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In this article, we study the following Schrödinger equation

−∆u− µ
|x|2 u+ λu = f(u), in RN\{0},∫

RN |u|2dx = a, u ∈ H1(RN ),

where N ≥ 3, a > 0, and µ <
(N−2)2

4
. Here 1

|x|2 represents the Hardy potential (or

‘inverse-square potential’), λ is a Lagrange multiplier, and the nonlinearity function f
satisfies the general Sobolev critical growth condition. Our main goal is to
demonstrate the existence of normalized ground state solutions for this equation

when 0 < µ <
(N−2)2

4
. We also analyse the behaviour of solutions as µ → 0+ and

derive the existence of normalized ground state solutions for the limiting case where
µ=0. Finally, we investigate the existence of normalized solutions when µ< 0 and
analyse the asymptotic behaviour of solutions as µ → 0−.
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1. Introduction

In recent decades, significant attention has been directed towards the exploration of
standing wave solutions in the context of the time-dependent Schrödinger equation,
which is formulated as followsiΦt +∆Φ+ g

(
|Φ|2

)
Φ = 0, t ≥ 0, x ∈ RN ,∫

RN |Φ|2dx = a.
(1.1)

In this context, i represents the imaginary unit, N ≥ 3, a > 0, and g : [0,∞) → R is
a nonlinear term. The function Φ(t, x) : R×RN → C is the wave function. Equation
(1.1) arises naturally in the time-dependent Cauchy problem given by

iΦt +∆Φ+ g
(
|Φ|2

)
Φ = 0,

Φ(·, 0) = ϕ0 ∈ L2
(
RN
)
\{0}.

(1.2)

The L2-normalization condition in Eq. (1.1) stems from the conservation of the
L2-norm in Eq. (1.2). Indeed multiplying Eq. (1.2) by Φ, integrating, and tak-
ing the imaginary part leads to d

dt

∫
RN |Φ|2dx = 0 and therefore we can define∫

RN |Φ|2dx =
∫
RN |ϕ0|2dx = a, see [12]. The pursuit of solutions with prescribed

L2-norms holds profound significance from both physical and mathematical vantage
points. From a physical perspective, the search for solutions characterized by a pre-
determined L2-norm is intricately linked with the principle of mass conservation,
carrying fundamental physical interpretations across diverse domains. For instance,
in the field of nonlinear optics, the L2-norm corresponds to the power magnitude,
while in Bose–Einstein condensates, it encapsulates the particle count and assumes
a pivotal role in delineating the system’s behaviour (refer to [1, 20, 48]). From a
mathematical stance, the examination of solutions with prescribed L2-norms con-
tributes invaluable insights into the characteristics and dynamics of these solutions,
thereby fostering a deeper comprehension of stability and instability phenomena
(refer to [8, 15]).

Consider the standing wave solution denoted as Φ(t, x) = eiλtu(x) in Eq. (1.1),
where u : RN → R. Subsequently, we transform Eq. (1.1) into a new form

−∆u+ λu = f(u), in RN ,∫
RN |u|2dx = a,

(1.3)

where f(u) = g
(
|u|2
)
u. Equation (1.3) characterizes the steady-state behaviour of

the wave function. In order to analyse Eq. (1.3), we introduce the energy functional

E(u) = 1

2

∫
RN

|∇u|2dx−
∫
RN

F (u)dx,
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Normalized ground state solutions with Hardy potential 3

where F (u) =
∫ u

0
f(τ)dτ , and E belongs to the class C 1 on H1

(
RN
)
. A critical

point of E under the mass constraint Sa,

Sa =

{
u ∈ H1(RN ) :

∫
RN

|u|2dx = a

}
,

known as the normalized solution, is a solution of Eq. (1.3).
In the case of Eq. (1.3) with f(u) = µ|u|q−2u + |u|p−2u, 2 < q ≤ p ≤ 2∗, the

exploration of normalized ground state solutions for Eq. (1.3) was undertaken by
Soave in [43, 44]. Building upon the foundational contributions of Soave, subsequent
scholarly endeavours have further engaged with Eq. (1.3), as exemplified by works
such as [2, 29, 36, 49]. For the general nonlinear terms f, it is noteworthy to mention
the investigation carried out by Jeanjean in [27], who assumed that f : R → R
satisfies
(H1) f ∈ C(R,R) and odd.
(H2) There exist α, β ∈ R satisfying 2 + 4

N < α ≤ β < 2∗ = 2N
N−2 such that

αF (t) ≤ f(t)t ≤ βF (t) for any t ∈ R \ {0} .

(H3) The function F̃ (t) := f(t)t− 2F (t) is of class C 1 and satisfies

F̃ ′(t)t >
2N + 4

N
F̃ (t) for any t 6= 0.

and established the existence of normalized ground state solutions to Eq. (1.3) for
any N ≥ 1. Subsequently, for N ≥ 2, Bartsch and de Valeriola in [4] obtained
an infinite number of radial normalized solutions for Eq. (1.3), provided (H1) and
(H2). Furthermore, Jeanjean and Lu [31] revisited Eq. (1.3) under the following
assumptions:
(H4) f : R → R is continuous.

(H5) lims→0
f(s)

|s|1+4/N = 0 and lims→∞
f(s)

|s|(N+2)/(N−2) = 0.

(H6) lims→∞
F (s)

|s|2+4/N = +∞.

(H7) f(s)s < 2N
N−2F (s) for all s ∈ R \ {0}.

(H8) The function s 7→ F̃ (s)

|s|2+4/N is strictly decreasing on (−∞, 0) and strictly

increasing on (0,+∞).

Due to (H4)–(H8), which do not require F̃ ∈ C1, the authors established the exis-
tence of normalized ground state solutions by adapting the argument and employing
techniques from Szulkin and Weth [45, 46]. Subsequently, the authors extend the
results of Jeanjean [27] regarding the existence of normalized ground state solutions.
For readers interested in exploring normalized solutions of Eq. (1.3), we recommend
further investigations into works such as [6, 11, 25, 28, 30, 32, 33, 38, 42, 51], along
with the references they provide. These works offer deeper insights and additional
research pertaining to this subject.
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In a parallel vein of research, certain scholars have introduced an external
potential V in Eq. (1.3), i.e.{

−∆u+ V (x)u+ λu = f(u) in RN ,∫
RN |u|2dx = a.

(1.4)

For the case where f(u) = |u|p−2u with 2 < p < 2∗, Pellacci et al. [40] considered
the existence of normalized solutions for Eq. (1.4) if V possesses a non-degenerate
critical point, who employed the Lyapunov–Schmidt reduction approach to estab-
lish the existence of normalized solutions for Eq. (1.4), contingent on the condition
that a is sufficiently large and p < 2 + 4

N , or a is suitably small and p > 2 + 4
N .

Simultaneously, Bartsch et al. [5] employed min-max arguments to establish the
existence of normalized solutions for Eq. (1.4) with 2 + 4

N < p < 2∗ and V (x) ≥ 0
tends to zero at infinity.

Subsequently, the authors in [39] obtained the existence of normalized solutions
for Eq. (1.4), when 2+ 4

N < p < 2∗, V (x) ≤ 0 satisfies V (x) ≤ lim sup
|x|→+∞

V (x) < +∞,

and

max
{
|W |N , |V |N

2

}
< M, for some M ∈ R+, where W (x) = V (x)|x|.

For the general nonlinearity terms f in Eq. (1.4), Ding and Zhong [18] assumed
that f satisfies (H1), (H2), and (H3′):

(H3
′
) The functional F̃ (s) = f(s)s− 2F (s) is of class C 1 and

F̃ ′(s)s ≥ αF̃ (s), for any s ∈ R,

and V satisfies
(V3) lim

|x|→+∞
V (x) = supx∈RN V (x) = 0 and there exists some σ1 ∈

[
0, N(α−2)−4

N(α−2)

)
such that ∣∣∣∣∫

RN
V (x)u2dx

∣∣∣∣ ≤ σ1|∇u|22, for any u ∈ H1
(
RN
)
.

