.

However, we are not aware of any counterexample in genus at least 2, and we in fact
expect the answer to Question 1.1 to be ‘Yes’ if regular G-extensions of Q(T ) of genus
at most 1, which are quite rare and do not even exist for many finite groups G (e.g., for
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all finite non-solvable groups), are left aside. Evidence for this is provided by [17], which
proves an analog over the rational function field C(Y ), with the notion of specialization
replaced by a geometric analog of ‘rational pullback’ and the notion of density also
replaced by a geometric analog via the Zariski topology.

In this paper, we make progress on Question 1.1 in several directions. First, in § 3, we

show that the answer is affirmative if one excludes regular G-extensions of Q(T ) with very

few branch points, conditionally on widely accepted conjectures (see § 1.2). Second, in

§ 4, we show for some exemplary small finite groups G that, upon ignoring a ‘small’ (in a

density sense) set of regular G-extensions of Q(T ), the answer to Question 1.1 is positive

unconditionally (see § 1.3). In this latter context, we do not have any restriction on the

number of branch points or the genus, thus suggesting that the density zero conclusion,

which we expect to hold always in genus at least 2, may also hold for ‘many’ regular

G-extensions of Q(T ) of genus at most 1. For example, it is plausible that this conclusion

holds for all genus 0 extensions which are not parametric.

1.2. Conditional results

We first give an upper bound for the number of specializations of a given regular
G-extension of Q(T ) with bounded discriminant, under the abc-conjecture:

The abc-conjecture. For every ε > 0, there exists a positive constant K (ε) such that, for
all coprime integers a, b, and c fulfilling a+ b = c, the following holds:

c 6 K (ε) · rad(abc)1+ε,

where the radical rad(n) of an integer n > 1 is the product of the distinct prime factors
of n.

Theorem 1.2. Let G be a finite group and E/Q(T ) a regular G-extension with r > 5
branch points. Suppose the abc-conjecture holds. Then there is a ‘small’ constant e > 0,
depending only on r , |G|, and the ramification indices of the branch points of E/Q(T ),
such that the following holds. For every ε > 0 and every sufficiently large integer x, one
has

|Sp(E)∩S(G, x)| 6 xe+ε . (1.1)

See Theorem 3.1 for a more precise statement where we relax the lower bound on r
and give the precise definition of the exponent e.

To show that the specialization set of a given regular G-extension of Q(T ) with
sufficiently many branch points is of density 0 (under the abc-conjecture), it then suffices,
by (1.1), to show that |S(G, x)| is asymptotically ‘bigger’ than xe. A main difficulty to
get this conclusion is that the asymptotic behavior of |S(G, x)| is widely unknown for
arbitrary finite groups G. However, general conjectures are available in the literature.

For example, the Malle conjecture [35], a classical landmark in this context, asserts
that if k is a number field and G a finite group, then the number of G-extensions of k
whose relative discriminant has norm at most x is roughly asymptotic to xα(G), for some
well-defined constant α(G) (recalled in (1.3)). See [35] for more details and [13, § 1.1] for
a recent review of the state of the art on the conjecture and its generalizations.

We only recall in details the lower bound predicted by the conjecture (in the specific
case k = Q), which is enough for our purposes:
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The Malle conjecture (lower bound). Let G be a non-trivial finite group and let p be the
smallest prime divisor of |G|. Then there exists a positive constant c(G) such that

c(G) · xα(G) 6 |S(G, x)| (1.2)

for every sufficiently large integer x, where

α(G) =
1
|G|
·

p
p− 1

. (1.3)

Note that if the lower bound (1.2) holds for a given finite group G (for sufficiently large

x), then G occurs as a Galois group over Q.

The combination of (1.1) and (1.2) then allows us to give this answer to Question 1.1:

Theorem 1.3. Let G be a finite group and E/Q(T ) a regular G-extension with r > 7
branch points. Suppose (1.2) is fulfilled for the group G and the abc-conjecture holds.

Then the set of specializations of E/Q(T ) is of density zero.

See Corollary 3.3 for a more precise statement. It should be pointed out that the bound

r > 7 is not sharp (toward a density zero conclusion for every regular G-extension of Q(T )
of genus at least 2). For example, we can easily drop to r > 6 if |G| is odd or to r > 5 if

|G| is prime to 6. Moreover, we obtain a conditional linear bound (depending on G) on

the genus of a given regular G-extension E/Q(T ) for the set Sp(E) being of density 0.

See Remark 3.4 for more details.

The bound (1.2) is known to hold for several finite groups, thus providing concrete

situations for which Theorem 1.3 can be worded without mentioning it. For instance,

relying on Shafarevich’s theorem solving the inverse Galois problem for solvable groups,

Klüners and Malle [30] proved the (lower bound of the) Malle conjecture for nilpotent

groups. Another example is given by dihedral groups of order 2p with p an odd prime,

as proved by Klüners in [28]. Moreover, many finite groups G are such that every regular

G-extension of Q(T ) has at least 7 branch points, thus yielding examples of groups G
for which the specialization set of every regular G-extension of Q(T ) is of density zero,

under the abc-conjecture and, possibly, the lower bound (1.2). Such considerations are

collected in Corollary 3.5.

Although there is no known counterexample, the bound (1.2) remains widely open,

e.g., for most non-solvable groups. In the sequel, we give a variant of Theorem 1.3 which

applies to all finite groups, where the assumption that (1.2) holds is not needed but where

the bound on the number of branch points is less explicit. See Theorem 3.7 for more

details. This uses the already mentioned result of Dèbes [13], whose aim was to provide

an unconditional weak version of the bound (1.2) for regular Galois groups over Q (i.e., for

finite groups G such that there is a regular G-extension of Q(T )), obtained by considering

G-extensions of Q which arise as specializations of a single regular G-extension of Q(T ).
It should be pointed out that, by Theorem 1.3, one cannot hope (for arbitrary finite

groups G) to obtain the exact bound (1.2) in this way, thereby showing the limitations

of the approach in [13].

As a further result, we give a second variant, where the abc-conjecture is not

required and no assumption on the number of branch points is made, provided the
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uniformity conjecture1 holds and the upper bound from the Malle conjecture for some

quotient of the underlying Galois group is taken into account (see Theorem 3.9).

As under the abc-conjecture, we may derive explicit examples of finite groups G for

which the specialization set of every regular G-extension of Q(T ) is of density zero,

under the uniformity conjecture (see Corollary 3.11). Note that, as Theorem 1.3 and

its consequences, Corollary 3.11 easily provides density zero conclusions for regular

G-extensions of Q(T ) with few branch points.

1.3. Unconditional results

We start with the quadratic case. In the work [34], it was proved that, for ‘almost all’

regular Z/2Z-extensions E/Q(T ), at least one quadratic extension of Q is not in Sp(E).
Here, we sharpen this result as follows:

Theorem 1.4. Given an even positive integer r , the proportion of all regular

Z/2Z-extensions E/Q(T ) with r branch points, ‘height’ at most H , and whose set of

specializations is of density 0 tends to 1 as H tends to ∞.

From a diophantine point of view, this means that ‘most’ quadratic twists of ‘most’

hyperelliptic curves over Q have only trivial Q-rational points, unconditionally (see

Proposition 2.3(b)). See Theorems 4.1 and 4.2 for more precise statements, and § 1.6

for diophantine considerations in a more general context.

On the one hand, Theorem 1.4 shows that invoking the abc-conjecture in the case G =
Z/2Z of Theorem 1.3 is only necessary for comparatively few extensions. On the other

hand, it shows that even among regular Z/2Z-extensions of Q(T ) to which Theorem 1.3

does not apply (i.e., those with r 6 6 branch points), only a few can be exceptions in

Question 1.1.2

The second example we discuss is the symmetric group S3. In this context, we have

this result (see Theorem 4.7 for a more precise statement):

Theorem 1.5. Let D be a positive integer. Then inside the set of all polynomials P(T, Y ) =
Y 3
+ a(T )Y 2

+ b(T )Y + c(T ) with a(T ), b(T ), c(T ) ∈ Z[T ] of degree 6 D and of height

6 H , the set of those P(T, Y ) which additionally define a regular S3-extension of Q(T )
whose specialization set is of density zero, makes up a proportion tending to 1 as H tends

to ∞.

1.4. Comparison with previous non-parametricity results

As already said, it was known from [26] and [27, § 7] that many finite groups G do

not have any parametric extension E/Q(T ). However, our results sharpen conditionally

this conclusion. Indeed, by Theorem 1.3, for many finite groups G, not only at least one

G-extension of Q but actually almost all of them are not specializations of a given regular

1Which asserts that the number of Q-rational points on any given smooth curve over Q of genus at least
2 is bounded by a quantity which depends only on the genus of the curve (but not on the curve itself).
2Clearly, there are exceptions in the case r = 2 and, as already recalled in § 1.1, exceptions also exist in
the case r = 4. However, no exception seems to be expected in the case r = 6 [24, Conjecture 1].
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G-extension of Q(T ), under the abc-conjecture. Moreover, this yields (conditional) new

examples of finite groups with no parametric extension E/Q(T ) (see Remark 3.6(b)).

Furthermore, a property shared by the groups Z/2Z and S3 is that they admit a

parametric extension E/Q(T ). Theorems 1.4 and 1.5 show that if G = Z/2Z or S3, then

parametric realizations are rare and, for almost all regular G-extensions E/Q(T ), the

same fully opposite conclusion on the size of Sp(E) holds.

1.5. Local–global considerations

Our conditional results are global results, in the sense that they depend on diophantine

properties and the arithmetic of curves over Q. On the contrary, our unconditional

results are mostly due to local arguments. Namely, given a regular G-extension E/Q(T ),
let Sp(E)loc be the set of all G-extensions F/Q such that FQp/Qp is a specialization

of EQp/Qp(T ) for all primes p (including p = ∞, in which case Qp = R). Our local

arguments consist in proving that, for almost all regular G-extensions E/Q(T ),
|Sp(E)loc

∩S(G, x)|
|S(G, x)|

(1.4)

tends to 0 as x tends to ∞, thus yielding, in particular, that Sp(E) is of density 0. That

is, almost all G-extensions F/Q are not specializations of E/Q(T ) as this is wrong even

up to base change from Q to Qp (for at least one suitable prime p depending on F).

This suggests this refinement of Question 1.1, which asks whether the specialization set

of E/Q(T ) is of density 0 even within the set of those G-extensions of Q who pass these

local obstructions:

Question 1.6. Let G be a finite group. Does it hold that, for a given regular G-extension

E/Q(T ), not in some exceptional list, the ratio

|Sp(E)∩S(G, x)|
|Sp(E)loc ∩S(G, x)|

(1.5)

tends to 0 as x tends to ∞?

A positive answer means that there exist ‘many’ G-extensions of Q which are not

specializations of E/Q(T ), but this cannot be detected by local considerations, implying

the failure of a local–global principle for specializations.

In § 5, we prove the following result, which provides some evidence for a positive answer

to Question 1.6 and strengthens the conclusion of Theorem 1.3 for abelian groups:

Theorem 1.7. Let G be a finite abelian group and E/Q(T ) a regular G-extension with r > 7
branch points. Then the ratio (1.5) tends to 0 as x tends to ∞, under the abc-conjecture.

See Theorem 5.2 for a more general result which applies to any finite group G with

non-trivial center and to any regular G-extension E/Q(T ) with r > 8 branch points (r > 7
is sufficient for abelian groups) and suitable geometric inertia groups.

1.6. Diophantine aspects

In § 6, we discuss diophantine aspects of our results, whose most general versions in the

sequel are actually worded in terms of Galois covers of P1.
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Given a regular Galois cover f : X → P1
Q with Galois group G and a (continuous)

epimorphism ϕ : GQ→ G, where GQ denotes the absolute Galois group of Q, there is

a notion of twisted cover f̃ ϕ : X̃ϕ → P1
Q, introduced by Dèbes in [11], which satisfies

this property: ϕ is a specialization morphism of f 3 if and only if X̃ϕ has a non-trivial

Q-rational point, i.e., a Q-rational point which does not extend any branch point of f .

See § 6.1 for more details.

Hence, the most general versions of Theorems 1.2–1.5 can be stated with this

diophantine flavor. For example, the corresponding variant of Theorem 1.2 provides,

for a regular Galois cover f : X → P1
Q of group G with r > 5 branch points, an upper

bound for the number of epimorphisms ϕ : GQ→ G of bounded discriminant such that

the twisted curve X̃ϕ has at least one non-trivial Q-rational point. See Theorem 6.4 for

a more precise statement. The special case G = Z/2Z of our result is nothing but a

well-known result of Granville [24, Corollary 1] on the number of quadratic twists of a

given hyperelliptic curve over Q of genus at least 2 with non-trivial Q-rational points,

under the abc-conjecture (see Corollary 6.5).

Similarly, the same applies to Theorem 1.7. Given a regular Galois cover f : X → P1
Q

of group G, the existence of an epimorphism ϕ : GQ→ G which occurs as a specialization

morphism of f everywhere locally but not globally means that the twisted curve X̃ϕ has

a non-trivial Qp-rational point for every prime p but only trivial Q-rational points. This

diophantine reformulation of the failure of our local–global principle for specializations

is actually strictly identical to the failure of the Hasse principle for curves, provided f
has no Q-rational branch point. In particular, the diophantine analog of Theorem 1.7

provides the following:

Theorem 1.8. Let C be a Q-curve with a finite abelian cover f to P1 such that f has at

least 7 branch points and f has no Q-rational branch point. Assume the abc-conjecture

holds. Then there exist ‘many’ Q-curves C ′, which are isomorphic to C up to base change

from Q to Q and which do not fulfill the Hasse principle.

See Corollary 6.6 for a more general result, which also applies in some non-abelian

situations, and Corollary 6.9 for a variant which in fact applies to any regular Galois

group over Q with non-trivial center, at the cost of choosing the curve C more suitably.