(V4) ∇V (x) exists a.e. in RN and coincides to the weak gradient of V, putW (x) :=
1
2 〈∇V (x), x〉. There exists some 0 ≤ σ2 < min

{
N(α−2)(1−σ1)

4 − 1, Nβ − N−2
2

}
such

that ∣∣∣∣∫
RN

W (x)u2dx

∣∣∣∣ ≤ σ2|∇u|22, for any u ∈ H1
(
RN
)
.

(V5) ∇W (x) exists a.e. in RN and coincides to the weak gradient of W, put

Y (x) :=

(
N

2
α−N

)
W (x) + 〈∇W (x), x〉,

∫
RN Y (x)u2dx is well-defined for all u ∈ H1

(
RN
)
and there exists some σ3 ∈[

0, N2 α−N − 2
)
such that∫
RN

Y+(x)u
2dx ≤ σ3|∇u|22, for any u ∈ H1

(
RN
)
.
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Under (H1), (H2), (H3′) and (V 3)–(V 5), the authors proved the existence of nor-
malized solutions for Eq. (1.4) for any given a > 0. Li and Zou [35] recently studied

the case where V (x) = − µ

|x|2 and f(u) = |u|2∗−2u+ ν|u|p−2u, with 2 < p < 2∗, in

Eq. (1.4), which can be expressed as:−∆u− µ

|x|2u = λu+ |u|2∗−2u+ ν|u|p−2, N ≥ 3,∫
RN |u|2dx = a, u ∈ H1

(
RN
)
,

(1.5)

and then found several existence results of normalized ground state solutions when
ν ≥ 0 and non-existence results when ν ≤ 0. Furthermore, they also consider the
asymptotic behaviour of the normalized solutions as µ→ 0 or ν→ 0. For further
findings on Eq. (1.4), please refer to [26, 52] and the corresponding references. We
also note that Bieganowski, Mederski, and Schino [12] obtained the existence of
normalized solutions for the following singular polyharmonic equation(−∆)mu+ µ

|y|2mu+ λu = g(u), x = (y, z) ∈ RK × RN−K ,∫
RN |u|2 dx = ρ > 0,

where g is Sobolev subcritical growth at infinity.
Motivated by the previous studies, we find ourselves inclined to extend our explo-

ration into the realm of normalized solutions for Eq. (1.4) with Hardy potential.
Specifically, we investigate the following equation−∆u− µ u

|x|2 + λu = f(u), in RN\{0},∫
RN |u|2dx = a, u ∈ H1(RN ),

(1.6)

where N ≥ 3, λ ∈ R, 1
|x|2 is the Hardy potential, µ < µ̄ := (N−2)2

4 , and f satisfies

the following conditions:
(F1) f ∈ C1 (R,R) and odd.

(F2) There exist β, η such that lim sup
|s|→0

F (s)

|s|2+4/N = β ∈ [0,∞) and lim
|s|→∞

f(s)s

|s|2∗
=

2∗η > 0.

(F3) F̃ (s)

|s|2+
4
N

is strictly increasing on (0,+∞), where F̃ (s) = f(s)s− 2F (s).

(F4) f(s)s < 2∗F (s) for s 6=0.
(F5) There exist constants 2 + 4/N < p < 2∗ and κ> 0 such that

F (s) ≥ κ

p
|s|p.

The primary focus of this problem is not only the Sobolev critical growth nonlinear
term but also the presence of the so-called ‘Hardy potential’ (or ‘inverse-square
potential’) in the linear part. The potential with this rate of decay is critical in
non-relativistic quantum mechanics, as they represent an inter-mediate threshold
between regular potentials (for which there are ordinary stationary states) and
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singular potentials (for which the energy is not lower-bounded and the particle
falls to the centre), for more details see [22]. Besides, it also arises in many other
areas such as nuclear physics, molecular physics, and quantum cosmology (see [9,
14, 23, 41]).

The Gagliardo–Nirenberg inequality is crucial to this study. For 2 < p < 2∗, the
inequality is given by:

|u|p ≤ CN,p|∇u|
γp
2 |u|1−γp

2 for u ∈ H1
(
RN
)
, (1.7)

where CN,p > 0 represents the optimal constant, and γp = N
(

1
2 − 1

p

)
.

Additionally, pγp > 2 holds if and only if p > p̄ := 2 + 4
N .

We introduce that the corresponding energy functional is of class C 1 inH1
(
RN
)
:

Iµ(u) =
1

2

∫
RN

|∇u|2 − µ
u2

|x|2
dx−

∫
RN

F (u)dx.

We say that v ∈ Sa is the normalized ground state solution to Eq. (1.6) if it is
a solution of Eq. (1.6) that minimizes the value of Iµ among all the normalized
solutions of (1.6). Namely, if

dIµ|Sa (v) = 0 and Iµ(v) = inf
{
Iµ(v) : dIµ|Sa (u) = 0, u ∈ Sa

}
.

Since the functional Iµ remains unbounded from below on Sa, we therefore
introduce the manifold

Mµ(a) = {u ∈ Sa : Pµ(u) = 0} ,

where Pµ(u) is defined as

Pµ(u) =

∫
RN

|∇u|2 − µ
u2

|x|2
dx− N

2

∫
RN

F̃ (u) dx.

It is a widely acknowledged fact that any critical point of Iµ|Sa is a member of
Mµ(a), from an implication of the Pohožaev identity. Furthermore, we delve into
the exploration of the minimizing problem

mµ(a) = inf
u∈Mµ(a)

Iµ(u).

We will now delineate the main result of this article.

Theorem 1.1. Assume that N ≥ 3, µ̄ > µ > 0, a> 0, 1 − µ
µ̄ > 2∗C p̄

N,p̄βa
2
N , and

(F1) – (F5) hold. Then, there exists κ∗ > 0, such that for any κ ≥ κ∗ (κ is given
in (F5)), Eq. (1.6) possesses a normalized ground state solution (u, λ), where u> 0
is radial and λ> 0.

The solution derived from theorem 1.1 is exponential decay at infinity and
potentially blow-up at the origin. This property is stated in the following
proposition.
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Proposition 1.2. Let (u, λ) be the solution obtained in theorem 1.1. Then

(i) u ∈ C2
(
RN\{0}

)
.

(ii) There exist constants C > 0 and R > 0 such that for |α| ≤ 2,

|Dαu(x)| ≤ C exp

(
−
√

1

2
|x|

)
, for |x| ≥ R.

(iii) There exist constants Cr,1 > 0 and Cr,2 > 0 depend on a sufficiently small
r > 0 such that

Cr,2|x|−
√
µ̄+

√
µ̄−µ ≤ |u(x)| ≤ Cr,1|x|−

√
µ̄+

√
µ̄−µ, for x ∈ Br\{0}.

In fact, the limiting equation derived from Eq. (1.6) is as follows−∆u+ λu = f(u) in RN ,∫
RN |u|2dx = a, u ∈ H1

(
RN
)
,

(1.8)

and the associated energy functional I∞ : H1
(
RN
)
→ R for Eq. (1.8) is

I∞(u) =
1

2

∫
RN

|∇u|2dx−
∫
RN

F (u)dx.

Any solution u of Eq. (1.6) belongs to the manifold

M∞(a) = {u ∈ Sa : P∞(u) = 0} ,

where P∞(u) is defined as

P∞(u) =

∫
RN

|∇u|2dx− N

2

∫
RN

F̃ (u)dx.

Furthermore, we define

m∞(a) = inf
u∈M∞(a)

Iµ(u).

We then scrutinize the behaviour of solutions as the parameter µ→ 0+ and derive
the existence of solutions for the limiting case, i.e. Eq. (1.8).

Theorem 1.3. Assume that N ≥ 3, µ̄ > µ > 0, a> 0, 1 − µ
µ̄ > 2∗C p̄

N,p̄βa
2
N , and

(F1)–(F5) hold. Let {(uµn , λµn)} in theorem 1.1 with µn → 0+, then uµn → u in
H1

r

(
RN
)
and λµn → λ > 0 as µn → 0+. Moreover, (u, λ) is a normalized ground

state solution of Eq. (1.8).

Furthermore, we study the existence of solutions for µ< 0.

Theorem 1.4. Assume that N ≥ 3, 0 > µ, a> 0, 1 > 2∗C p̄
N,p̄βa

2
N and (F1)–(F5)

hold. Then mµ(a) = m∞(a) and mµ(a) cannot be achieved. Furthermore, if κ is
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8 S. Fan, G.D. Li and C.L. Tang

sufficiently large, Eq. (1.6) admits a mountain pass solution (u, λ) ∈ H1
r

(
RN
)
×R+

with u > 0, whose energy is strictly greater than mµ(a).

Remark 1.5. In the case without a mass constraint, when µ< 0, there is no ground
state, as demonstrated in [37, theorem 1.1].

It is also of significant interest to investigate the asymptotic behaviour of
solutions as µ→ 0−. Consequently, we present the following theorem.

Theorem 1.6. Assume that N ≥ 3, 0 > µ, a> 0, 1 > 2∗C p̄
N,p̄βa

2
N , and (F1)–(F5)

hold. Let the positive and radial sequence of solutions {(uµn , λµn)} in theorem 1.4
with µn → 0−, then uµn → u in H1

r

(
RN
)
and λµn → λ > 0 as µn → 0−. Moreover,

(u, λ) is a normalized ground state solution of Eq. (1.8).

Proposition 1.7. Let u be a solution obtained in either theorem 1.3, theorem 1.4,
or theorem 1.6. Then, it can be inferred that u ∈ C2

(
RN
)
, and there exist C> 0

and R> 0 such that for |α| ≤ 2,

|Dαu(x)| ≤ C exp

(
−
√

1

2
|x|

)
for all |x| ≥ R.

Remark 1.8. To illustrate the existence of nonlinear functions that satisfy
(F1)–(F5), we provide the following example:

F (s) = β|s|2+
4
N + η|s|2

∗
+
κ

p
|s|p,

where 2 + 4/N < p < 2∗.

The article is structured as follows: In §2, we give a foundation of preliminary
concepts and lemmas that will be invoked in subsequent proofs, including the proof
of theorem 1.1. The proofs of theorems 1.3, 1.4, and 1.6 are delineated in §3, 4, and
5, respectively.

Notation. Throughout the article, we use the following notations:

• H1
(
RN
)
denotes the Sobolev space equipped with the norm

‖u‖ =

(∫
RN

(|∇u|2 + u2)dx

)1
2

.

• H1
r

(
RN
)
:=
{
u ∈ H1

(
RN
)
: u is the radial function

}
.

• Lp
(
RN
)
(1 ≤ p ≤ ∞) denotes the Lebesgue space with the norm

|u|p =

(∫
RN

|u|pdx
) 1

p

, |u|∞ = ess sup
x∈RN

|u(x)|.

• Br(0) :=
{
x ∈ RN : |x| < r

}
.

• Sr,a :=
{
u ∈ H1

r (RN ) :
∫
RN |u|2dx = a

}
.
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• D1,2
(
RN
)
:=
{
u ∈ L2∗ (RN

)
: ∂u
∂xi

∈ L2
(
RN
)
, i = 1, 2, . . . , N

}
.

• R+ := {α ∈ R : α > 0}.
• C denotes a positive constant and is possibly various in different places.

2. Preliminaries

For any N ≥ 3 and µ ∈ (0, µ̄), we define

Sµ := inf
u∈D1,2

(
RN

)
\{0}

∫
RN |∇u|2 − µ

|x|2u
2dx(∫

RN |u|2∗dx
)2/2∗ , (2.1)

as in [16, 19]. In particular, when µ=0, we define

S := inf
u∈D1,2

(
RN

)
\{0}

∫
RN |∇u|2dx(∫

RN |u|2∗dx
)2/2∗ , (2.2)

see [47]. Both (2.1) and (2.2) lead to the formulation of an inequality known as the
Sobolev inequality. For 2 < p < 2∗, we recall the Gagliardo–Nirenberg inequality
as

|u|p ≤ CN,p|∇u|
γp
2 |u|1−γp

2 for u ∈ H1
(
RN
)
,

where CN,p > 0 represents the optimal constant, γp = N
(

1
2 − 1

p

)
, and pγp > 2

holds if and only if p > p̄ = 2 + 4
N .

Lemma 2.1. Assume that N ≥ 3, and (F1)–(F5) hold. Then there exists c> 0
such that

f(s)s− p̄F (s) > c|s|2
∗

for all s 6= 0.

Proof. By [31, lemma 2.3], we have

f(s)s− p̄F (s) > 0 for all s 6= 0, (2.3)

where p̄ = 2 + 4
N . We claim that lim infs→0

f(s)s−p̄F (s)

|s|2∗
> 0. Assume, for the sake

of contradiction, that lim infs→0
f(s)s−p̄F (s)

|s|2∗
= 0. Since f is an odd function, we can

deduce that

lim inf
s→0

d
ds (F (s)/s

p̄)
d
dss

2∗−p
= 0. (2.4)

From (2.4), it follows that lim infs→0
F (s)

s2
∗ = 0, which contradicts (F5). Therefore,

we conclude that

lim inf
s→0

f(s)s− p̄F (s)

s2∗
> 0.
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This implies there exist c1 > 0 and δ > 0, such that

f(s)s− p̄F (s)

s2∗
≥ c1

2
, s ∈ (0, δ).

Furthermore, by (F1), (F2), and (2.3), we have

f(s)s− p̄F (s)

s2∗
∈ C([δ,∞),R+)

with

lim
s→∞

f(s)s− p̄F (s)

s2∗
= (2∗ − p̄) η > 0.

Therefore, there exists c2 > 0 such that f(s)s−p̄F (s)

s2
∗ ≥ c2 on [δ,∞). Then there

exists c> 0 such that

f(s)s− p̄F (s) > c|s|2
∗

for all s 6= 0.

This concludes this proof. �

For convenience, we define

t ? u = t
N
2 u(tx), for any x ∈ RN , t ∈ R+. (2.5)

It is straightforward to verify that |t?u|2 = |u|2 for every t > 0. Specifically, u ∈ Sa,
then t ? u ∈ Sa for any t > 0.

Lemma 2.2. Assume that N ≥ 3, a> 0, µ̄ > µ, min
{
1− µ

µ̄ , 1
}
> 2∗C p̄

N,p̄βa
2
N ,

and (F1)–(F5) hold. Then, for any u ∈ Sa,

(a) Iµ(t ? u) → 0+ as t→ 0+,
(b) Iµ(t ? u) → −∞ as t→ +∞.

Proof. We recall the Hardy inequality as presented in [3, theorem 1.72]:∫
RN

u2

|x|2
dx ≤ 1

µ̄

∫
RN

|∇u|2dx. (2.6)

By (F2), for any δ > 0, there exists Cδ,η > η such that

F (s) ≤ (δ + β) |s|p̄ + Cδ,η|s|2
∗
, for all s ∈ R. (2.7)

From (1.7), (2.6), (2.7), and (F5), we derive that

Iµ(t ? u) ≥
t2

2
min

{
1,

(
1− µ

µ̄

)}
|∇u|22 − (δ + β)t2|u|p̄p̄ − Cδ,ηt

2∗ |u|2
∗

2∗

≥
(
1

2
min

{
1,

(
1− µ

µ̄

)}
− C p̄

N,p̄a
2
N (δ + β)

)
t2|∇u|22 − Cδ,ηt

2∗ |u|2
∗

2∗ ,
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and

Iµ(t ? u) ≤
t2

2
max

{
1,

(
1− µ

µ̄

)}
|∇u|22 −

κ

p
tpγp |u|pp.

The conclusion can be drawn that, given the condition µ̄ > µ, p > p̄, and a
sufficiently small δ,

Iµ(t ? u) → 0+ as t→ 0+ and Iµ(t ? u) → −∞ as t→ +∞.

This concludes the proof. �

Lemma 2.3. Assume that N ≥ 3, µ̄ > µ, min
{
1− µ

µ̄ , 1
}
> 2∗C p̄

N,p̄βa
2
N , and

(F1)–(F4) hold. Then, for any u ∈ Sa, there exists a unique tu > 0 such that
tu ? u ∈ Mµ(a). Moreover, Iµ (tu ? u) > Iµ(t ? u) for any t > 0with t 6= tu.