In the quadratic case, our results allow to retrieve a recent result of Clark and Watson

[8, Theorem 2], which asserts that ‘many’ quadratic twists of a hyperelliptic curve

C : y2
= P(t) with P(T ) ∈ Z[T ] separable, of even degree > 8, and with no root in Q

do not fulfill the Hasse principle, under the abc-conjecture (see Corollary 6.7).

2. Basics

The aim of this section is fourfold. Section 2.1 is devoted to some general notation we

shall use in the sequel. In § 2.2, we recall classical material about Galois covers of the

projective line while § 2.3 is devoted to rational points on superelliptic curves. As to

§ 2.4, we there make the content of § 2.2 explicit in the quadratic case, in relation with

the material from § 2.3.

3A refined version of ‘a G-extension F/Q occurs as a specialization of a regular G-extension E/Q(T )’.
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2.1. General notation

Denote the absolute Galois group of a field k of characteristic zero by Gk . If k′ is a

field containing k, we use the notation ⊗k k′ for the scalar extension from k to k′. For

example, if X is a k-curve, then X ⊗k k′ is the k′-curve obtained by scalar extension from

k to k′. Conjugation automorphisms in a group G are denoted by conj(ω) for ω ∈ G:

conj(ω)(x) = ωxω−1 (x ∈ G).

Let n > 2, N > 1, x > 1, and H > 1 be integers. Let G be a finite group and T an

indeterminate. We use the following notation:

(a) S(G, x): set of all G-extensions F/Q such that |dF | 6 x , where dF denotes the

absolute discriminant of the number field F .

(b) S(G, x): set of all (continuous) epimorphisms ϕ : GQ→ G such that Qker(ϕ)
/Q ∈

S(G, x), modulo the equivalence which identifies ϕ and ϕ′ if ϕ′ = conj(ω) ◦ϕ for

some ω ∈ G (the set S(G, x) refines the set S(G, x) but note that the cardinalities

are equal up to an explicit multiplicative constant depending only on G).

(c) Nn : set of all n-free integers, that is, of all integers d such that d 6∈ {0, 1} and pn

divides d for no prime number p (if n = 2, we say squarefree instead of 2-free);

recall that Nn has density 1/ζ(n), where ζ denotes the Riemann zeta function.

(d) Nn(x): subset of Nn defined by the extra condition that |d| 6 x .

(e) P(n, N ): set of all degree N polynomials P(T ) ∈ Z[T ] whose roots have multiplicity

6 n− 1.

(f) P(n, N , H): subset of P(n, N ) defined by the extra condition that the height is at

most H ; recall that the height of a0+ a1T + · · ·+ aN T N is max(|a0|, . . . , |aN |).

(g) P2(n, N ): subset of P(n, N ) which consists of all elements P(T ) with squarefree

content.

(h) P2(n, N , H) = P2(n, N )∩P(n, N , H).

Definition 2.1. Let B be a set, (Bn)n>1 an increasing sequence of finite subsets of B such

that B =
⋃

n>1 Bn , and A a subset of B. If

|A∩ Bn|

|Bn|

tends to some d ∈ [0, 1] as n tends to∞, we say that d is the density of the set A (in B).

Although this notion depends on the sequence (Bn)n>1, we do not make this dependency

explicit in the terminology as our choices in the sequel will always be natural.

2.2. Finite Galois covers of the projective line

Let k be a field of characteristic zero, T an indeterminate, � an algebraic closure of k(T ),
and k the algebraic closure of k in �.

2.2.1. Generalities. For more on the material below, we mostly refer to [16, § 2.1].

A k-cover of P1 is a finite and generically unramified morphism f : X → P1 defined

over k, with X a normal and irreducible k-curve. We make no distinction between a
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k-cover f : X → P1 and the associated function field extension E/k(T ) (with E ⊆ �):

f is the normalization of P1 in E and E is the function field k(X) of X . The k-cover

f : X → P1 is said to be regular if E is a regular extension of k (i.e., if E ∩ k = k) or,

equivalently, if X is geometrically irreducible. We also say that the k-cover f : X → P1

is Galois if E/k(T ) is. If, in addition, G denotes the Galois group of E/k(T ), we say that

f is a k-G-cover.

Fix a regular k-cover f : X → P1 and denote its function field extension by E/k(T ).
A point t0 ∈ P1(k) is a branch point of f (or of E/k(T )) if the prime ideal of k[T − t0]

generated by T − t0 ramifies in the integral closure of k[T − t0] in the compositum Êk of

Ê and k(T ) inside � (set T − t0 = 1/T if t0 = ∞), where Ê denotes the Galois closure of

E over k(T ) inside �. There are only finitely many branch points, denoted by t1, . . . , tr .

Suppose f is Galois and set G = Gal(E/k(T )). Say that E/k(T ) is a regular

G-extension.

Denote the k-fundamental group of P1
\ {t1, . . . , tr } by π1(P1

\ {t1, . . . , tr }, t)k , where

t ∈ P1(k) \ {t1, . . . , tr } is a base point. To the regular k-G-cover f : X → P1 corresponds

an epimorphism φ : π1(P1
\ {t1, . . . , tr }, t)k → G whose restriction to the k-fundamental

group π1(P1
\ {t1, . . . , tr }, t)k remains surjective.

Every t0 ∈ P1(k) \ {t1, . . . , tr } yields a section st0 : Gk → π1(P1
\ {t1, . . . , tr }, t)k to the

exact sequence

1→ π1(P1
\ {t1, . . . , tr }, t)k → π1(P1

\ {t1, . . . , tr }, t)k → Gk → 1,

which is uniquely defined up to conjugation by an element of π1(P1
\ {t1, . . . , tr }, t)k . The

homomorphism φ ◦ st0 : Gk → G is denoted by ft0 and called the specialization morphism

of f at t0. The fixed field in k of ker( ft0) is the residue field at some prime ideal p lying

over the prime ideal of k[T − t0] generated by T − t0 in the extension E/k(T ).4 We denote

it by Et0 and call the extension Et0/k the specialization of E/k(T ) at t0. The Galois group

of Et0/k is the decomposition group of E/k(T ) at a prime p as above.

Let us define the following two sets:

Sp( f ) = { ft0 : Gk → G : t0 ∈ P1(k) \ {t1, . . . , tr }},

Sp(E) = {Et0/k : t0 ∈ P1(k) \ {t1, . . . , tr }}.

As a special case of Definition 2.1, say that d ∈ [0, 1] is the density of the set Sp( f ) if

|Sp( f )∩S(G, x)|

|S(G, x)|

tends to d as x tends to ∞. We define analogously the density of the set Sp(E). Note

that the set Sp( f ) is of density 0 if and only if the set Sp(E) is.

Recall that E/k(T ) is parametric if every G-extension of k lies in the set Sp(E), and

that E/k(T ) is generic if Ek′/k′(T ) is parametric for every overfield k′ ⊇ k.

2.2.2. Ramification in specializations. We review a well-known result relating the

ramification of f to that of its specializations. Keep the notation from § 2.2.1 and take

k = Q.

4This does not depend on the choice of p as the extension E/k(T ) is Galois.
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The minimal polynomial of t = [a : b] ∈ P1(Q) is the unique (up to sign) homogeneous

polynomial P(U, V ) ∈ Z[U, V ] defined as follows. If b = 0, set P(U, V ) = V . Otherwise,

let P(U, V ) be the homogenization of the irreducible polynomial in Z[U ] with root a/b.

Given a prime number p, say that t is p-integral if p divides neither the coefficient

of the leading U -term nor of the leading V -term of P(U, V ). If t0 is in P1(Q) \ {t}, set

t0 = [a′ : b′] with a′ and b′ coprime integers. Define Ip(t0, t) as the p-adic valuation of

P(a′, b′) (if t is p-integral).

The theorem below is an immediate consequence of a fundamental result of

Beckmann [1, Proposition 4.2] (see also [33, § 2.2]):

Theorem 2.2. For every prime number p, not in some finite set Sexc depending only on

f , and every t0 ∈ P1(Q) \ {t1, . . . , tr }, the following two conclusions hold.

(a) If p ramifies in the specialization Et0/Q, then Ip(t0, ti ) > 0 for some (necessarily

unique up to Q-conjugation) i ∈ {1, . . . , r}.

(b) If Ip(t0, ti ) > 0, then the inertia group of Et0/Q at p is conjugate in G to 〈τ
Ip(t0,ti )
i 〉,

with τi a generator of an inertia subgroup of EQ/Q(T ) at the prime ideal generated

by T − ti .

2.3. Superelliptic curves

Let n and N be integers with n > 2 and N > 1. Set N = qn+ r , with q > 0 and 0 6 r 6
n− 1. Let P(T ) = a0+ a1T + · · ·+ aN−1T N−1

+ aN T N be in P(n, N ).

2.3.1. The case where n divides N . First, assume r = 0. Consider this equivalence

relation on Q3
\ {(0, 0, 0)}: (y1, t1, z1) ∼ (y2, t2, z2) iff (y2, t2, z2) = (λ

N/n y1, λt1, λz1) for

some λ ∈ Q \ {0}. The quotient space (Q3
\ {(0, 0, 0)})/ ∼ is a weighted projective space,

denoted by PN/n,1,1(Q). Given (y, t, z) ∈ Q3
\ {(0, 0, 0)}, the corresponding point in

PN/n,1,1(Q) is denoted by [y : t : z]. Set

P(T, Z) = a0 Z N
+ a1 Z N−1T + · · ·+ aN−1 Z T N−1

+ aN T N .

The equation Y n
= P(T, Z) in PN/n,1,1(Q) is the superelliptic5 curve associated with P(T );

we denote it by CP(T ). The set of all Q-rational points on CP(T ), i.e., the set of all

elements [y : t : z] ∈ PN/n,1,1(Q) such that (y, t, z) ∈ Q3
\ {(0, 0, 0)} and yn

= P(t, z), is

denoted by CP(T )(Q). A point [y : t : z] ∈ CP(T )(Q) is trivial if y = 0, and non-trivial

otherwise. Equivalently, [y : t : z] ∈ CP(T )(Q) is trivial if z 6= 0 and P(t/z) = 0.

2.3.2. The case where n does not divide N . Now, we consider the case r > 1,

which is in fact similar to the previous one. However, to avoid confusion, we state it in

details.

Consider this equivalence relation on Q3
\ {(0, 0, 0)}: (y1, t1, z1) ∼ (y2, t2, z2) if and

only if (y2, t2, z2) = (λ
(N+n−r)/n y1, λt1, λz1) for some λ ∈ Q \ {0}. The quotient space

(Q3
\ {(0, 0, 0)})/ ∼ is a weighted projective space, denoted by P(N+n−r)/n,1,1(Q). Given

5Here and in § 2.3.2, say hyperelliptic if n = 2.
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(y, t, z) ∈ Q3
\ {(0, 0, 0)}, the corresponding point in P(N+n−r)/n,1,1(Q) is denoted by

[y : t : z]. Set

P(T, Z) = a0 Z (q+1)n
+ a1 Z (q+1)n−1T + · · ·+ aN−1 Zn−r+1T N−1

+ aN Zn−r T N .

The equation Y n
= P(T, Z) in P(N+n−r)/n,1,1(Q) is the superelliptic curve associated with

P(T ); we denote it by CP(T ). The set of all Q-rational points on CP(T ), i.e., the set of all

points [y : t : z] ∈ P(N+n−r)/n,1,1(Q) such that (y, t, z) ∈ Q3
\ {(0, 0, 0)} and yn

= P(t, z),
is denoted by CP(T )(Q). A point [y : t : z] ∈ CP(T )(Q) is trivial if y = 0, and non-trivial

otherwise. Equivalently, [y : t : z] ∈ CP(T )(Q) is trivial if either z = 0 (this point, which

is [0 : 1 : 0], is the point at ∞) or z 6= 0 and t/z is a root of P(T ).

2.3.3. Extra notation. We use the following notation:

(a) Nn(P(T )): subset of Nn defined by the extra condition that the ‘twisted’

superelliptic curve Cd·P(T ) : yn
= d · P(t) has a non-trivial Q-rational point;

(b) Nn(P(T ), x) = Nn(P(T ))∩Nn(x) (x > 1).

2.4. On the quadratic case

The following elementary proposition, which gives an explicit description of the set of

branch points and characterizes specializations of a given regular Z/2Z-extension of Q(T ),
will be needed in the sequel. See, e.g., [26, § 8] for a proof.

Proposition 2.3. Let N > 1 be an integer and P(T ) ∈ P(2, N ). Denote the roots of P(T )
by t1, . . . , tN and the field Q(T )(

√
P(T )) by E.

(a) The set of branch points of E/Q(T ) is either the set {t1, . . . , tN } (if N is even) or

the set {t1, . . . , tN } ∪ {∞} (if N is odd).

(b) Let d be in N2. Then the Z/2Z-extension Q(
√

d)/Q is in Sp(E) if and only if the

twisted hyperelliptic curve Cd·P(T ) : y2
= d · P(t) has a non-trivial Q-rational point.

Given an indeterminate T , there is a natural bijection f between the set of all regular

Z/2Z-extensions of Q(T ) and the set of all separable polynomials P(T ) ∈ Z[T ] with

squarefree content. Then define the height of a given regular Z/2Z-extension E/Q(T ) as

the height of the associated polynomial PE (T ). Moreover, by Proposition 2.3(a), if r is a

positive even integer, then E/Q(T ) has r branch points if and only if PE (T ) has degree

r or r − 1.

Given positive integers r and H with r even, we use the following notation:

(a) E(r): set of all regular Z/2Z-extensions of Q(T ) with r branch points;

(b) E(r, H): subset of E(r) defined by the extra condition that the height is at most H .