Proof. For any u ∈ Sa, we have

Iµ (t ? u) =
t2

2

∫
RN

|∇u|2 − µ

|x|2
u2dx−

∫
RN

F (t ? u) dx,

and

Pµ (t ? u) = t2
∫
RN

|∇u|2 − µ

|x|2
u2dx− N

2

∫
RN

F̃ (t ? u) dx

= t2

∫
RN

|∇u|2 − µ

|x|2
u2dx− N

2

∫
RN

F̃
(
t
N
2 u
)

∣∣∣tN2 u∣∣∣p̄ |u|p̄dx

 . (2.8)

It is evident that Iµ (t ? u) is of class C 1, and its derivative can be expressed as

d

dt
Iµ (t ? u) = t

∫
RN

|∇u|2 − µ

|x|2
u2dx− N

2
t−1

∫
RN

F̃ (t ? u) dx =
1

t
Pµ(t ? u).

With the application of (2.6),

t2
∫
RN

|∇u|2 − µ

|x|2
u2dx ≥ t2 min

{
1, 1− µ

µ̄

}
|∇u|22.

By (F4), (F5), and (2.7), one gets

N

2

∫
RN

F̃ (t ? u) dx < 2∗
∫
RN

F (t ? u) dx

≤ 2∗
(
(δ + β)t2

∫
RN

|u|p̄dx+ Cδ,ηt
2∗
∫
RN

|u|2
∗
dx

)
= 2∗

(
C p̄

N,p̄a
2
N (δ + β)t2 |∇u|22 + C2t

2∗ |∇u|2
∗

2

)
.
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12 S. Fan, G.D. Li and C.L. Tang

It is apparent that by selecting a sufficiently small δ, we can ensure that:

2∗C p̄
N,p̄a

2
N (δ + β) < min

{
1− µ

µ̄
, 1

}
.

Thus d
dtIµ (t ? u) (t) > 0 for sufficiently small t. Similar to lemma 2.2, we can

conclude that d
dtIµ (t ? u) (t) → −∞ as t→ ∞. Therefore, there exists at least one

tu ∈ R+ such that d
dtIµ (t ? u) (t) =

1
tu
Pµ(tu ? u) = 0, namely, tu ? u ∈ Mµ(a).

Suppose that there exists another tu1 such that tu1 ?u ∈ Mµ(a). Combined with
(2.8), it yields

∫
RN

F̃

(
t
N
2
u u

)
∣∣∣∣tN2u u

∣∣∣∣p̄ |u|p̄dx =

∫
RN

F̃

(
t
N
2
u1u

)
∣∣∣∣tN2u1u∣∣∣∣p̄ |u|p̄dx,

which contradicts (F3). Hence, it is established that tu = tu1 . Furthermore, we can
deduce that Iµ (tu ? u) > Iµ(t ? u) for all t > 0 with t 6= tu. �

Lemma 2.4. Assume that N ≥ 3, µ̄ > µ, a> 0, min
{
1− µ

µ̄ , 1
}
> 2∗C p̄

N,p̄βa
2
N ,

and (F1)–(F5) hold. Then,

(i) there exists ρ> 0, such that inf
u∈Mµ(a)

|∇u|2 > ρ,

(ii) mµ(a) = inf
u∈Mµ(a)

Iµ(u) > 0.

Proof. (i) For any u ∈ Mµ(a), combined with (1.7), (2.6), (2.7), and the Sobolev
inequality, Pµ(u) = 0 implies that

|∇u|22 =

∫
RN

µ

|x|2
u2dx+

N

2

∫
RN

F̃ (u)dx

≤ max

{
0,
µ

µ̄

}
|∇u|22 + 2∗

∫
RN

F (u)dx

≤ max

{
0,
µ

µ̄

}
|∇u|22 + 2∗

(
C p̄

N,p̄a
2
N (δ + β) |∇u|22 + C2 |∇u|2

∗
2

)
.

Let δ enough small such that

2∗C p̄
N,p̄a

2
N (δ + β) < min

{
1− µ

µ̄
, 1

}
. (2.9)

Then there is ρ> 0 such that inf
u∈Mµ(a)

|∇u|2 > ρ.
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(ii) For any u ∈ Mµ(a), we can deduce that

Iµ(u) ≥ Iµ(t ? u) ≥
t2

2
min

{
1, 1− µ

µ̄

}
|∇u|22 −

(
t2(δ + β)|u|p̄p̄ + Cδ,ηt

2∗ |u|2
∗

2∗
)

≥ t2

2
min

{
1, 1− µ

µ̄

}
|∇u|22

− C2t
2∗ |∇u|2

∗
2 − C p̄

N,p̄a
2
N (δ + β)t2|∇u|22.

By selecting t = σ
|∇u|2

with sufficiently small σ> 0 and taking δ sufficiently small

to ensure that (2.9) holds, we can deduce that

Iµ(u) ≥
min

{
1, 1− µ

µ̄

}
− 2C p̄

N,p̄a
2
N β

4
σ2 > 0.

This concludes the proof. �

Corollary 2.5. Assume that N ≥ 3, µ̄ > µ, a> 0, min
{
1− µ

µ̄ , 1
}

>

2∗C p̄
N,p̄βa

2
N , and (F1)–(F5) hold. Then, there exists a sufficiently small ξ > 0 such

that

mµ(a) > sup
u∈C(a)

Iµ(u) > 0, Iµ(u) > 0, Pµ(u) > 0 for any u ∈ C(a),

where C(a) =
{
u ∈ Sa : |∇u|22 < ξ

}
. Furthermore, Iµ has a mountain pass

geometry.

Proof. By (F4), (1.7), (2.7), and the Sobolev inequality, we have

Pµ(u) =

∫
RN

|∇u|2 − µ
u2

|x|2
dx− N

2

∫
RN

F̃ (u) dx

≥
∫
RN

|∇u|2 − µ
u2

|x|2
dx− 2∗

∫
RN

F (u) dx

≥ min

{
1, 1− µ

µ̄

}
|∇u|22 − 2∗

(
C p̄

N,p̄a
2
N (δ + β) |∇u|22 + C2 |∇u|2

∗
2

)
.

Thus, Pµ(u) > 0 when u ∈ C(a) if ξ > 0 is sufficiently small. Similarly, we can

obtain that Iµ(u) > 0 when u ∈ C(a) if ξ > 0 is sufficiently small. By (F5), one
can see that

Iµ(u) ≤
(
1

2
− 1

µ̄
min{µ, 0}

)∫
RN

|∇u|2dx,

which implies that mµ(a) > supu∈C(a) Iµ(u) for ξ > 0 small enough. Combined

with lemma (2.2), Iµ has a mountain pass geometry. �
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Set

σµ(a) := inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t)),

where

Γµ :=
{
γ ∈ C ([0, 1], Sr,a) : γ(0) ∈ C(a), Iµ(γ(1)) ≤ 0

}
.

Following from the strategy in [27], consider the functional Ĩµ : R+×H1
(
RN
)
→

R,

Ĩµ(s, u) := Iµ(s ? u) =
s2

2

∫
RN

|∇u|2 − µ

|x|2
u2dx− s−N

∫
RN

F (s
N
2 u)dx. (2.10)

Define Ic
µ := {u ∈ Sr,a : Iµ(u) ≤ c}, and

σ̃µ(a) := inf
γ∈Γ

max
t∈[0,1]

Ĩµ(γ̃(t)),

where

Γ̃µ :=
{
γ̃ = (ι, ζ) ∈ C

(
[0, 1],R+ × Sr,a

)
: γ̃(0) ∈

(
1, C(a)

)
, γ̃(1) ∈

(
1, I0

µ

)}
.

For any u ∈ Sr,a, since |∇(s ? u)|2 → 0 as s→ 0, and Iµ(s ? u) → −∞ as s→ +∞,
there exist 0 < s0 < 1 < s1 such that

γ̃u : t ∈ [0, 1] 7→ (1, ((1− t)s0 + ts1) ? u) ∈ R+ × Sr,a, (2.11)

where γ̃u is continuous [7, lemma 3.5] and hence forms a path in Γ̃µ. Then σ̃µ(a)
is well-defined.

Lemma 2.6. Assume that N ≥ 3, µ̄ > µ, a > 0, min
{
1− µ

µ̄ , 1
}
> 2∗C p̄

N,p̄βa
2
N ,

and (F1)−(F5) hold. Then

σ̃µ(a) = mr
µ(a) := inf

u∈Mr
µ(a)

Iµ(u),

where Mr
µ(a) = Mµ(a) ∩H1

r

(
RN
)
.

Proof. Step 1: σ̃µ(a) ≥ mr
µ(a). For any γ̃ = (ι, ζ) ∈ Γ̃µ, by lemma 2.3, there exists

t0 ∈ (0, 1) such that ι(t0) ? ζ(t0) ∈ Mr
µ(a). Thus, we have

max
t∈[0,1]

Ĩµ(γ̃(t)) ≥ Ĩµ (γ̃ (t0)) = Iµ (ι(t0) ? ζ(t0)) ≥ inf
u∈Mr

µ(a)
Iµ(u) = mr

µ(a).

Hence, σ̃µ(a) ≥ mr
µ(a).

Step 2: mr
µ(a) ≥ σ̃µ(a). For any u ∈ Mr

µ(a), then γ̃u defined in (2.11) is a path

in Γ̃µ. By lemma 2.3,

Iµ(u) = max
t∈[0,1]

Ĩµ(γ̃u(t)) ≥ σ̃µ(a).

Thus, mr
µ(a) ≥ σ̃µ(a). �

https://doi.org/10.1017/prm.2024.127 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.127


Normalized ground state solutions with Hardy potential 15

Lemma 2.7. Assume that N ≥ 3, µ̄ > µ, a> 0, min
{
1− µ

µ̄ , 1
}
> 2∗C p̄

N,p̄βa
2
N and

(F1)–(F5) hold. Then

σ̃µ(a) = σµ(a).

Proof. Step 1: σµ(a) ≥ σ̃µ(a). Let γ ∈ Γµ, define γ̃(t) = (1, γ(t)) ∈ Γ̃µ. Then

Iµ(γ(t)) = Ĩµ(γ̃(t)) ≥ σ̃µ(a) for all t ≥ 0. Hence σµ(a) ≥ σ̃µ(a).

Step 2: σ̃µ(a) ≥ σµ(a). For all γ̃(t) = (ι(t), ζ(t)) ∈ Γ̃µ, setting γ(t) = ι(t) ? ζ(t),

then γ ∈ Γµ and Ĩµ(γ̃(t)) = Iµ(γ(t)) ≥ σµ(a). Therefore, σ̃µ(a) ≥ σµ(a). �

Lemma 2.8. Assume that N ≥ 3, µ̄ > µ ≥ 0, a> 0, 1 − µ
µ̄ > 2∗C p̄

N,p̄βa
2
N and

(F1)–(F5) hold. Then,

mµ(a) = mr
µ(a).

Proof. It suffices to show that mµ(a) ≥ mr
µ(a), since Mr

µ(a) ⊂ Mµ(a). For any
u ∈ Mµ(a), let v := |u|∗ be the Schwarz rearrangement of |u|. By the properties of
rearrangement, one has

Iµ(v) ≤ Iµ(u), Pµ(v) ≤ Pµ(u) = 0.

By lemma 2.3, there exists tv > 0 such that tv ? v ∈ Mr
µ(a). For any t > 0,

Iµ(t ? v) =
t2

2

∫
RN

|∇v|2 − µ

|x|2
v2dx− t−N

∫
RN

F
(
t
N
2 v
)
dx

≤ t2

2

∫
RN

|∇u|2 − µ

|x|2
u2dx− t−N

∫
RN

F
(
t
N
2 u
)
dx

= Iµ(t ? u).

By lemma 2.3, we obtain

Iµ(u) ≥ Iµ (tv ? u) ≥ Iµ (tv ? v) .

Thus, mµ(a) = mr
µ(a). �

Lemma 2.9. [7, lemma 3.6] Assume that N ≥ 3. For any u ∈ Sa and t> 0, the
map

TuSa → Tt∗uSa, ϕ 7→ t ? ϕ

is a linear isomorphism with inverse

Tt?uSa → TuSa, ψ 7→
(
1

t

)
? ψ.

Lemma 2.10. Assume that N ≥ 3, a> 0, µ̄ > µ, min
{
1− µ

µ̄ , 1
}
> 2∗C p̄

N,p̄βa
2
N ,

and (F1)–(F5) hold. Then, there exists a Pohožaev–Palais–Smale sequence {un} ⊂
Sr,a for Iµ at the level σµ(a),
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16 S. Fan, G.D. Li and C.L. Tang

Iµ (un) → σµ(a),
(
Iµ|Sr,a

)′
(un) → 0, Pµ (un) → 0, as n→ ∞.

Proof. By lemmas 2.6 and 2.7, we have

σµ(a) = mr
µ(a) > sup

u∈
(
C(a)∪I0µ

)
∩Sr,a

Iµ(u) = sup
(s,u)∈

(
(1,C(a))∪

(
1,I0µ

))
∩
(
R×Sr,a

) Ĩµ(s, u).

Using the terminology in [21, Section 5], {γ̃([0, 1]) : γ̃ ∈ Γ̃µ} is a homotopy stable

family of compact subsets of R× Sr,a with extended closed boundary
(
1, C(a)

)
∪(

1, I0
µ

)
. Furthermore, the superlevel set {u ∈ Sr,a : Ĩµ(u) ≥ σ̃µ(a)} is a dual set

for Γ̃µ, meaning that (F ′1) and (F ′2) in [21, theorem 5.2] are satisfied. Therefore,

considering any minimizing sequence {γn = (1, ζn)} ⊂ Γ̃µ for σ̃µ(a), where ζn(t) ≥
0 almost everywhere in RN for t ∈ [0, 1], there exists a Palais–Smale sequence

{(sn, wn)} ⊂ R+ × Sr,a for Ĩµ
∣∣∣
R×Sr,a

at level σ̃µ(a), such that as n→ ∞,

∂sĨµ (sn, wn) → 0, (2.12)

and ∥∥∥∂uĨµ (sn, wn)
∥∥∥
(TwnSr)

∗ → 0, (2.13)

with the additional property that

|sn − 1|+ ‖wn − ζn‖ → 0. (2.14)

By (2.10) and (2.12), we have Pµ (sn ? wn) = on(1). Also by (2.13) and the
boundedness of {sn} due to (2.14), we obtain

dIµ (sn ? wn) (sn ? ϕ) = on(1)‖ϕ‖, for every ϕ ∈ TwnSr,a. (2.15)

Let un := sn ? wn, based on (2.15) and lemma 2.9, {un} ⊂ Sr,a is a Palais–Smale
sequence for Iµ|Sr,a at the level σµ(a). Moreover, Pµ (un) = on(1). �

Lemma 2.11. Assume that N ≥ 3, a> 0, µ̄ > µ, min
{
1− µ

µ̄ , 1
}
> 2∗C p̄

N,p̄βa
2
N ,

and (F1)–(F5) hold. Then for any ε> 0, there exists κ∗ > 0 such that σµ(a) < ε
as κ > κ∗, where κ appears in (F5).

Proof. For a fixed u ∈ Sr,a, there exist 0 < s0 < 1 < s1 such that

γo(t) = ((1− t)s0 + ts1) ? u ∈ Γµ.
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By (F5) and lemmas 2.6–2.8, we observe that

σµ(a) ≤ max
t∈[0,1]

Iµ(γo(t))

≤ max
t≥0

{
t2

2

∫
RN

|∇u|2 − µ

|x|2
u2dx− κ

p
tpγp

∫
RN

|u|pdx
}

≤ max
t≥0

{
1

2
max

{
1, 1− µ

µ̄

}
t2
∫
RN

|∇u|2dx− κ

p
tpγp

∫
RN

|u|pdx
}

≤ C

(
1

κ

) 2
pγp−2

,

which deduces that σµ(a) < ε for any κ > κ∗ by noting that p > p̄ = 2 + 4
N . �

Proof of theorem 1.1. Consider the sequence {un} arising from lemma 2.10. As
the functional Iµ exhibits even symmetry with respect to u, we can assume un is
nonnegative.