Proposition 2.4. Given an even positive integer r , there exists a constant α(r) > 0 such

that

|E(r, H)| ∼ |P2(2, r, H)| ∼ α(r) · H r+1, H →∞, (2.1)

|E(r, H)| − |P2(2, r, H)|
|E(r, H)|

= O
(

1
H

)
, H →∞. (2.2)
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Proof. Given H > 1, Proposition 2.3(a) shows that

|E(r, H)| = |P2(2, r, H)| + |P2(2, r − 1, H)| (2.3)

By [34, Lemma 5.8], one has

|P2(2, r, H)| ∼ α(r) · H r+1, H →∞, (2.4)

for some positive constant α(r) and, clearly, one has

|P2(2, r − 1, H)| = O(H r ), H →∞. (2.5)

It then remains to combine (2.3), (2.4), and (2.5) to get (2.1) and (2.1), as needed.

3. Conditional results

This section is devoted to our conditional results which assert that the specialization set

of a regular Q-G-cover of P1 with sufficiently many branch points has density zero.

We need some notation, in addition to that from § 2. Let G be a non-trivial finite group

and f : X → P1 a regular Q-G-cover. We denote the associated regular G-extension by

E/Q(T ). Let S = {t1, . . . , tr } ⊆ P1(Q) be a non-empty subset of the set of all branch

points of f , closed under the action of GQ. Denote the ramification index of ti by ei ,

i = 1, . . . , r , and set e0 = min{e1, . . . , er }. Let q0 be the smallest prime dividing one of

the ei ’s and p the smallest prime divisor of |G|.

3.1. A conditional upper bound

This more precise version of Theorem 1.2 gives an upper bound for |Sp( f )∩S(G, x)|,
provided r is large enough and the abc-conjecture holds:

Theorem 3.1. Assume the abc-conjecture holds and

r > 2+
2

q0− 1
. (3.1)

Then, for every ε > 0 and every sufficiently large integer x, one has

|Sp( f )∩S(G, x)| 6 xe+ε,

where

e = 2 · |G|−1
·

(
1−

1
e0

)−1

·

(
r − 2−

2
q0− 1

)−1

. (3.2)

Remark 3.2. (a) The set S, which is implicit in Theorem 3.1 as well as in the next result

can most conveniently be chosen to be the set of all branch points of f . However, in

some situations, proper subsets yield stronger conclusions, notably if there are many

branch points with large ramification index. From the proof of Theorem 3.1 (see § 3.4),

considering several subsets at the same time (with the corresponding notation for each

subset) can sometimes yield even stronger results. We refrain from explicitly stating such

a version of Theorem 3.1, to avoid unnecessarily complicated notation.

(b) Condition (3.1) holds if and only if one of these conditions is satisfied:
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(1) r > 5;

(2) r > 4 and q0 > 3;

(3) r > 3 and q0 > 5.

3.2. Explicit examples

We now explain how deriving several explicit results with the conclusion that the set

Sp( f ) has density zero.

First, we combine the lower bound given by the Malle conjecture and the upper bound

from Theorem 3.1 to obtain the following more precise version of Theorem 1.3:

Corollary 3.3. Assume the lower bound (1.2) is fulfilled for the group G, the

abc-conjecture holds, and the following condition is satisfied:

r > 2
(

q0

q0− 1
+
(p− 1)e0

p(e0− 1)

)
, (3.3)

Then one has e < α(G), where e and α(G) are defined in (3.2) and (1.3), respectively,

and, for every ε > 0 and every sufficiently large x, one has

|Sp( f )∩S(G, x)|

|S(G, x)|
= O(xe−α(G)+ε). (3.4)

In particular, the set Sp( f ) has density 0.

Proof. First, note that (3.3) ⇒ (3.1) as

2
(

q0

q0− 1
+
(p− 1)e0

p(e0− 1)

)
>

2q0

q0− 1
= 2+

2
q0− 1

.

Then, by Theorem 3.1 and since (1.2) has been assumed to hold, (3.4) holds. To complete

the proof, it suffices to check e < α(G). Clearly, this holds if and only if (3.3) is satisfied.

Remark 3.4. Making use of the inequalities 2 6 p 6 q0 6 e0, one sees that (3.3) holds as

soon as one of the following conditions is satisfied:

(a) r > 7;

(b) r = 6 and e0 > 3;

(c) r = 5, q0 > 3, and (e0, q0, p) 6= (3, 3, 3);

(d) r = 4 and q0 > 2p.

Conversely, since the right-hand side of (3.3) is bounded from below by 3, Corollary 3.3

in its present form cannot yield conclusions about covers with 3 branch points.

Moreover, by the Riemann–Hurwitz formula, the cover f has at least 7 branch points,

provided X is of genus at least 2|G| − 1. Consequently, we have this conditional statement:

The specialization set of a given regular Q-G-cover of P1 of genus at least 2|G| − 1 is of

density 0, under the abc-conjecture and the lower bound (1.2).
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In Corollary 3.5, we give several explicit situations where the conclusion of Corollary 3.3

holds, independently of the ramification data of f :

Corollary 3.5. Suppose the abc-conjecture holds and one of these conditions is satisfied:

(a) G has rank at least 6 and (1.2) holds for the group G;

(b) G has a cyclic quotient of order 6∈ {1, 2, 3, 4, 5, 6, 8, 10, 12} and G fulfills (1.2);

(c) G is nilpotent of order divisible by a prime number > 7.

Then the density of Sp( f ) is 0.

Proof. First, assume G has rank > 6 and (1.2) holds. Then, by the first condition and

the Riemann existence theorem, f has at least 7 branch points. Applying Corollary 3.3

and Remark 3.4 (with S the set of all branch points of f ) provides the desired conclusion.

Now, assume G has a cyclic quotient of order 6∈ {1, 2, 3, 4, 5, 6, 8, 10, 12} and G fulfills

(1.2). We shall make use of the following easy claim:

Let n be a positive integer 6∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}. Then every regular Q-Z/nZ-cover

of P1 has either at least 8 branch points or at least 6 branch points of ramification index

> 3.

Under the claim, we may apply Corollary 3.3 and Remark 3.4 to get the desired

conclusion.

We now prove the claim. If p0 is a prime number and m > 1, recall that, as a classical

consequence of the Branch Cycle lemma (see [19] and [41, Lemma 2.8]), every regular

Q-Z/pm
0 Z-cover of P1 has at least pm

0 − pm−1
0 branch points of ramification index pm

0 .6

Consequently, the claim already holds if n is divisible by 16, 9, 25 or a prime number

p0 > 7. For the case n = 15, let g be a regular Q-Z/15Z-cover of P1. Then either g has

no branch point of ramification index 15, in which case g has at least 6 branch points

of ramification index > 3 (at least 2 coming from the subcover of degree 3 and at least

4 from that of degree 5), or g has at least one branch point of ramification index 15, in

which case g has in fact at least 8 such branch points by the Branch Cycle Lemma. In

particular, the claim holds if n is divisible by 15. As to the remaining cases n = 20, 24, 40,

one treats them as the case n = 15.

Finally, (c) is a special case of (b). Indeed, if G is nilpotent of order divisible by a prime

q, then G has a (cyclic) quotient group of order q, and G fulfills (1.2) by [30].

Remark 3.6. (a) More explicit examples derived from (b) could be given in (c). For

example, the density zero conclusion also holds if G is nilpotent of order divisible by

15. We refrain from considering more applications of this kind, to avoid complicated

case distinctions.

(b) By Corollary 3.5(c), if q > 7 is a prime number, then no regular Z/qZ-extension of

Q(T ) is parametric, under the abc-conjecture. The interest of this remark is that

none of the methods from [26] and [27, § 7] applies to finite groups of prime order.

6Indeed, at least one such branch point must exist since the inertia groups at branch points generate

Z/pm
0 Z. By the Branch Cycle Lemma, we obtain at least ϕ(pm

0 ) = pm
0 − pm−1

0 such branch points, where
ϕ denotes the Euler totient function. See, e.g., [12, Proposition 3.1.19] for more details.
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More generally, by the above, no regular G-extension of Q(T ) with r > 7 branch

points is parametric, under the abc-conjecture and, possibly, the lower bound (1.2). In

Appendix A, we discuss the situation where r is 2 or 3. The case r ∈ {4, 5, 6} remains

open in general.

3.3. Variants

We provide below two variants of Corollary 3.3.

The first one asserts that one can remove the assumption that the lower bound (1.2)

holds, at the cost of making (3.3) less explicit:

Theorem 3.7. There exists a positive constant r0(G) such that if r > r0(G) and if the

abc-conjecture holds, then the set Sp( f ) has density 0.

Proof. Without loss, we may assume G is a regular Galois group over Q.7 Then, by

[13, Theorem 1.1], there exists a positive constant β(G) such that the following holds for

every sufficiently large x (up to an explicit multiplicative constant depending on G):

xβ(G) 6 |S(G, x)|.

Hence, by Theorem 3.1 and Remark 3.2(b), if r > 5, it suffices to check e < β(G) (with

e as in (3.2)), which can be guaranteed if r is sufficiently large (depending on G).

Remark 3.8. In fact, [13, Theorem 1.1 and § 4.1] provides the following:

Let f1 : X1 → P1 be a regular Q-G-cover with r1 branch points. Then, for all sufficiently

large x, one has xa(G)/r1 6 |Sp( f1)∩S(G, x)|, where a(G) may be chosen as (|G| − 1) ·
|G|−1

· (3|G|4 log(|G|))−1.

Combination with our Theorem 3.1 then gives

xa(G)/r 6 |Sp( f )∩S(G, x)| 6 xb(G)/r ,

where b(G) > a(G) is an explicit positive constant depending only on G, under the

abc-conjecture. In particular, if f2 : X2 → P1 is another regular Q-G-cover with r2 >

(b(G)/a(G)) · r1 branch points, then this inequality holds for every sufficiently large x ,

under the abc-conjecture:

|Sp( f2)∩S(G, x)| < |Sp( f1)∩S(G, x)|.

As a consequence, the constant r0(G) in Theorem 3.7 can be made explicit. Namely, if G
is not a regular Galois group over Q, one can arbitrarily take r0(G) = 1. Otherwise, take

any r0(G) > (b(G)/a(G)) · r1(G), where r1(G) is the smallest number of branch points of

a regular Q-G-cover of P1.

For our second variant, we need to recall beforehand the statements of the uniformity

conjecture and the upper bound from the Malle conjecture.

7The definition of a regular Galois group over Q is recalled in § 1.2.
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The uniformity conjecture. Let g > 2 be an integer. Then there exists a positive integer

B, depending only on g, such that the set of all Q-rational points on any given smooth

curve defined over Q with genus g has cardinality at most B.

The Malle conjecture (upper bound). For every ε > 0, one has

|S(G, x)| 6 c2(G, ε) · xα(G)+ε (3.5)

for some constant c2(G, ε) > 0 and every sufficiently large x, where α(G) is defined in

(1.3).

Theorem 3.9. Suppose the uniformity conjecture holds and G has a normal subgroup H
such that the following three conditions are satisfied:

(a) for every regular Q-G/H -cover X → P1, the genus of X is at least 2;

(b) p does not divide the order of G/H ;

(c) (1.2) and (3.5) hold for the groups G and G/H , respectively.

Then the set Sp( f ) has density 0.

Remark 3.10. (a) By [7, Theorem 1.1], the uniformity conjecture holds under the Lang

conjecture, which asserts that the set of all Q-rational points on any variety of

general type defined over Q is not Zariski dense.

(b) By [26, Proposition 7.3], Condition (a) of Theorem 3.9 holds if G/H is neither

solvable of even order nor of order 3.

Proof. As noted in § 2.2.1, it suffices to show that the set Sp(E) has density zero.

Let E1/Q(T ), . . . , Es/Q(T ) be the subextensions of E/Q(T ) of group G/H . For i ∈
{1, . . . , s}, let gi be the genus of X i , where X i → P1 is the regular Q-G/H -cover associated

with Ei/Q(T ). Also, let q be the smallest prime divisor of the order of G/H . One then

has

α(G/H) =
|G|−1

|H |−1

(
1−

1
q

)−1

.

Let F/Q be a G-extension in Sp(E) and t0 ∈ P1(Q) such that F = Et0 . By [26,

Lemma 3.2], (E1)t0/Q, . . . , (Es)t0/Q are the distinct subextensions of Et0/Q with Galois

group G/H . Hence, there exists i ∈ {1, . . . , s} such that F H/Q is the specialization

of Ei/Q(T ) at t0. Let g0 = max(g1, . . . , gs). By (a) and as the uniformity conjecture

holds, one may apply [26, Proposition 2.5] to get that there exists a positive constant

B = B(|G/H |, g0) such that, for each i ∈ {1, . . . , s}, there exist at most B points t0 ∈ P1(k)
with F H/Q = (Ei )t0/Q. Moreover, if dF and dF H denote the absolute discriminants of

the number fields F and F H , respectively, then one has |dF H | 6 |dF |
1/|H |. Conclude that

this inequality holds for every positive integer x :

|Sp(E)∩S(G, x)| 6 Bs · |S(G/H, x1/|H |)|. (3.6)

By (b), one has p < q, that is, (1/|H |) ·α(G/H) < α(G). Let ε > 0 be such that

α(G/H)+ ε < α(G) · |H |. (3.7)
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Combining (3.6) and the assumption that (3.5) holds for the group G/H then provides

|Sp(E)∩S(G, x)| 6 Bs · c2(G/H, ε) · x (α(G/H)+ε)/|H | (3.8)

for some positive constant c2(G/H, ε) and every x > x(G/H, ε). On the other hand, since

(1.2) has been assumed to hold for the group G, one has

|S(G, x)| > c1(G) · xα(G) (3.9)

for some positive constant c1(G) and every x > x(G, ε). Combine (3.8) and (3.9) to get

|Sp(E)∩S(G, x)|
|S(G, x)|

= O(x (α(G/H)+ε)/|H |−α(G)), x →∞. (3.10)

It then remains to combine (3.7) and (3.10) to conclude that the set Sp(E) has

density 0.

Corollary 3.11. Suppose the uniformity conjecture holds, the group G is nilpotent, and

one of the following two conditions is satisfied:

(a) G is of even order but |G| 6∈ {2a3b
: a > 1, b ∈ {0, 1}};

(b) G is of odd order and |G| has at least two distinct prime factors.