We claim that {un} is bounded inH1
r

(
RN
)
. From (F2) and lemma 2.1, Iµ (un) =

σµ(a) + on(1) combined with Pµ (un) = on(1) implies that there is a small enough
c> 0 such that

σµ(a) + on(1) = Iµ (un)−
1

2
Pµ(un) =

∫
RN

N

4
f (un)un − N + 2

2
F (un) dx

≥ c

∫
RN

|un|2
∗
dx.

Also from P (un) = on(1), we have(
1− µ

µ̄

)
|∇un|22 ≤

∫
RN

|∇un|2 − µ
u2n
|x|2

dx =
N

2

∫
RN

F̃ (un) dx

≤ 2∗C p̄
N,p̄a

2
N (δ + β) |∇un|22 + C2 |un|2

∗
2∗ ,

which shows that {|∇un|2} is bounded, and {un} ⊂ Sr,a, so that {un} is bounded
in H1

r

(
RN
)
.

Therefore, there exists u ∈ H1
r

(
RN
)
such that, up to a subsequence, un ⇀ u in

H1
r

(
RN
)
, un → u in Lp

(
RN
)
for p ∈ (2, 2∗), and un(x) → u(x) almost everywhere

in RN . We claim that u 6=0, by contradiction, that u =0. By utilizing the Strauss
inequality [50, lemma 4.5] for the sequence {un} in H1

r

(
RN
)
, it follows that

|un(x)| ≤ CN |un|
1
2
2 |∇un|

1
2
2 |x|

1−N
2 a.e. on RN .

Consequently, it can be deduced that un(x) → 0 as |x| → ∞.
By using (F2), we establish

lim
s→∞

N
2 F̃ (s)− 2∗η|s|2∗

|s|2∗ + |s|2
= 0, lim

s→0

N
2 F̃ (s)− 2∗η|s|2∗

|s|2 + |s|2∗
= 0.
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By the boundedness of {|un|2∗} and the fact that {un} ∈ Sr,a, we have∫
RN

|un|2 + |un|2
∗
dx ≤M, for some positive M.

Consequently, by Lions Lemma [10, theorem A.I.], we can say that

lim
n→∞

∫
RN

N

2
F̃ (un)− 2∗η|un|2

∗
dx = 0. (2.16)

Then by P (un) → 0, we can deduces that∫
RN

|∇un|2 − µ
u2n
|x|2

dx+ on(1) =
N

2

∫
RN

F̃ (un)dx

= 2∗η

∫
RN

|un|2
∗
dx+

∫
RN

N

2
F̃ (un)− 2∗η|un|2

∗
dx

≤ 2∗ηS
N

2−N
µ

(∫
RN

|∇un|2 − µ
u2n
|x|2

dx

) N
N−2

.

(2.17)

By using lemma 2.4, we can assume that, up to a subsequence,∫
RN

|∇un|2 − µ
u2n
|x|2

dx→ l∗ > 0.

By (2.17), we find that l∗ ≥ (2∗η)
2−N
2 S

N
2
µ . Similarly as (2.16), we have

lim
n→∞

∫
RN

f(un)un − 2∗F (un)dx = 0.

This allows us to derive

mµ(a) + on(1) = Iµ (un)−
1

2∗
Pµ (un)

=
1

N

∫
RN

|∇un|2 − µ
u2n
|x|2

dx+
N − 2

4

∫
RN

f(un)un − 2∗F (un)dx

=
1

N

∫
RN

|∇un|2 − µ
u2n
|x|2

dx+ on(1)

≥ 1

N
(2∗η)

2−N
2 S

N
2
µ + on(1),

which contradicts lemma 2.11. Hence, u 6= 0. By the weak lower semi-continuity,
we deduce ∫

RN
|u|2dx = a0 ∈ (0, a].
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Since {un} is a Palais–Smale sequence of Iµ|Sr,a , there exists {λn} such that for

any ϕ ∈ H1
(
RN
)

∫
RN

(
∇un∇ϕ− µ

unϕ

|x|2
+ λnunϕ− f (un)ϕ

)
dx = on(1)‖ϕ‖. (2.18)

Setting ϕ = un and by the boundedness of {un} in H1
(
RN
)
, we have

−λna =

∫
RN

|∇un|2 −
µ

|x|2
u2ndx−

∫
RN

f (un)undx+ on(1).

Moreover, we can infer that the boundedness of λn by the boundedness of {un}.
Therefore, up to a subsequence, λn → λ ∈ R. By (2.18),∫

RN
(∇u∇ϕ− µ

uϕ

|x|2
+ λuϕ− f(u)ϕ)dx = 0 (2.19)

implies that (u, λ) satisfies

−∆u− µ

|x|2
u+ λu = f(u). (2.20)

Thus, one has ∫
RN

(
|∇u|2 − µ

|x|2
u2 + λ|u|2 − f(u)u

)
dx = 0, (2.21)

and

N − 2

2N

∫
RN

|∇u|2 − µ

|x|2
u2dx+

λ

2

∫
RN

|u|2dx−
∫
RN

F (u)dx = 0. (2.22)

Combined with (2.21) and (2.22), we can infer that∫
RN

|∇u|2 − µ

|x|2
u2dx− N

2

∫
RN

(f(u)u− 2F (u))dx = 0.

i.e. Pµ(u) = 0.
Defining vn := un − u ⇀ 0 in H1

(
RN
)
, we can utilize the Brézis–Lieb lemma

[13] to state that

Iµ(un) = Iµ(u) + Iµ(vn) + on(1), Pµ(un) = Pµ(u) + Pµ(vn) + on(1).

We claim that vn → 0 in D1,2
(
RN
)
. Let us proceed by assuming, for the sake of

contradiction, that

lim
n→∞

∫
RN

|∇vn|2 − µ
v2n
|x|2

dx > 0.
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Since Pµ(u) = 0, we have Pµ(vn) = on(1). This implies∫
RN

|∇vn|2 − µ
v2n
|x|2

dx+ on(1) =
N

2

∫
RN

F̃ (vn)dx

= 2∗η

∫
RN

|vn|2
∗
dx+

∫
RN

N

2
F̃ (vn)− 2∗η|vn|2

∗
dx

≤ 2∗ηS
N

2−N
µ

(∫
RN

|∇vn|2 − µ
v2n
|x|2

dx

) N
N−2

+ on(1).

Similarly, we can deduce

lim
n→∞

Iµ(vn) ≥
1

N
(2∗η)

2−N
2 S

N
2
µ .

Furthermore,

Iµ(u) = Iµ(u)−
1

2
Pµ(u) =

∫
RN

N

4
F̃ (u)− F (u)dx > 0.

As a consequence, we arrive at

σµ(a) = Iµ (vn) + Iµ (u) + on(1) ≥
1

N
(2∗η)

2−N
2 S

N
2
µ ,

which contradicts lemma 2.11, so that un → u in D1,2(RN ). Moreover, we have

lim
n→∞

∫
RN

|un|2
∗
dx =

∫
RN

|u|2
∗
dx, (2.23)

which leads to∫
RN

F (un) dx→
∫
RN

F (u)dx,

∫
RN

f (un)undx→
∫
RN

f(u)udx. (2.24)

Furthermore, by (2.20),

−∆u− µ
u

|x|2
+ λu = f(u).

Since (2.21), (2.22), and (F4), one obtains

λ =
1

a

(∫
RN

f(u)udx−
∫
RN

|∇u|2 − µ
u2

|x|2
dx

)
=

1

a

{∫
RN

2−N

2
f(u)u+NF (u)dx

}
> 0.

Thus, λ> 0 and u ∈ Sa by (2.18) and (2.19). According to lemmas 2.6 and 2.8,
(u, λ) ∈ H1

r

(
RN
)
× R+ is the normalized ground state solution of (1.6). We can

further establish that u > 0 through the strong maximum principle. This concludes
the proof. �
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Here, we provide the proof of proposition 1.2, which has been previously estab-
lished in [34]. However, for completeness, we will only prove (i) and (ii). It is worth
noting that the proof of (iii) has already been established in prior works [17, 24,
34].