Then the set Sp( f ) has density 0.

For example, Corollary 3.11 applies to the groups Z/10Z and Z/3Z×Z/6Z. Note that

these groups have covers with four branch points and our results under the abc-conjecture

cannot (a priori) apply to them.

Proof. As the group G is nilpotent, [30] may be used to show that the entire Malle

conjecture holds for every quotient of G. By Theorem 3.9, it then suffices to find a

quotient of G for which Conditions (a) and (b) of that theorem hold.

Set G = P1× · · ·× Ps where s > 1 and Pi is a non-trivial pi -group for each i ∈
{1, . . . , s}. We assume p1 6 · · · 6 ps and |Pi | 6 |Pj | if pi = p j (i, j ∈ {1, . . . , s}). If (a)

holds, then ps > 5 or (ps = 3 and |Ps | > 9) or (ps = 3 and Ps × Ps−1 ∼= Z/3Z×Z/3Z).

Then either G/(P1× · · ·× Ps−1) (in the first two cases) or G/(P1× · · ·× Ps−2) (in the

third case) has odd order and it is not Z/3Z. In particular, Conditions (a) and (b) of

Theorem 3.9 are fulfilled (see Remark 3.10(b)). If (b) holds, then p1 < ps and ps > 5,

and one concludes as in (a).

3.4. Proof of Theorem 3.1

The proof relies on this consequence of the abc-conjecture, due to Elkies, Langevin, and

Granville (see, e.g., [23, Theorem 5]):

Theorem 3.12. Let P(U, V ) ∈ Z[U, V ] be a homogeneous polynomial of degree d without

any repeated factors. Assume the abc-conjecture holds. Then, for every ε > 0 and every

couple (u, v) of coprime integers, one has

rad(P(u, v)) > c1 ·max{|u|, |v|}d−2−ε,

where c1 is a positive constant depending only on P and ε.

We break the proof of Theorem 3.1 into three parts.
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3.4.1. Controlling the ramification of specializations of f . The first part

requires associating a homogeneous polynomial controlling the ramification behavior in

specializations of f , which is done via Theorem 2.2.

For each i ∈ {1, . . . , r}, let Pi (U, V ) ∈ Z[U, V ] be the minimal polynomial of the branch

point ti . Set

P(U, V ) =
∏
i∈I

Pi (U, V ),

where the ti ’s, i ∈ I , build a set of representatives of t1, . . . , tr modulo the action of GQ.

Moreover, set ai = |G|(1− 1/ei ), where ei is as before the ramification index of ti , for

each i ∈ I (so ai is the index of an inertia group generator at ti , viewed as a permutation

in the regular permutation action of G).8 For t0 ∈ Q, set t0 = u/v, with u and v coprime

integers, and denote the absolute discriminant of Et0 by dt0 .

Let ` be a prime number, not contained in the finite exceptional set Sexc from

Theorem 2.2. By that theorem, ` is (tamely) ramified in Et0/Q with ramification index

ei if ` divides Pi (u, v) with positive multiplicity at most qi − 1, where qi is the smallest

prime divisor of ei . In that case, the exponent of ` in dt0 equals ai . Therefore, we get the

following lower bound:

|dt0 | >
∏
i∈I

∏
`

`|G|(1−1/ei ),

where, given i ∈ I , the second product is over all prime numbers ` which are not in Sexc
and which divide Pi (u, v) with positive multiplicity at most qi − 1. As the finitely many

elements of the set Sexc, as well as the numbers qi , i ∈ I , are fixed and depend only on

f , we have

|dt0 | > c0 ·
∏
i∈I

∏
`

`|G|(1−1/ei ), (3.11)

for some positive constant c0 depending only on f , and where, given i ∈ I , the second

product is over all prime numbers ` which divide Pi (u, v) with positive multiplicity at

most qi − 1. Combining (3.11) and the definitions of e0 and q0 (see the beginning of § 3)

yields the following lower bound:

|dt0 | > c0 ·
∏
`

`|G|(1−1/e0), (3.12)

where the product is over all primes dividing P(u, v) with positive multiplicity at most

q0− 1.

3.4.2. Applying Theorem 3.12. The second part consists in estimating the product

of all prime numbers dividing a given value of P(U, V ) with positive multiplicity at most

q0− 1.

Let u, v be coprime integers and set n = max{|u|, |v|}. Given ε > 0, since the

abc-conjecture has been assumed to hold, we may apply Theorem 3.12 to get this lower

bound:

rad(P(u, v)) > c1 · ndeg(P)−2−ε
= c1 · nr−2−ε, (3.13)

8Recall that the index of a permutation σ ∈ Sd is defined as d minus the number of orbits of 〈σ 〉.
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where c1 depends only on P(U, V ) and ε. For m > 1, let Bm be the product of all prime

numbers dividing P(u, v) exactly m times. Setting t0 = u/v, (3.12) can be rewritten as

|dt0 | > c0 ·

( q0−1∏
m=1

Bm

)|G|(1−1/e0)

. (3.14)

Now, let B>q0 be the product of all Bm ’s with m > q0. Since rad(P(u, v)) is the product

of all Bm ’s with m > 1, one has

rad(P(u, v)) 6
|P(u, v)|
∞∏

m=q0

Bm−1
m

6
|P(u, v)|

Bq0−1
>q0

. (3.15)

As |P(u, v)| 6 c2 · nr , with c2 = c2(P), the combination of (3.13) and (3.15) then yields

c2 · nr

Bq0−1
>q0

> c1 · nr−2−ε,

that is,

B>q0 6 c3 · n(2+ε)/(q0−1) (3.16)

for some positive constant c3 depending only on f and ε. Combining (3.13), (3.14), and

(3.16) then provides the following bound (up to replacing ε by ε|G|−1(1− 1/e0)
−1(q0−

1)/q0):

|dt0 | > c0 ·

(
rad(P(u, v))

B>q0

)|G|(1−1/e0)

> c4 · n|G|(1−1/e0)(r−2−2/(q0−1))−ε, (3.17)

where c4 is some positive constant depending only on f and ε.

3.4.3. Conclusion. Finally, we use the estimate (3.17) to bound |Sp( f )∩S(G, x)|
from above.

Let δ be any real number such that

δ >
r

r − 2− 2/(q0− 1)
.

By (3.1), δ is well defined and positive. Let ε be a positive real number. By (3.17), for

every couple (u, v) of coprime integers, one has

|du/v| > c4 ·max{|u|, |v|}r ·|G|(1−1/e0)·δ
−1
−ε . (3.18)

Let n be a sufficiently large integer (depending on ε). The lower bound (3.18) then allows

to conclude that all specializations Et0/Q of E/Q(T ) with t0 ∈ Q and such that

|dt0 | 6 nr ·|G|(1−1/e0)·δ
−1

must come from values t0 = u/v with max{|u|, |v|} 6 n. Setting x = nr ·|G|(1−1/e0)·δ
−1

, we

find that all specializations Et0/Q of E/Q(T ) with t0 ∈ Q and such that |dt0 | 6 x must

come from values t0 = u/v with

max{|u|, |v|} 6 xδ·(r |G|(1−1/e0))
−1
.
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In particular, choosing

δ =
r

r − 2− 2/(q0− 1)
+
ε

2
· r · |G| ·

(
1−

1
e0

)
and using the definition of our exponent e given in (3.2), we obtain

max{|u|, |v|} 6 x (e+ε)/2.

As there are at most 4 · xe+ε such pairs of integers (u, v), this concludes the proof.

4. Unconditional results

The aim of this section is to show unconditionally that the set of specializations of almost

all regular Q-G-covers of P1, where G = Z/2Z or S3, has density zero.

4.1. The quadratic case

We start with the case G = Z/2Z and, for simplicity, use the function field extension

language, which is strictly identical to the cover point of view.

4.1.1. Main result. The following statement is a more precise version of Theorem 1.4

from the introduction. Note that the unconditional upper bound in (b) is expectedly

weaker than the one provided by Theorem 3.1 under the abc-conjecture. Recall that the

sets E(r) and E(r, H), which occur in the statement below, are defined in § 2.4.

Theorem 4.1. Let r be an even positive integer. Then there exists a subset S of E(r) which

satisfies the following two conclusions.

(a) One has
|S ∩ E(r, H)|
|E(r, H)|

= 1− O
(

log(H)
√

H

)
, H →∞.

In particular, the set S has density 1.

(b) For every extension E/Q(T ) in S, there exists a positive constant α < 1 such that

|Sp(E)∩S(Z/2Z, x)| = O(x · log−α(x)), x →∞.

In particular, the set of specializations of every extension of Q(T ) in S has density

0.

4.1.2. Proof of Theorem 4.1. Our main tool is the case n = 2 of the following

diophantine result, which has its own interest and which shows that almost all twists

of almost all superelliptic curves over Q have only trivial Q-rational points, under a

suitable assumption on the degree. Recall that the sets P(n, N ) and P(n, N , H), and the

sets Nn(P(T )) and Nn(P(T ), x), which occur in the statement below, are defined in § 2.1

and § 2.3.3, respectively.

Theorem 4.2. Given two positive integers n and N such that 2 6 n and n divides N , there

exists a subset S′ of P(n, N ) such that the following two conclusions are satisfied.
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(a) One has
|S′ ∩P(n, N , H)|
|P(n, N , H)|

= 1− O
(

log(H)
√

H

)
, H →∞. (4.1)

In particular, the set S′ has density 1.

(b) For each P(T ) ∈ S′, there exists a positive constant α < 1 such that

|Nn(P(T ), x)| = O(x · log−α(x)), x →∞. (4.2)

In particular, for each P(T ) ∈ S′, the density of the subset Nn(P(T )) of Nn is 0.

Proof of Theorem 4.1 under Theorem 4.2. Let S′ be a subset of P(2, r) as in

Theorem 4.2 and S′ = P(2, r) \ S′. Let S be the subset of E(r) consisting of all regular

Z/2Z-extensions of Q(T ) with r branch points and whose associated polynomial lies in

the set S′ ∩P2(2, r).9

First, we prove (a). For every positive integer H , one has

1−
|S ∩ E(r, H)|
|E(r, H)|

= 1−
|S′ ∩P2(2, r, H)|
|E(r, H)|

= 1−
|P2(2, r, H)|
|E(r, H)|

+
|S′ ∩P2(2, r, H)|
|E(r, H)|

6 1−
|P2(2, r, H)|
|E(r, H)|

+
|S′ ∩P(2, r, H)|
|E(r, H)|

= 1−
|P2(2, r, H)|
|E(r, H)|

+
|P(2, r, H)|
|E(r, H)|

−
|S′ ∩P(2, r, H)|
|E(r, H)|

= 1−
|P2(2, r, H)|
|E(r, H)|

+
|P(2, r, H)| − |S′ ∩P(2, r, H)|

|P(2, r, H)|
·
|P(2, r, H)|
|E(r, H)|

.

By Theorem 4.2(a), one has

|P(2, r, H)| − |S′ ∩P(2, r, H)|
|P(2, r, H)|

= O
(

log(H)
√

H

)
, H →∞.

Moreover, by Proposition 2.4 and as |P(2, r, H)| ∼ 2r+1
· H r+1 as H tends to∞, one has

1−
|P2(2, r, H)|
|E(r, H)|

= O
(

1
H

)
and

|P(2, r, H)|
|E(r, H)|

= O(1)

as H tends to ∞. Hence, one has

1−
|S ∩ E(r, H)|
|E(r, H)|

= O
(

1
H

)
+ O

(
log(H)
√

H

)
· O(1) = O

(
log(H)
√

H

)
, H →∞.

Now, we prove (b). Given E/Q(T ) ∈ S, there is a unique polynomial PE (T ) in S′ with

E = Q(T )(
√

PE (T )).

9The set P2(2, r) is defined in § 2.1.

https://doi.org/10.1017/S1474748019000537 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000537


1476 J. König and F. Legrand

By Theorem 4.2(b), there is a constant α ∈ ]0, 1[ with

|N2(PE (T ), x)| = O(x · log−α(x))

as x tends to ∞. By applying Proposition 2.3(b), we get that |N2(PE (T ), x)| is the

cardinality of the subset of N2(x) (see § 2.1) defined by the extra condition that Q(
√

d)/Q
is in Sp(E). As the absolute discriminant of the number field Q(

√
d) is d or 4d (d ∈ N2),

we get

|Sp(E)∩S(Z/2Z, x)| 6 |N2(PE (T ), x)| = O(x · log−α(x))

as x tends to ∞. It then remains to use that

|S(Z/2Z, x)| > |N2(x/4)| ∼
x

4 · ζ(2)

as x tends to ∞ to get the desired density zero conclusion.

Comments on proof of Theorem 4.2. The proof is similar to the arguments given in

[34, § 3.2 and § 4.2], which yield Theorem 4.2 with the weaker conclusion that almost

all superelliptic curves over Q have at least one twist with only trivial Q-rational points.

For the convenience of the reader, we offer in Appendix B.1 a full proof of Theorem 4.2

with the necessary adjustments to get the desired stronger conclusion.

In Appendix B.2, we give two variants of Theorem 4.2 where we relax the assumption

that n divides N , at the cost of making the conclusion in (b) weaker.

4.2. Symmetric groups

The aim of this subsection is to give evidence that, given n > 2, almost all regular

Q-Sn-covers of P1 have a specialization set of density 0, thus generalizing the conclusion

of Theorem 4.1. We count those covers via degree n polynomials with Galois group Sn
over Q(T ). For n = 3, we obtain an unconditional result, given in Theorem 4.7.

4.2.1. Preliminaries. First, we explain our way of counting covers via polynomials.

Given n > 2, if E/Q(T ) denotes the function field extension associated with a regular

Q-Sn-cover of P1, then E is the splitting field over Q(T ) of a degree n polynomial

Y n
+ an−1(T )Y n−1

+ · · ·+ a1(T )Y + a0(T ),

with a0(T ), . . . , an−1(T ) ∈ Z[T ]. A natural way of counting covers is then to count the

corresponding polynomials up to a bounded T -degree and bounded height.