Proof of proposition 1.2. Since 1
|x|2 ∈ C2

(
RN\Br0

(0)
)
for any small r0 > 0.

Then by using a standard elliptic regularity argument, we establish that u ∈
C2
(
RN\{0}

)
. We now turn our attention to proving the exponential decay of the

solution. Since u ∈ C2
(
RN\{0}

)
and u ∈ Sr,a, then u(x) → 0 as |x| → +∞.

Consequently, there exists R> 0 such that

−∆u(x) =
µ

|x|2
u(x) + f(u(x))− λu(x) ≤ −λ

2
u(x) for all |x| ≥ R. (2.25)

Define φ(x) =M exp

(
−
√

λ
2 |x|

)
, where M is chosen to satisfy

M exp

(
−
√
λ

2
R

)
≥ u(x) for all |x| = R.

By direct calculation, it follows

∆φ =

(
λ

2
− N − 1

r

√
λ

2

)
φ, for all x 6= 0, where r = |x|.

This leads to the immediate conclusion

∆φ ≤ λ

2
φ for all x 6= 0. (2.26)

Combining (2.25) with (2.26), it becomes evident that the function ϕ = φ−u fulfils
−∆ϕ+ λ

2ϕ ≥ 0 in |x| ≥ R,

ϕ(x) ≥ 0 in |x| = R,

lim
|x|→∞

ϕ(x) = 0.

In accordance with the maximum principle, it follows that ϕ(x) ≥ 0 holds true for
all |x| ≥ R. Consequently,

u(x) ≤M exp

(
−
√
λ

2
|x|

)
, |x| ≥ R. (2.27)

Further, based on (F1)–(F2) in conjunction with the exponential decay of u, it is
evident that for sufficiently large |x|,

m1u ≤ |f(u)− λu| ≤ m2u,
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where m2 ≥ m1 > 0. As u satisfies Eq. (1.6),

−urr −
N − 1

r
ur −

µ

r2
u = f(u)− λu, r ∈ (r0,+∞), r0 > 0, (2.28)

with ur = ∂u
∂r , urr = ∂2u

∂r2
, r = |x|.

It is a known fact that the equation

−
(
rN−1ur

)
r
= µrN−3u+ rN−1f(u)− λrN−1u, r ∈ (r0,+∞), r0 > 0, (2.29)

can be integrated over the interval (r,R), using (2.27), and then letting r,R→ +∞.
This integration demonstrates that rN−1ur possesses a limit as r → ∞, which,
according to (2.27), must be zero. Furthermore, integrating (2.29) over (r,+∞)
implies exponential decay of ur (also referenced in [10]). Finally, the exponential
decay of urr, and consequently of |Dαu(x)| for |α| ≤ 2, directly follows from (2.28).
This concludes the proof. �

3. Proof of theorem 1.3

In this section, we delve into the asymptotic behaviour of the solution to Eq. (1.6)
as µ→ 0+.

Lemma 3.1. Assume that N ≥ 3, a> 0, 1 − µ
µ̄ > 2∗C p̄

N,p̄βa
2
N , and (F1)–(F5)

hold. Then, for any sequence µn ∈ (0, µ̄) with µn → 0+ as n → ∞, we have
lim
n→∞

mµn(a) = m∞(a).

Proof. For any 0 < µn < µ̄,

I∞(u) = Iµn(u) + µn

∫
RN

u2

|x|2
dx,

and consequently, by lemma 2.3

m∞(a) = inf
u∈Sa

max
t>0

I∞(t ? u) ≥ inf
u∈Sa

max
t>0

Iµn(t ? u) = mµn(a).

We now proceed to assert that

m∞(a) ≤ lim
n→∞

mµn(a).

For each n ≥ 1, let un ∈ Mµn(a) be such that

Iµn (un) = mµn(a) < m∞(a) +
1

n
.

Consequently, |∇un|22 ≤ C for all n ≥ 1, ensuring that un is bounded in H1
(
RN
)
.

Let tn be determined according to lemma 2.3 such that tn?un ∈ M∞(a).Moreover,

Pµn (un) =

∫
RN

|∇un|2 − µn
u2n
|x|2

dx− N

2

∫
RN

F̃ (un)dx = 0,

https://doi.org/10.1017/prm.2024.127 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.127


Normalized ground state solutions with Hardy potential 23

and

P∞ (tn ? un) = t2n

∫
RN

|∇un|2 dx− N

2
t−N
n

∫
RN

F̃

(
t
N
2
n un

)
dx = 0.

As n→ ∞, we establish

∫
RN

F̃

(
t
N
2
n un

)
∣∣∣∣tN2n un

∣∣∣∣2+ 4
N

|un|2+
4
N dx =

∫
RN

F̃ (un)

|un|2+
4
N

|un|2+
4
N dx+ on(1).

Furthermore, based on (F3), it follows that tn → 1 as n → ∞. By [7, lemma 3.5],
we have ‖tn ? un − un‖ → 0, and consequently,

I∞ (tn ? un)− I∞ (un) → 0, as n→ ∞.

This entails

m∞(a) ≤ I∞ (tn ? un) = I∞ (un) + on(1)

= Iµn (un) + µn

∫
RN

u2n
|x|2

dx+ on(1) ≤ mµn(a) + on(1).

Hence, we conclude that m∞(a) ≤ lim
n→∞

mµn(a). This concludes the proof. �

Proof of theorem 1.3. Assume that (un, λn) is obtained in theorem 1.1 withmµn(a),
where µ̄ > µn and µn → 0+. In other words, (un, λn) satisfies

−∆un − µn

|x|2
un + λnun = f(un). (3.1)

Consequently, Pµn(un) = 0.
Similarly to the proof of theorem 1.1, {un} is bounded in H1

r

(
RN
)
, so that

there exists a nonnegative function u ∈ H1
r

(
RN
)
such that un ⇀ u in H1

r

(
RN
)
,

un → u in Lp
(
RN
)
for p ∈ (2, 2∗), and un(x) → u(x) almost everywhere in RN .

Consequently, by taking n→ ∞ in (3.1), we have

−∆u+ λu = f(u), (3.2)

which shows that P∞(u) = 0.
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Claim 1: u 6= 0. If not, u =0, and Pµn(un) = 0 combined with (2.16) implies
that∫
RN

|∇un|2 dx =
N

2

∫
RN

F̃ (un)dx+ µn

∫
RN

u2n
|x|2

dx

= 2∗η

∫
RN

|un|2
∗
dx+

∫
RN

N

2
F̃ (un)− 2∗η|un|2

∗
dx+ µn

∫
RN

u2n
|x|2

dx

= 2∗η

∫
RN

|un|2
∗
dx+ on(1)

≤ 2∗ηS
N

2−N

(∫
RN

|∇un|2 dx
) N

N−2
+ on(1). (3.3)

Combined with lemma 2.4, we deduce that∫
RN

|∇un|2 dx ≥ (2∗η)
2−N
2 S

N
2 + on(1).

Since {un} is bounded in H1(RN ) and µn → 0+, we have

mµn(a) = Iµn (un)−
1

2∗
Pµn(un)

=
1

N

∫
RN

|∇un|2 − µn
u2n
|x|2

dx+
N − 2

4

∫
RN

f(un)un − 2∗F (un)dx

≥ 1

N
(2∗η)

2−N
2 S

N
2 + on(1). (3.4)

Thus,

lim
n→∞

mµn(a) = m∞(a) ≥ 1

N
(2∗η)

2−N
2 S

N
2 ,

which contradicts lemma 2.11, and then u 6= 0. Based on Eq. (3.2), we have

λ|u|22 =

∫
RN

f(u)udx−
∫
RN

|∇u|2dx =

∫
RN

f(u)udx− N

2

∫
RN

F̃ (u)dx > 0,

which holds due to (F4).
Claim 2: un → u in D1,2

(
RN
)
. Let us proceed by contradiction and assume that

ν := lim
n→∞

∫
RN

|∇vn|2 dx > 0,

where vn = un − u. Since Pµn(un) = 0, we can infer that Pµn(vn) = 0. Similarly,
one can see that

Iµn(vn) ≥
1

N
(2∗η)

2−N
2 S

N
2 + on(1),

and by lemma 2.1,

I∞(u) = I∞(u)− 1

2
P∞(u) =

∫
RN

N

4
F̃ (u)− F (u)dx > 0.
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Consequently, we arrive at

mµn(a) = Iµn(un) = Iµn(vn) + I∞(u) + on(1) >
1

N
(2∗η)

2−N
2 S

N
2 + on(1).