Given n > 2 and D > 1, we therefore consider the set Q(n, D) of all polynomials

P(T, Y ) ∈ Z[T ][Y ] which are monic and of degree n in Y , and which are also of degree at

most D in T . Given i ∈ {0, . . . , n− 1} and j ∈ {0, . . . , D}, let ai, j ∈ Z denote the coefficient

at T j of ai (T ). We then count covers by fixing an integer H > 1 and considering the set

Q(n, D, H) = {P(T, Y ) ∈ Q(n, D) : |ai, j | 6 H for all i, j}.

4.2.2. Main result. Our eventual goal is to prove Theorem 4.7, which is a statement

about Galois covers with group S3. Since most of the ingredients in the proof are not

specific to the case n = 3, we try to retain generality as long as possible.
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Lemma 4.3. Given n > 2 and D > 1, let Un−1,D, . . . ,Un−1,0, . . . ,U1,D, . . . ,U1,0,

U0,D, . . . ,U0,0 be algebraically independent indeterminates, and denote by U the vector

consisting of these variables. Let 1(T ) ∈ Q[U ][T ] be the discriminant (with respect to Y )

of the polynomial

F(U , T, Y ) = Y n
+

( D∑
j=0

Un−1, j T j
)

Y n−1
+ · · ·+

( D∑
j=0

U1, j T j
)

Y +
D∑

j=0

U0, j T j .

Then 1(T ) is irreducible over Q(U ).

Proof. It is well known that the discriminant of the polynomial

Y n
+Un−1,0Y n−1

+ · · ·+U1,0Y +U0,0

is irreducible as an element of Q[U0,0,U1,0, . . . ,Un−1,0] (see, e.g., [21, page 15]). The

polynomial F(U , T, Y ) arises from this polynomial after applying the map sending Ui,0
to

Ui,0+ (Ui,1T +Ui,2T 2
+ · · ·+Ui,DT D)

for each i ∈ {0, . . . , n− 1} and fixing all other indeterminates. Since this corresponds to

an automorphism of the ring Q[U , T, Y ], the discriminant 1(T ) must still be irreducible

as an element of Q[U , T ], and hence also inside Q(U )[T ] by Gauss’ lemma.

Lemma 4.4. Given n > 2 and D > 1, consider the set S consisting of all polynomials

P(T, Y ) = Y n
+ an−1(T )Y n−1

+ · · ·+ a1(T )Y + a0(T )

in Q(n, D) fulfilling the following three conditions:

(a) P(T, Y ) has Galois group Sn over Q(T );
(b) the discriminant 1(T ) ∈ Z[T ] of P(T, Y ) is irreducible;

(c) the polynomial

an−1,DY n−1
+ an−2,DY n−2

+ · · ·+ a0,D

has degree n− 1 and is irreducible over Q, where ai,D denotes the coefficient of

ai (T ) at T D for each i ∈ {0, . . . , n− 1}.

Then one has
|S ∩Q(n, D, H)|
|Q(n, D, H)|

= 1− O
(

log(H)
√

H

)
, H →∞.

In particular, the set S has density 1.

Proof. We estimate the size of the complement Q(n, D) \ S. Let S(1) (respectively, S(2),
S(3)) be the subset of Q(n, D) which consists of all polynomials P(T, Y ) which do not

fulfill (a) (respectively, (b), (c)). It is enough to show that

|S( j) ∩Q(n, D, H)|
|Q(n, D, H)|

= O
(

log(H)
√

H

)
, H →∞, (4.3)

for each j ∈ {1, 2, 3}. This is mainly obtained by making use of a sufficiently precise

version of Hilbert’s irreducibility theorem (namely, [9, Theorem 2.1]).
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Given algebraically independent indeterminates T0, . . . , Tn−1, the polynomial

Y n
+ Tn−1Y n−1

+ · · ·+ T1Y + T0

has Galois group Sn over Q(T0, T1, . . . , Tn−1). Apply [9, Theorem 2.1] to get that the

number of tuples (t0, t1, . . . , tn−1) of integers of absolute value at most H such that

Y n
+ tn−1Y n−1

+ · · ·+ t1Y + t0

does not have Galois group Sn over Q is O(Hn−1/2
· log(H)) as H tends to ∞. Combine

this and the fact that if P(T, Y ) is such that P(0, Y ) has Galois group Sn over Q, then

P(T, Y ) has Galois group Sn over Q(T ) to get that (4.3) holds for j = 1. In the same

way, (4.3) also holds if j = 2 (use Lemma 4.3), and if j = 3.

Lemma 4.5. Let n > 2 and D > 1 be integers. Let S′ be the subset of Q(n, D) which

consists of all polynomials P(T, Y ) fulfilling the following two conditions:

(a) P(T, Y ) defines a regular Q-Sn-cover f : X → P1 of branch points t1, . . . , tr ;

(b) t1, . . . , tr are algebraically conjugate.

Then one has
|S′ ∩Q(n, D, H)|
|Q(n, D, H)|

= 1− O
(

log(H)
√

H

)
, H →∞.

In particular, the set S′ has density 1.

Proof. It suffices to show that the set S provided by Lemma 4.4 is a subset of S′. Let

P(T, Y ) be in S and 1(T ) ∈ Z[T ] its discriminant. By Condition (b) of Lemma 4.4, 1(T )
cannot be a square in Q(T ), i.e., the Galois group G of P(T, Y ) over Q(T ) is not contained

in An . Since G E Sn (by Condition (a) of Lemma 4.4), we can conclude that G = Sn , thus

leading to (a). As for (b), it suffices to show that ∞ is not a branch point of f (by the

second part of Condition (b) of Lemma 4.4), since every finite branch point of f is a root

of 1(T ).
Setting U = 1/T , consider the polynomial

Q(U, Y ) = U D P(1/U, Y ) = U DY n
+ bn−1(U )Y n−1

+ · · ·+ b1(U )Y + b0(U ),

where bi (U ) = ai (1/U )U D, i ∈ {0, . . . , n− 1}. Since Q(0, Y ) is separable (even

irreducible) of degree n− 1 (by Condition (c) of Lemma 4.4), U = 0 has n distinct

preimages under the degree n regular Q-cover of P1 defined by P(T, Y ) (namely, n− 1
distinct points with finite Y -coordinate, and one more infinite point). It is therefore

unramified at U = 0, as is its Galois closure f . This concludes the proof.

Lemma 4.6. Let E/Q(T ) be a regular G-extension all of whose branch points are

algebraically conjugate. Then there exists a positive density set S0 of prime numbers

such that all specializations of E/Q(T ) are unramified at all the primes in S0.

Proof. Let R(T ) ∈ Q[T ] be the minimal polynomial over Q of the branch points of

E/Q(T ), F the splitting field of R(T ) over Q, and G = Gal(F/Q). Then G is transitive,

and so there exists an element σ of G fixing no branch point of E/Q(T ). Let S0 denote the
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set of all prime numbers p such that the Frobenius associated with p in F/Q is conjugate

in G to σ . By the Chebotarev density theorem, S0 has density α = |Cσ |/|G| ∈ ]0, 1[, with

Cσ the conjugacy class of σ in G. Moreover, by the definition of S0, no prime number

p ∈ S0 (possibly up to finitely many exceptions) is a prime divisor of R(T ), that is, there

exist no t0 ∈ Q such that vp(R(t0)) > 0. Theorem 2.2 then yields that, for every prime

number p ∈ S0 (possibly up to finitely many exceptions), no specialization of E/Q(T )
ramifies at p.

A ‘moral’ implication of Lemma 4.6 is that, for covers f as in Lemma 4.5, the set Sp( f )
cannot be too large. Turning this into a precise statement depends on precise knowledge

about the distribution of Sn-extensions of Q, which, in general, is a very difficult problem.

For the special case n = 3, however, we have the following result:

Theorem 4.7. Given a positive integer D, consider the set S of all polynomials P(T, Y ) ∈
Q(3, D) fulfilling the following two conditions:

(a) P(T, Y ) defines a regular Q-S3-cover f : X → P1;

(b) there exists a positive constant α such that

|Sp( f )∩S(S3, x)|

|S(S3, x)|
= O(log−α(x))

as x tends to ∞ (in particular, the set Sp( f ) has density 0).

Then one has

|S ∩Q(3, D, H)|
|Q(3, D, H)|

= 1− O
(

log(H)
√

H

)
as H tends to ∞. In particular, the set S has density 1.

Proof. We choose S′ as in Lemma 4.5 in the case n = 3. Given P(T, Y ) ∈ S′, it suffices to

show that (b) holds for the regular Q-S3-cover f : X → P1 defined by P(T, Y ). Indeed,

one then has S′ ⊆ S and the desired conclusion then follows from Lemma 4.5. Let S0 be

the set of prime numbers provided by Lemma 4.6. Given x > 1, denote by S ′(S3, x) the

set of all extensions F/Q in S(S3, x) which ramify only at prime numbers not in S0. The

asymptotic behavior of the ratio

|S ′(S3, x)|
|S(S3, x)|

depends on the Bhargava principle (see [2]), which has been established for S3-extensions

of Q in [3]. A consequence of the mass formulas featuring in the principle is that, given a

prime number p, the set of S3-extensions ramifying tamely at p is (either empty or)10 of

density at least c/p, for some positive constant c not depending on p. Furthermore, the

principle implies that the probabilities of local behaviors of S3-extensions at any given

10This first case clearly does not happen, as every prime number ramifies tamely in a suitable
S3-extension.
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finite set of prime numbers are independent. This yields

|S ′(S3, x)|
|S(S3, x)|

= O
( ∏

p6x
p∈S0

(
1−

1
p

))
, x →∞.

Then, by Lemma 4.6 and [37, théorème 2.3], there exists some constant α > 0 such that

|Sp(E)∩S(S3, x)|
|S(S3, x)|

6
|S ′(S3, x)|
|S(S3, x)|

= O(log−α(x)), x →∞,

where E/Q(T ) denotes the regular S3-extension associated with the cover f . Since the

map from Sp( f ) to Sp(E), mapping a morphism to the fixed field of its kernel, has

finite fibers of bounded cardinality (with the bound depending only on the order of the

underlying Galois group, which is 6 here), conclude that (b) holds.

Remark 4.8. The above way of counting covers is not canonical, since the map between

polynomials and covers is not 1-to-1. It does however allow natural generalizations.

In particular, assume a family of regular Q-G-covers X → P1 is parameterized by an

irreducible polynomial P(T1, . . . , Tk, T, Y ) with algebraically independent indeterminates

T1, . . . , Tk . Such a situation occurs whenever the Hurwitz space of covers of a given

ramification type happens to be a rational variety. If, in addition, the branch points of

such covers can be chosen such that some element of GQ permutes them without fixed

point , then our arguments apply in the same way. This idea was used in [31] to show that

most rational translates of a fixed regular Q-G cover of P1 have a smaller specialization

set than the original cover.

5. On a local–global principle for specializations

This section deals with our local–global principle for specializations, as alluded to in § 1.5.

5.1. Statement of the main result

We first need some terminology and notation.

Given a prime p (possibly infinite) of a number field k, denote the restriction map

Gkp → Gk by resp (with kp the completion of k at p). Given a finite group G and an

epimorphism ϕ : Gk → G, the composed map ϕ ◦ resp : Gkp → G is denoted by ϕp.

Definition 5.1. Let f : X → P1 be a regular Q-G-cover and ϕ : GQ→ G an epimorphism.

(a) Say that ϕ is a specialization morphism of f everywhere locally if ϕp is a

specialization morphism of f ⊗QQp for every prime p.

(b) Say that ( f, ϕ) fulfills the local–global principle if the following implication holds:

ϕ ∈ Sp( f )loc
H⇒ ϕ ∈ Sp( f ),

where Sp( f )loc denotes the set of all epimorphisms GQ→ G as in (a).

The existence of an epimorphism ϕ : GQ→ G such that ( f, ϕ) does not fulfill the

local–global principle means that ϕ does not occur as a specialization morphism of f but
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this cannot be detected by local considerations. Moreover, note that a similar principle

for specializations of regular G-extensions of Q(T ) could be defined.

This theorem is our main contribution to our local–global principle for specializations:

Theorem 5.2. Let f : X → P1 be a regular Q-G-cover with branch points t1, . . . , tr .

Assume the inertia group at some ti intersects the center of G non-trivially. Let q be

the least prime number such that a central element of order q lies in the inertia group at

some ti , and let

β =
q

(q − 1)|G|
. (5.1)

Then the following three conclusions hold.

(a) This inequality holds for some positive constant C( f ) and every sufficiently large

x:

|Sp( f )loc
∩S(G, x)| > C( f ) · xβ · log−1(x).

(b) Assume the abc-conjecture holds and r > 8. Then one has

lim
x→∞

|Sp( f )∩S(G, x)|

|Sp( f )loc ∩S(G, x)|
= 0.

In particular, for some positive constant C ′( f ) and every sufficiently large integer

x, the number of epimorphisms ϕ ∈ S(G, x) such that ( f, ϕ) does not fulfill the

local–global principle is at least C ′( f ) · xβ · log−1(x).

(c) Assume the abc-conjecture and (3.3) hold (with S equal to the set of all branch

points of f ), and that the inertia group at some ti contains a central element of

order equal to the least prime divisor of |G|. Then one has β = α(G), where α(G)
is defined in (1.3),11 and

lim
x→∞

|Sp( f )∩S(G, x)|

|Sp( f )loc ∩S(G, x)|
= 0.

In particular, for some positive constant C ′( f ) and every sufficiently large integer

x, the number of epimorphisms ϕ ∈ S(G, x) such that ( f, ϕ) does not fulfill the

local–global principle is at least C ′( f ) · xα(G) · log−1(x).

5.2. Proof of Theorem 5.2

We break the proof into four parts.

5.2.1. Preliminaries. The proof is based on the investigation of the local behavior

of specializations of the regular G-extension of Q(T ) associated with f . We shall make

use of the following general result, stemming from the two papers [16] and [27]:

Proposition 5.3. Let k be a number field, G a finite group, g : X → P1 a regular k-G-cover,

E/k(T ) the regular G-extension associated with g, and t1, . . . , tr the branch points of g.

For 1 6 i 6 r , let (E(ti ))ti /k(ti ) bethe residue extension of E(ti )/k(ti )(T ) at the prime

11In the general case, one has α(G) > β > 1/|G| > α(G)/2.
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ideal generated by T − ti . Then there exists a finite set Sexc of prime ideals of the ring of

integers of k, containing those prime ideals dividing |G|, such that, for every prime ideal

p not contained in Sexc and every epimorphism ϕ : Gk → G, the following conclusions

hold.

(a) If ϕp is unramified, then g⊗k kp specializes to ϕp.

(b) If ϕp is totally ramified with image equal to the inertia group at some ti and if

p splits completely in the extension (E(ti ))ti /k, then g⊗k kp specializes to some

homomorphism ϕ′(p) : Gkp → G such that ϕp and ϕ′(p) have the same kernels.

Proof. (a) follows directly from [16, Theorem 1.2]. As for (b), it is a special case of [27,

Theorem 4.4] (namely, with the assumption N (p)
= kp in the notation there). Note that

specialization is worded in terms of fields rather than morphisms in [27], hence the above

conclusion replacing ϕp by some other morphism with the same kernel.

We need some notation. Denote the regular G-extension of Q(T ) associated with f by

E/Q(T ). For 1 6 i 6 r , let (E(ti ))ti /Q(ti ) be the residue extension of E(ti )/Q(ti )(T ) at

the prime ideal generated by T − ti .
Let t0 ∈ P1(Q) \ {t1, . . . , tr } be such that the specialization morphism ft0 : GQ→ G

is surjective; such a t0 exists by Hilbert’s irreducibility theorem. The general idea of

the proof is to construct, by slightly changing the epimorphism ft0 , sufficiently many

epimorphisms ϕ : GQ→ G that occur as a specialization morphism of f everywhere

locally. More precisely, our epimorphisms ϕ will have only one more ramified prime

number, compared to ft0 . In order to reach the required amount of epimorphisms of

bounded discriminant, the newly ramified prime number furthermore needs to have

‘small’ ramification index. Let i ∈ {1, . . . , r} and g an element of the center of G of

order q, where q is defined in Theorem 5.2, such that g is contained in the inertia group

at ti .

5.2.2. Construction of suitable epimorphisms ϕ : GQ→ G. Let Sexc be the finite

set of prime numbers provided by Proposition 5.3, when applied to the Q-G-cover f , S
an arbitrary finite set of prime numbers containing Sexc, S1 the set of all prime numbers

which ramify in Et0/Q, and p a prime number satisfying the following three properties

(which depend on S):

(i) p /∈ S ∪S1;

(ii) p splits completely in the extension (E(ti ))ti /Q;

(iii) p splits completely in F({ q√
`|` ∈ S ∪S1})/Q, where F =

 Et0(e
2iπ/q) if q > 3

Et0(i) if q = 2
.

In particular, one has p ≡ 1 mod q due to (iii).

Let ϕ(p) : GQ→ 〈g〉 be an epimorphism such that if L(p) denotes the fixed field of the

kernel of ϕ(p) in Q, then L(p) is the unique degree q subfield of Q(e2iπ/p). Note that the

field L(p) embeds into R and the extension L(p)/Q ramifies only at p.12

12In the case q = 2, we use the fact that p splits in Q(i)/Q to ensure that 2 is unramified in L(p)/Q.
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Since the ramification loci of Et0/Q and L(p)/Q are disjoint (by (i)), the fields Et0
and L(p) are linearly disjoint over Q. We can therefore consider the direct product

homomorphism ψ(p) = ft0 ×ϕ(p); this is an epimorphism from GQ onto G×〈g〉. Let

1 be the diagonal subgroup of G×〈g〉 generated by (g, g). Note that 1 is normal as

g lies in the center of G. Consider the composed map pr ◦ψ(p), with pr the canonical

projection from G×〈g〉 onto (G×〈g〉)/1. As this quotient group equals G up to canonical

isomorphism g′ 7→ (g′, 1) ·1, one obtains an epimorphism ϕ′(p) : GQ→ G.

This lemma asserts that, up to choosing a suitable set S and a suitable epimorphism

ϕ(p), the above epimorphism ϕ′(p) occurs as a specialization morphism of f everywhere

locally:

Lemma 5.4. For some finite set S ⊇ Sexc of prime numbers, depending only on f , the

following holds. Let p be a prime number satisfying (i), (ii), and (iii). Then there exists an

epimorphism ϕ(p) : GQ→ 〈g〉 with fixed field L(p) as above, and for which the associated

epimorphism ϕ′(p) : GQ→ G is such that f ⊗QQ` specializes to ϕ′(p)` for every prime

`.

5.2.3. Proof of Theorem 5.2 under Lemma 5.4. Let S be a finite set of prime

numbers as given by Lemma 5.4. To prove (a), we estimate the number of epimorphisms

ϕ′(p) : GQ→ G provided by Lemma 5.4, when p runs through the set of all prime

numbers satisfying (i), (ii), and (iii). Let p be such a prime number. Since Et0 and

L(p) are linearly disjoint over Q and as the discriminants dEt0
and dL(p) of Et0 and L(p),

respectively, are coprime, one has

|dEt0 L(p) | = |dEt0
|
q
· |dL(p) |

|G|.

Moreover, as L(p)/Q is Galois of degree q and ramifies only at p, one has |dL(p) | = pq−1.

Combine this equality and the fact that g has order q to get that if L ′(p) denotes the

fixed field of ker(ϕ′(p)) in Q, then

|dL ′
(p)
| 6 C1 · p

q−1
q |G|,

where C1 = |dEt0
| depends only on f . Furthermore, as L ′(p)/Q ramifies at p (with

ramification index q) and is unramified outside S1 ∪ {p}, one has L ′(p1)
6= L ′(p2)

for distinct

prime numbers p1 and p2 as above. Finally, as the set of all prime numbers p fulfilling

(i), (ii), and (iii) is a positive density subset of the set of all prime numbers, there are

asymptotically at least C2 · x · log−1(x) such epimorphisms ϕ′(p) with p 6 x , for some

positive constant C2 depending only on f . In total, the number of such epimorphisms

ϕ′(p) with |dL ′
(p)
| 6 x is then asymptotically at least

C3 · xβ · log−1(x),

where C3 is a positive constant depending only on f . This completes the proof of (a).

As for (b), suppose the abc-conjecture holds and r > 8. From the latter assumption

and the definition of β, the exponent e defined in (3.2) (with S equal to the set of all
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branch points of f ) satisfies e < β(G). Pick ε > 0 with e+ ε < β(G). Then combine (a)

and Theorem 3.1 to obtain that

|Sp( f )∩S(G, x)|

|Sp( f )loc ∩S(G, x)|
= O(log(x) · xe+ε−β(G)) = o(1), x →∞.

Finally, under the assumptions in (c), q is the smallest prime divisor of |G| and one

has β = α(G). Moreover, in this case, it suffices to check e < α(G) in the proof of (b)

above to get the desired conclusion. As seen in the proof of Corollary 3.3, this inequality

holds if and only if (3.3) holds.

5.2.4. Proof of Lemma 5.4. We first prove the following statement:

Lemma 5.5. Fix a finite set S of prime numbers containing Sexc, a prime number p
satisfying (i), (ii), and (iii), and an epimorphism ϕ(p) : GQ→ 〈g〉 with fixed field L(p)
as in § 5.2.2. Then the associated epimorphism ϕ′(p) : GQ→ G is such that ϕ′(p)` is a

specialization morphism of f ⊗QQ` for every prime ` 6= p.

Proof. Let ` be a prime 6= p. First, assume ` is finite and ` 6∈ S ∪S1. By our construction,

` is unramified in Et0 L(p)/Q, and the same holds in the subextension L ′(p)/Q. Therefore,

by Proposition 5.3(a) (which can be applied as S contains Sexc), f ⊗QQ` specializes to

ϕ′(p)`.
Second, assume ` is infinite or ` ∈ S ∪S1. Then ϕ(p)` is trivial. Indeed, for ` = ∞,

this is clear since L(p) ⊆ R by construction. Assume then that ` is finite. If q = 2, then

it follows from (iii) and the quadratic reciprocity that ` is totally split in the extension

Q(√p)/Q = L(p)/Q. One may then assume that q is odd. By (iii), Y q
− ` splits completely

in Qp. This means that ` is a qth power in Qp. In other words, the multiplicative order

of ` in Fp is a divisor of (p− 1)/q. Consequently, the Frobenius of Q(e2iπ/p)/Q at ` is of

order dividing (p− 1)/q. As the elements of Gal(Q(e2iπ/p)/Q) of order dividing (p− 1)/q
act trivially on L(p), we get that the Frobenius of L(p)/Q at ` is trivial, thus proving the

claim. Therefore, one has ( ft0)` = ψ(p)` = ϕ
′(p)`. In particular, f ⊗QQ` specializes to

ϕ′(p)`.

We now proceed to the proof of Lemma 5.4. By Lemma 5.5, it suffices to show that

f ⊗QQp specializes to ϕ′(p)p, under a suitable choice of S and ϕ(p). This is done by

reducing to Proposition 5.3(b). At this stage, choose S and ϕ(p) arbitrary as above.
By the definition of ϕ(p) and (i), the induced epimorphism ϕ(p)p : GQp → 〈g〉 is totally

(tamely) ramified. Its image 〈g〉 is not necessarily the inertia group at some branch point

of f . However, this holds for a suitable pullback of f .

Indeed, up to applying a change of variable at the beginning of § 5.2, we may assume

∞ 6∈ {t1, . . . , tr }. With U = 1/(T − ti ), one sees that∞ is a branch point of E(ti )/Q(ti )(U )
but 0 is not. Let ei be the ramification index at ti and V = U q/ei . Since the extensions

EQ/Q(U ) and Q(V )/Q(U ) have only one common branch point (namely, ∞), the fields

EQ and Q(V ) are linearly disjoint over Q(U ). Thus, EQ(V )/Q(V ) is still a regular

G-extension, and the same holds, in particular, for E(ti )(V )/Q(ti )(V ). Let f ′ : X ′→ P1

be the associated regular Q(ti )-G-cover. By Abhyankar’s lemma, 〈g〉 is the inertia group

of f ′ at ∞.
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Set k = (E(ti ))ti and denote the cover f ′⊗Q(ti ) k by f ′′. If p is any prime ideal lying

over p in k/Q, then the completion kp is equal to Qp, due to the splitting assumption in

(ii). Moreover, as p is totally split in Et0/Q (by (iii)), the restriction ( ft0)p is trivial, that

is, ϕ(p)p = ψ(p)p = ϕ
′(p)p. Hence, since every specialization morphism of f ′′⊗k Qp (at

a point t ∈ P1(Qp)) is a specialization morphism of f ⊗QQp (namely, at 1/tei /q + ti ), it

suffices to show that f ′′⊗k Qp specializes to ϕ(p)p.

Choose S as the set of all prime numbers ` which are in the already defined set Sexc or

such that some prime ideal lying over ` in the extension k/Q belongs to the exceptional set

provided by Proposition 5.3, when applied to the cover f ′′. By Proposition 5.3(b), f ′′⊗k
Qp specializes to some homomorphism ϕ′′(p) : GQp → G such that ϕ(p)p and ϕ′′(p) have

the same kernels. In particular, the image of ϕ′′(p) is equal to 〈g〉 and ϕ′′(p) = σ ◦ϕ(p)p
for some automorphism σ : 〈g〉 → 〈g〉. Then consider the epimorphism σ ◦ϕ(p) : GQ→
〈g〉. The fixed field of the kernel of this epimorphism is equal to that of ϕ(p) and f ′′⊗k Qp
specializes to (σ ◦ϕ(p))p, as (σ ◦ϕ(p))p = σ ◦ϕ(p)p = ϕ

′′(p). Conclude that the lemma

holds.

5.3. On the assumptions of Theorem 5.2

We exhibit below several explicit situations where covers as in Theorem 5.2 can be

constructed.

5.3.1. Abelian groups. If G is an arbitrary finite abelian group, then the condition

on inertia groups in Theorem 5.2(c) is satisfied for every regular Q-G cover f of P1, as

the inertia groups at the branch points of f generate G. Moreover, if f has at least 7

branch points, then (3.3) holds (see Remark 3.4). Hence, the conclusion of Theorem 1.7

follows from Theorem 5.2(c).

5.3.2. Extension to some non-abelian groups. In fact, the same applies for some

non-abelian groups G as well. Here are some examples:

(a) G = H ×Z/2kZ, where H is an arbitrary finite group, and 2k is strictly larger than

the highest 2-power occurring as an element order in H ;

(b) G = Qn
8 × H , where Q8 is the quaternion group, n > 1, and H is abelian.

Indeed, for (a), if (h1, g1), . . . , (hr , gr ) generate G, with h1, . . . , hr ∈ H and g1, . . . , gr ∈

Z/2kZ, then we may assume g1 is of order 2k . Thanks to our assumption on k, there

exists m > 1 with h2k−1
+m2k

1 = 1. As for (b), suppose (g1, h1), . . . , (gr , hr ) generate G,

with g1, . . . , gr ∈ Qn
8 and h1, . . . , hr ∈ H . We may assume g1 is of order 4. Then (g2

1, h2
1)

has even order, say 2m with m > 1. Hence, (g2m
1 , h2m

1 ) has order 2 and is in the center

of G.

5.3.3. Regular Galois groups over Q with non-trivial center. Let G be a regular

Galois group over Q with non-trivial center. Then there exists a regular Q-G-cover of P1

whose inertia group at some branch point intersects the center of G non-trivially.

Indeed, let f : X → P1 be a regular Q-G-cover, g an element of the center of G of

prime order, and f ′ : X ′→ P1 a regular Q-〈g〉-cover. Up to applying a suitable change of

variable, we may assume that the sets of branch points of f and f ′ are disjoint. Denote
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the function field extensions of the covers f and f ′ by E/Q(T ) and E ′/Q(T ), respectively.

Then the fields EQ and E ′Q are linearly disjoint over Q, that is, the extension E E ′/Q(T )
is a regular (G×〈g〉)-extension. If E ′′ denotes the fixed field of 〈g〉× 〈g〉 in E E ′, then

E ′′/Q(T ) is a regular G-extension, each branch point t of E ′/Q(T ) is a branch point

of E ′′/Q(T ), and the inertia group of E ′′/Q(T ) at t is equal to 〈g〉. Consequently, the

regular Q-G-cover f ′′ of P1 associated with the extension E ′′/Q(T ) satisfies the desired

conclusion.

We note for later use that we can simultaneously require that no branch point of f ′′ is

Q-rational and the total number of branch points of f ′′ is arbitrarily large (in particular,

at least 8). Indeed, up to replacing f by a suitable pullback of f , we may assume no

branch point of f is Q-rational. Moreover, as a consequence of the rigidity method, we

may assume the same holds for the cover f ′ and the number of branch points of f ′ is

arbitrarily large.

6. Diophantine aspects

In this section, we discuss diophantine aspects of our results, as already alluded to in

§ 1.6.

6.1. Preliminaries

Our first aim is to briefly recall the definition and the main properties of the twisted cover

from [11]. See, e.g., [16, § 2.2] for more details. We use below the notation introduced in

§ 2.2.

Let k be a field of characteristic zero, k an algebraic closure of k, G a finite group, f :
X → P1 a regular k-G-cover of branch points t1, . . . , tr , and ϕ : Gk → G a homomorphism.

Denote the right-regular (respectively, left-regular) representation of G by δ : G → S|G|
(respectively, by γ : G → S|G|). Define ϕ∗ : Gk → G by ϕ∗(σ ) = ϕ(σ)−1 (σ ∈ Gk). Denote

the restriction map π1(P1
\ {t1, . . . , tr }, t)k → Gk by res and the multiplication in S|G|

by ×.

If φ : π1(P1
\ {t1, . . . , tr }, t)k → G is the epimorphism corresponding to f , consider

φ̃ϕ :

{
π1(P1

\ {t1, . . . , tr }, t)k −→ S|G|
θ 7−→ φ̃ϕ(θ) = γ ◦φ(θ)× δ ◦ϕ∗ ◦ res(θ).

Then the map φ̃ϕ is a homomorphism with the same restriction to π1(P1
\ {t1, . . . , tr }, t)k

as φ, hence corresponds to a regular k-cover (not Galois in general), denoted by f̃ ϕ :
X̃ϕ → P1 and called the twisted cover of f by ϕ, which satisfies f ⊗k k = f̃ ϕ ⊗k k. In

particular, the covers f and f̃ ϕ have the same branch points.

The following proposition (see [16, Twisting Lemma 2.1]) contains the main property

of the twisted cover:

Proposition 6.1. For every t0 ∈ P1(k) \ {t1, . . . , tr }, the following conditions are equivalent:

(a) there exists a k-rational point x0 on X̃ϕ such that f̃ ϕ(x0) = t0;

(b) there exists ω ∈ G such that the specialization morphism ft0 equals conj(ω) ◦ϕ.
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Furthermore, the twisting operation commutes with extension of scalars: if k′ ⊇ k, then

the twisted cover of f ⊗k k′ by the restriction of ϕ to Gk′
13 is the regular k′-cover f̃ ϕ ⊗k k′.

Condition (a) of Proposition 6.1 leads us to the following terminology:

Definition 6.2. Let f : X → P1 be a regular k-cover. Say that a k-rational point x on X
is trivial if f (x) is a (k-rational) branch point of f , and non-trivial otherwise.

Example 6.3. Let f : X → P1 be a regular Q-Z/2Z-cover and P(T ) ∈ Z[T ] separable such

that X is the hyperelliptic curve CP(T ) : y2
= P(t). Then the set of all epimorphisms ϕ :

GQ→ Z/2Z is in 1-to-1 correspondence with the set N2 of all squarefree integers. Given

such an integer d, the associated twisted curve X̃ϕ is the hyperelliptic curve Cd·P(T ) : y2
=

d · P(t). Moreover, trivial points in the sense of Definition 6.2 correspond to those defined

in § 2.3, and Proposition 2.3(b) corresponds to the quadratic case of Proposition 6.1.

6.2. Global aspects

Let G be a finite group and f : X → P1 a regular Q-G-cover. By § 6.1, the set Sp( f ) is the

set of all homomorphisms ϕ : GQ→ G such that the twisted curve X̃ϕ has a non-trivial

Q-rational point. Hence, Theorem 3.1 can be rephrased as follows:

Theorem 6.4. Let S ⊆ P1(Q) be a non-empty subset of the set of branch points of f ,

closed under the action of GQ. Assume the abc-conjecture and (3.1) hold. Then, for every

ε > 0 and every sufficiently large x, the number h(x) of all epimorphisms ϕ : GQ→ G in

S(G, x) such that the twisted curve X̃ϕ has a non-trivial Q-rational point satisfies

h(x) 6 xe+ε,

where e is defined in (3.2).

Similarly, all other results from §§ 3 and 4 with a density zero conclusion can be

rewritten with the above diophantine flavor. We leave this to the interested reader.

In the case G = Z/2Z, Theorem 6.4 yields this corollary, which is [24, Corollary 1]:

Corollary 6.5. Let P(T ) ∈ Z[T ] be a separable polynomial of degree > 5 and g the genus

of the hyperelliptic curve CP(T ) : y2
= P(t). Assume the abc-conjecture holds. Then, for

every ε > 0 and every sufficiently large x, the number h(x) of all squarefree integers d ∈
J−x, xK14 such that the twisted curve Cd·P(T ) : y2

= d · P(t) has a non-trivial Q-rational

point satisfies

h(x) 6 x (1/(g−1))+ε .

Proof. Let f : X → P1 be the regular Q-Z/2Z-cover given by the polynomial Y 2
− P(T ).

By Proposition 2.3(a), f has r > 6 branch points. Hence, by Remark 3.2(b), Example 6.3,

and Theorem 6.4, it suffices to show that the exponent e (with S the set of all

branch points of f ) is equal to 1/(g− 1). By (3.2), one has e = 2/(r − 4). Moreover,

one has 2(g− 1) = r − 4 by the Riemann–Hurwitz formula. Conclude that the desired

equality holds.

13That is, by the homomorphism ϕ ◦ res′ : Gk′ → G, where res′ : Gk′ → Gk is the restriction map.
14Recall that J−x, xK denotes the set of all integers between −x and x .
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6.3. On the local–global principle for specializations

For a regular Q-G-cover f : X → P1, § 6.1 shows that the set Sp( f )loc
\Sp( f ), with

Sp( f )loc introduced in Definition 5.1, is the set of all epimorphisms ϕ : GQ→ G such

that the twisted curve X̃ϕ has a non-trivial Qp-rational point for every prime p but only

trivial Q-rational points. As above, Theorem 5.2 may be worded with this diophantine

flavor. We leave this to the interested reader.

Let us rather give an application of our result to the Hasse principle. Recall that a

curve C over Q fulfills the Hasse principle if the following implication holds:

C has a Qp-rational point for every prime p H⇒ C has a Q-rational point.

The sole difference between the Hasse principle and the diophantine analog of our

local–global principle for specializations is that, since we are interested in covers rather

than just abstract curves, we have to disallow rational points extending branch points.

However, if we start with a cover with no Q-rational branch point, then the twisted curves

provided by (the diophantine version of) Theorem 5.2 do not fulfill the Hasse principle.

For example, by combining Theorem 5.2 and §§ 5.3.1–5.3.2, we obtain Corollary 6.6,

which makes Theorem 1.8 more precise:

Corollary 6.6. Let G be a finite abelian group or a finite group as in § 5.3.2, and

let f : X → P1 be a regular Q-G cover with no Q-rational branch point. Assume the

abc-conjecture holds and f has at least 7 branch points. Then, for some positive constant

C( f ) and every sufficiently large x, the number of epimorphisms ϕ ∈ S(G, x) such that

X̃ϕ does not fulfill the Hasse principle is at least

C( f ) · xα(G) · log−1(x),

where α(G) is defined in (1.3).

In the special case G = Z/2Z, we have this corollary, which is [8, Theorem 2] and which

follows from Corollary 6.6 as Corollary 6.5 follows from Theorem 6.4:

Corollary 6.7. Let P(T ) ∈ Z[T ] be a separable polynomial of even degree at least 8 and

without any root in Q. Suppose the abc-conjecture holds. Then there exists a positive

constant C, depending only on P(T ), which satisfies the following. For every sufficiently

large x, the number of all squarefree integers d ∈ J−x, xK such that the twisted hyperelliptic
curve Cd·P(T ) : y2

= d · P(t) does not fulfill the Hasse principle is at least C · x · log−1(x).

Remark 6.8. If P(T ) is of odd degree, then the conclusion fails trivially as the trivial

point [0 : 1 : 0] lies on every quadratic twist of CP(T ). This actually gives an example

where the Hasse principle holds but our local–global principle fails.

Namely, consider a separable polynomial P(T ) ∈ Z[T ] of odd degree. Then CP(T ) :

y2
= P(t) has a non-trivial Qp-rational point for every prime p (an easy consequence

of Hensel’s lemma). Consequently, if d denotes an arbitrary squarefree integer, then

the twisted hyperelliptic curve Cd·P(T ) : y2
= d · P(t) has a non-trivial Qp-rational point

for every prime p. However, by Corollary 6.5, if P(T ) has degree at least 7 and
the abc-conjecture holds, then Cd·P(T ) has only trivial Q-rational points for almost
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all squarefree integers d. Note that this last conclusion does hold unconditionally

for infinitely many squarefree integers d in some situations (see, e.g., the upcoming

Proposition B.2).

Even though the above situation seems like an artificial creation of a failure of Hasse

principle (by disallowing trivial points), it is important from our point of view of

specializations, since it yields a case of a regular Q-G-cover f : X → P1 where every

epimorphism ϕ : GQ→ G is a specialization morphism of f everywhere locally, but not

all such ϕ’s occur as specialization morphisms of f . In particular, it provides a conditional

example where the ratio (1.5) tends to 0, whereas the ratio in (1.4) does not.

In fact, Corollary 6.6 holds if f an arbitrary regular Q-G-cover of P1 with 8 branch

points or more, none of them is Q-rational, and such that some geometric inertia group

contains a non-trivial central element.15 In particular, this corollary, which relies on

§ 5.3.3, allows to conditionally generate many more curves over Q failing the Hasse

principle:

Corollary 6.9. Let G be a regular Galois group over Q with non-trivial center. Assume

the abc-conjecture holds. Then there exist a curve C over Q, with a regular Q-G-cover to

P1, and ‘many’ Q-curves C ′, which are isomorphic to C up to base change from Q to Q
and which do not fulfill the Hasse principle.

Note that our arguments indeed yield infinitely many pairwise non-isomorphic (over Q)

such curves C ′. This is because isomorphic curves over Q have isomorphic function fields,

whereas it is easy to see that twists f̃ ϕ1 and f̃ ϕ2 of the same cover f have non-isomorphic

function fields as soon as the kernels of ϕ1 and ϕ2 have distinct fixed fields.

Acknowledgements. The first author was supported by the National Research

Foundation of Korea (NRF Grant no. 2019002665). The authors also wish to thank

Arno Fehm for his help with Lemma 4.3.

Appendix A. Parametric extensions with few branch points

The aim of this section is to use various tools from previous papers to prove the following

conditional result about parametric extensions with at most three branch points:

Theorem A.1. Let G be a non-trivial finite group and let E/Q(T ) be a regular G-extension

with r 6 3 branch points.

(a) Suppose r = 2. Then the following three conditions are equivalent:

(1) the extension E/Q(T ) is generic;

(2) the extension E/Q(T ) is parametric;

(3) either E = Q(
√

T ), up to applying a change of variable (that is, G = Z/2Z and

each branch point of E/Q(T ) is Q-rational), or G = Z/3Z.

15At the cost of replacing α(G) by the smaller constant β defined in (5.1).
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(b) Suppose all finite groups occur as Galois groups over Q and r = 3. Then the

following three conditions are equivalent:

(1) the extension E/Q(T ) is generic;

(2) the extension E/Q(T ) is parametric;

(3) the field E is equal to the splitting field over Q(T ) of the polynomial Y 3
+ T Y + T

(in which case G = S3), up to applying a change of variable.

Proof. (a) First, assume r = 2. By the Riemann existence theorem, one has G = Z/nZ
for some n > 2. As in the proof of Corollary 3.5, the Branch Cycle Lemma yields

2 = r > ϕ(n), where ϕ denotes the Euler totient function, that is, n ∈ {2, 3, 4, 6}. First,

assume n = 2. Then E/Q(T ) is parametric if and only if each branch point is Q-rational

[32, Proposition 3.1], and it is clear that E/Q(T ) is generic if the latter holds. Now,

assume n = 3. Then, as a consequence of, e.g., [17, Proposition 5.3], the extension E/Q(T )
is generic. Finally, assume n ∈ {4, 6}. Then, by the Branch Cycle Lemma, none of the

branch points of E/Q(T ) is Q-rational. In particular, there exist infinitely many prime

numbers which ramify in no specialization of E/Q(T ); see Lemma 4.6. However, for all

prime numbers p, there are Z/nZ-extensions of Q which ramify at p. Conclude that

E/Q(T ) is not parametric.

(b) Now, we suppose r = 3. As all finite groups have been assumed to be Galois groups

over Q, one may use [29, Proposition 1] to get that there exists a totally real G-extension

of Q. By [15, Proposition 1.2], such a G-extension of Q cannot occur as a specialization

of E/Q(T ), unless G is dihedral of order 2n with n ∈ {2, 3, 4, 6}.
First, assume G is dihedral of order 2n with n ∈ {2, 4, 6}. In each case, G has a

non-cyclic abelian subgroup (namely, Z/2Z×Z/2Z). Then recall that, in this situation,

[27, Theorem 6.2] shows that the extension E/Q(T ) cannot be ‘locally parametric’. That

is, for infinitely many prime numbers p, there exists a finite Galois extension Fp/Qp whose

Galois group embeds into G and which does not occur as a specialization of EQp/Qp(T ).
Since G is dihedral, up to dropping finitely many such primes, such a Galois extension

Fp/Qp can be lifted to a G-extension F/Q, that is, the field Fp is the completion of F at

p; see [18, Theorem 1.1]. In particular, the extension F/Q cannot occur as a specialization

of E/Q(T ).
Now, assume G = S3. One easily checks that the ramification indices of the branch

points of E/Q(T ) are 2, 2, and 3, i.e., the inertia groups of the branch points are generated

by a 2-cycle, a 2-cycle, and a 3-cycle. Let C2 (respectively, C3) be the conjugacy class

in S3 of the 2-cycles (respectively, of the 3-cycles). If the first two branch points are not

Q-rational, then, by (a), the quadratic subextension of E/Q(T ) is not parametric. Since

every quadratic number field embeds into an S3-extension of Q, this implies that E/Q(T )
cannot be parametric either. So all three branch points can be assumed to be Q-rational.

Since (C2,C2,C3) is a rigid triple of rational conjugacy classes of the centerless group

S3, there is only one regular S3-extension of Q(T ) with 3 Q-rational branch points, up

to change of variable. See, e.g., [38, Chapters 7 and 8] for more details. Let E ′ be the

splitting field of Y 3
+ T Y + T over Q(T ). Since E ′/Q(T ) is a regular S3-extension and its

set of branch points is {0,∞,−27/4},it is the only regular S3-extension of Q(T ) with 3
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Q-rational branch points. As this extension is known to be generic (see, e.g., [25, § 2.1]

or [17, Proposition 5.3]), we are done.

Remark A.2. (a) We do not know whether the equivalence between ‘E/Q(T ) parametric’

and ‘E/Q(T ) generic’ holds without assuming the number of branch points is at most

3 and every finite group occurs as a Galois group over Q.16 Note that this result would

imply that only the subgroups of S3 have a parametric extension over Q, since this last

conclusion holds with ‘parametric’ replaced by ‘generic’; see [25] and [17, Corollary 5.4].

(b) Given a finite group G, every regular G-extension of Q(T ) of genus 0 has at most

3 branch points (by the Riemann–Hurwitz formula). Hence, Theorem A.1 shows that,

under a positive answer to the inverse Galois problem, any given regular G-extension

E/Q(T ) of genus 0 which is parametric is generic. This weaker conclusion actually holds

unconditionally.

Indeed, denote the number of branch points of E/Q(T ) by r . Since E/Q(T ) has genus 0,

one of these conditions holds:

(1) G is cyclic of order n ∈ {2, 3, 4, 6} and r = 2;

(2) G is dihedral of order 2n with n ∈ {2, 3, 4, 6} and r = 3;

(3) G = A4 and r = 3;

(4) G = S4 and r = 3.17

If (1) holds, then E/Q(T ) is generic if it is parametric, by Theorem A.1(a). If (2) (with

n 6= 3) or (3) or (4) holds, then G has a non-cyclic abelian subgroup. One then shows as

in the proof of Theorem A.1(b) that E/Q(T ) is not parametric. Finally, if (2) holds with

n = 3, then one sees as above that E/Q(T ) is non-parametric or E is the splitting field

over Q(T ) of Y 3
+ T Y + T , up to change of variable.

Appendix B. Twists of superelliptic curves without rational points

B.1. Proof of Theorem 4.2

Let S′ be the subset of P(n, N ) consisting of all polynomials P(T ) satisfying this

condition:

(∗) P(T ) is separable and
⋃N

j=1 Gal(L/Q(t j )) 6= Gal(L/Q), where t1, . . . , tN and L are the

roots and the splitting field over Q of P(T ), respectively.

16Over larger number fields k, examples of regular G-extensions of k(T ) which are parametric but not
generic are known, under the Birch and Swinnerton-Dyer conjecture. See [17, § 5.4] for more details.
17Indeed, since E/Q(T ) is of genus 0, the group G embeds into PGL2(Q) and, by [36, Chapter I, Theorem
6.2], we get that one of the following five conditions holds: (1) G is cyclic and r = 2, (2) G is dihedral
and r = 3, (3) G = A4 and r = 3, (4) G = S4 and r = 3, and (5) G = A5 and r = 3. First, as in the proof
of Theorem A.1(a), (1) can happen only if n ∈ {2, 3, 4, 6}, by the Branch Cycle Lemma. Now, (5) cannot
happen. Indeed, the ramification indices of the branch points of E/Q(T ) should be 2, 3, and 5 (see [36,
Chapter I, Theorem 6.2]); thus violating the Branch Cycle Lemma since A5 has two conjugate conjugacy
classes of 5-cycles. Finally, in the case of dihedral groups, similar arguments show that (2) can happen
only if n ∈ {2, 3, 4, 6}.
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First, an element P(T ) of P(n, N ) is in S′ if its Galois group over Q, viewed as a

permutation group of the roots, is isomorphic to SN . One then shows as in the proof of

Lemma 4.4 that the estimate (4.1) holds. Moreover, if P(T ) ∈ S′, then, as in the proof

of Lemma 4.6, there is a set S of prime numbers of positive density α such that no

prime number p ∈ S is a prime divisor of P(T ).18 Set P(T ) = a0+ a1T + · · ·+ aN T N . As

condition (∗) holds, P(T ) has no root in Q. In particular, one has a0 6= 0. Up to dropping

finitely many prime numbers, we may assume vp(a0) = 0 and vp(aN ) = 0 for each prime

number p ∈ S.

Next, let d be an arbitrary n-free number which is divisible by at least one prime

number p ∈ S. Suppose Cd·P(T ) has a (non-trivial) Q-rational point [y : t : z]. If z = 0,

one has

yn
= d · aN t N . (B 1)

In particular, one has y 6= 0 and t 6= 0. By the condition vp(aN ) = 0 and (B 1), one has

n · vp(y) = vp(d)+ N · vp(t).

As n divides N , we get that n divides vp(d), which cannot happen. One then has z 6= 0.

Up to replacing (y, t, z) by (y/zN/n, t/z, 1), we may assume z = 1. Hence, one has

yn
= d · P(t). (B 2)

If vp(P(t)) = 0, (B 2) gives n · vp(y) = vp(d). Then n|vp(d), which cannot happen. Hence,

vp(P(t)) 6= 0. (B 3)

If t = 0, (B 2) gives yn
= d · a0. Since vp(a0) = 0, we get n|vp(d), a contradiction. Hence,

t 6= 0. If vp(t) > 0, then vp(P(t)) > 0. By (B 3), this yields vp(P(t)) > 0. Then p is a

prime divisor of P(T ), a contradiction. Hence, vp(t) < 0. Using that vp(aN ) = 0, we get

vp(P(t)) = vp(t N ) = N · vp(t). (B 4)

Combining (B 2) and (B 4) then provides n · vp(y) = vp(d)+ N · vp(t). As n|N , we get

that n divides vp(d), which cannot happen. One then has Cd·P(T )(Q) = ∅.
Finally, let NS be the set of all integers d which are divisible by no prime number

in S. By the above, one has |Nn(P(T ), x)| 6 |NS ∩ J−x, xK| for every positive integer x .

Moreover, by [37, théorème 2.3], one has |NS ∩ J−x, xK| ∼ β · x · log−α(x) as x tends to∞

(for some constant β > 0). Conclude that (4.2) and the desired density zero conclusion

hold (as Nn has positive density), thus ending the proof of Theorem 4.2.

B.2. Variants of Theorem 4.2

As before, we refer to § 2.1 and § 2.3.3 for the definitions of the sets P(n, N ), P(n, N , H),
Nn , Nn(P(T )), Nn(x), and Nn(P(T ), x).

18The definition of a prime divisor of a polynomial is recalled in the proof of Lemma 4.6.

https://doi.org/10.1017/S1474748019000537 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000537


Density results for specialization sets of Galois covers 1493

Proposition B.1. Let n and N be integers such that n > 2, n is not a prime number, and

N > 5. Let P(T ) be a separable polynomial in P(n, N ) and let n1 be the smallest prime

divisor of n. Then there exists a positive constant c such that

|Nn(x)| − |Nn(P(T ), x)| > c · x1/n1 , x →∞. (B 5)

Proof. For α ∈ N2, consider the n-free integer dα = 2αn1 (note that n1 6∈ {n− 1, n}
as n is not a prime and n1 | n). We show below that there are only finitely many

squarefree integers α such that the twisted superelliptic curve Cdα ·P(T ) : yn
= dα · P(t)

has a non-trivial Q-rational point, thus providing (B 5).

Set n = n1n2. Given α ∈ N2, let [yα : tα : zα] be a non-trivial Q-rational point on

Cdα ·P(T ). If zα 6= 0, then [yα : tα : zα] = [y′α : tα/zα : 1], where y′α is yα divided by some

power of zα. One may then assume zα = 0 or zα = 1. In each case, one sees that

[yn2
α /α : tα : zα] is a non-trivial Q-rational point on C2·P(T ) : yn1 = 2 · P(t).
Now, given α 6= β ∈ N2, suppose [yn2

α /α : tα : zα] = [y
n2
β /β : tβ : zβ ]. First, if zα =

zβ = 0 (which implies that n divides N), then yn2
α /α = λ

N/n1 yn2
β /β for some λ ∈ Q \ {0}.

Since n2 divides N/n1, this implies that α/β 6= 1 is a n2th power in Q, which cannot

happen. Now, if zα = zβ = 1, then yn2
α /α = yn2

β /β and one gets a contradiction as in the

first case.

Hence, if Cdα ·P(T ) has a non-trivial Q-rational point for infinitely many α ∈ N2,

then |C2·P(T )(Q)| = ∞. However, due to our assumptions that P(T ) is separable and

N > 5, this superelliptic curve has genus at least 2 and Faltings’ theorem then yields a

contradiction.

Proposition B.2. Let N be a positive integer such that N ≡ 3 (mod 4). Then there exists

a subset S of P(2, N ) which satisfies the following two conclusions.

(a) One has
|S ∩P(2, N , H)|
|P(2, N , H)|

= 1− O
(

log(H)
√

H

)
, H →∞. (B 6)

In particular, the set S has density 1.

(b) The complement N2 \N2(P(T )) is infinite for every polynomial P(T ) ∈ S.

Proof. See, e.g., the survey paper [39] for more details on the terminology we use below.

First, given N > 1 odd and a polynomial P(T ) ∈ P(2, N ), suppose there exists an

infinite subset S of N2 such that the 2-Selmer group Sel2(J (Cd·P(T ))) of the Jacobian

J (Cd·P(T )) of Cd·P(T ) : y2
= d · P(t) is trivial for each d ∈ S. For such a d, denote the

Mordell–Weil rank of J (Cd·P(T )) by rd and the 2-torsion subgroup of J (Cd·P(T ))(Q) by

J (Cd·P(T ))(Q)[2]. Then

rd 6 dimF2Sel2(J (Cd·P(T )))− dimF2 J (Cd·P(T ))(Q)[2] = −dimF2 J (Cd·P(T ))(Q)[2].

See [39, § 3] for more details. Consequently, one has rd = dimF2 J (Cd·P(T ))(Q)[2] = 0.
Moreover, up to dropping finitely many elements of S, we may assume that

J (Cd·P(T ))(Q)[tors] = J (Cd·P(T ))(Q)[2]
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for each d ∈ S, with J (Cd·P(T ))(Q)[tors] the set of torsion points of J (Cd·P(T ))(Q). We

refer to [4, Theorem 2.1] for more details. Hence, every Q-rational point on J (Cd·P(T )) is

of order 1. In particular, for each d ∈ S, the set Cd·P(T )(Q) is reduced to [0 : 1 : 0].
Now, given N such that N ≡ 3 (mod 4), consider the subset S of P(2, N ) defined by the

extra condition that the Galois group over Q is SN or AN . As in the proof of Theorem 4.2,

one shows that the set S fulfills (B 6). Moreover, by [42, Theorem 3], for every P(T ) ∈ S,

there exist infinitely many d ∈ N2 such that the 2-Selmer group of the Jacobian of Cd·P(T )
is trivial. It then remains to apply the first part of the proof to conclude.

Remark B.3. (a) If N = 3, one can take S = P(2, N ). Indeed, for P(T ) ∈ P(2, 3), it is

known that the Mordell–Weil rank of Cd·P(T ) is 0 for infinitely many d ∈ N2, and that,

for all but finitely many d ∈ N2, every torsion Q-rational point on Cd·P(T ) is trivial. See,

e.g., [10] and [22, Proposition 1] for more details and references. Moreover, for some

P(T ) ∈ P(2, 3), the density of N2 \N2(P(T )) is known to be positive (unconditionally).

See [10] for references.

(b) Given r > 2 even, the density of the subset E∞(r) of E(r) (see § 2.4), which consists

of all regular Z/2Z-extensions of Q(T ) with exactly r branch points and with ∞ as a

branch point, is easily seen to be 0 by Proposition 2.4. Consequently, elements of E∞(r)
which are contained in a set S as in Theorem 4.1 are only a negligible part of S. However,

if r is divisible by 4, Proposition B.2 shows that there is a density 1 subset S of E∞(r)
such that there exist infinitely many quadratic extensions of Q which do not belong to

the specialization set of a given extension of Q(T ) in S. The precise statement and the

proof, which is very similar to that of Theorem 4.1 under Theorem 4.2, are left to the

interested reader.
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