This leads to

lim
n→∞

mµn(a) = m∞(a) ≥ 1

N
(2∗η)

2−N
2 S

N
2 ,

which is a contradiction. Thus, we conclude that un → u in D1,2
(
RN
)
.

Furthermore, we can establish that

lim
n→∞

∫
RN

|un|2
∗
dx =

∫
RN

|u|2
∗
dx,

and ∫
RN

F (un) dx→
∫
RN

F (u)dx.

Consequently,

lim
n→∞

λn

∫
RN

|un|2dx = λ

∫
RN

u2dx,

and given that λ> 0, so that un → u in H1
r (RN ). Thus, by lemma 3.1, (u, λ) ∈

H1
r (RN ) × R+ is a normalized ground state of Eq. (1.8). Moreover, u > 0 by the

strong maximum principle. �

4. Proof of theorem 1.4

In this section, we focus on the existence of normalized solutions for Eq. (1.6) when
µ< 0.

Lemma 4.1. Assume that N ≥ 3, 0 > µ, and (F1)–(F5) hold. Then, mµ(a) =
m∞(a). Additionally, mµ(a) cannot be attained.

Proof. When µ< 0, it becomes evident thatm∞(a) ≤ mµ(a). According to theorem
1.3, Eq. (1.8) possesses a ground state solution v ∈ M∞(a), achieving m∞(a), i.e.
I∞(v) = m∞(a) and P∞(v) = 0. Moreover, due to the exponential decay of v, we
have

v(x) ≤M exp

(
−
√
λ

2
|x|

)
, |x| > R, for some R > 0.

Consequently, we can introduce vn(x) = v(x − yne1), where e1 = (1, 0, . . . , 0),
yn ∈ R+ and yn → +∞ as n → ∞. Furthermore, given any ε> 0, there exists
Rε > 0 such that,
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1

|x|2
≤ ε, for all |x| ≥ Rε.

Since yn → +∞ as n→ ∞, there exists Rε > 0, such that as n→ ∞,

vn(x) ≤M exp

(
−
√
λ

2
|x− yn|

)
≤ C

|x− yn|
, x ∈ BRε(0).

This results in∫
RN

v2n
|x|2

dx =

∫
BRε (0)

v2n
|x|2

dx+

∫
RN \BRε (0)

v2n
|x|2

dx

≤ C

|yn −Rε|2
∫
BRε (0)

1

|x|2
dx+ ε

∫
RN \BRε (0)

v2ndx

≤ C1

|yn −Rε|2
+ εa→ 0, as n→ ∞.

Since vn ∈ M∞(a),

P∞ (vn) =

∫
RN

|∇vn|2 dx− N

2

∫
RN

[f (vn) vn − 2F (vn)] dx = 0,

as deduced from lemma 2.3, there exists a unique tn > 0 satisfying

P (tn ? vn) = t2n

∫
RN

(
|∇vn|2 − µ

v2n
|x|2

)
dx− N

2
t−N
n

∫
RN

F̃

(
t
N
2
n vn

)
dx = 0.

Therefore, as yn → ∞, we establish

∫
RN

F̃

(
t
N
2
n vn

)
∣∣∣∣tN2n vn

∣∣∣∣2+ 4
N

|vn|2+
4
N dx =

∫
RN

F̃ (vn)

|vn|2+
4
N

|vn|2+
4
N dx+ on(1).

Furthermore, based on (F3), it follows that tn → 1 as n→ ∞. We now proceed to
demonstrate that mµ(a) ≤ m∞(a). As {tn ? vn} ⊂ Mµ(a) and tn → 1 as n → ∞,
it follows that

mµ(a) ≤ Iµ (tn ? vn) = Iµ (tn ? vn)−
1

2∗
Pµ (tn ? vn)

=
t2n
N

∫
RN

|∇vn|2 −
µ

|x|2
v2ndx+

∫
RN

N − 2

4
f (tn ? vn) tn ? vn

− N

2
F (tn ? vn) dx

=
1

N

∫
RN

|∇vn|2dx+

∫
RN

N − 2

4
f (vn) vn − N

2
F (vn) dx+ on(1)

= I∞ (vn)−
1

2∗
P∞ (vn) + on(1)

= I∞ (vn) + on(1) = I∞ (v) + on(1) = m∞(a) + on(1).
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This concludes the establishment that mµ(a) = m∞(a).
Now, we proceed to prove that mµ(a) cannot be achievement. By proof by con-

tradiction, we assume that ua ∈ Mµ(a) attains mµ(a). By lemma 2.3, there exists
a unique tua > 0 such that tua ? ua ∈ M∞(a). It can be seen that

m∞(a) ≤ I∞ (tua ? ua) = Iµ (tua ? ua) +
t2ua
2

∫
RN

µ

|x|2
u2adx

< Iµ (tua ? ua) ≤ Iµ (ua) = mµ(a) = m∞(a),

which creates a contradiction. �

Proof of theorem 1.4. The first part of theorem 1.4 has already been established in
lemma 4.1. Next, we will prove that Eq. (1.6) has normalized solutions.

By lemma 2.10, there exists a Pohožaev–Palais–Smale sequence {un} ⊂ Sr,a for
Iµ at level of σµ(a). That is,

Iµ (un) → σµ(a),
(
Iµ|Sr,a

)′
(un) → 0, Pµ (un) → 0, as n→ ∞.

Similarly as the proof of theorem 1.1, {un} is bounded in H1
r

(
RN
)
, and there exists

u ∈ H1
(
RN
)
\{0}, such that un → u inH1

(
RN
)
, and there exists a λ> 0, such that

(u, λ) ∈ H1
r

(
RN
)
×R+ is a normalized solution of Eq. (1.6). Furthermore, u > 0 by

the strong maximum principle. By lemma 4.1, we can deduce that σµ(a) > mµ(a).
�

5. Proof of theorem 1.6

Lemma 5.1. Assume that N ≥ 3, a> 0, and 1 > 2∗C p̄
N,p̄βa

2
N . Then, for any

sequence µn ≤ 0 with µn → 0− as n→ ∞, we have lim
n→∞

σµn(a) = m∞(a).

Proof. For the sake of clarity in our presentation, let’s define:

mr,∞(a) := inf
v∈Mr∞(a)

I∞(v),

where

Mr
∞(a) := {v ∈ Sr,a : P∞(v) = 0} .

It’s clear that mr,∞(a) = m∞(a) by lemma 2.8. Hence, we just need to prove
lim

n→∞
σµn(a) = mr,∞(a). For µ ≤ 0, it’s evident that σµ(a) ≥ m∞(a) and σµ(a) is

non-increasing with respect to µ. Therefore, we just need to prove that m∞(a) is
the greatest lower bound of {σµn(a)}.

Assume that ω ∈ Mr
∞(a) is the function that achieves mr,∞(a), implying

I∞(ω) = mr,∞(a). By lemma 2.3, we can find 0 < s0 < 1 < s1 such that

γo(t) = ((1− t)s0 + ts1) ? w ∈ Γµ, γo(t) ∩Mr
∞(a) 6= ∅.
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Furthermore, for any given ε> 0, there exists a positive integer Nε such that, for
every n > Nε,

−1

2
s21

∫
RN

µn

|x|2
ω2dx ≤ ε.

We can deduce that

σµn(a) ≤ max
t∈[0,1]

Iµn(γo(t)) = max
t∈[0,1]

I∞(γo(t))−
s21
2

∫
RN

µn

|x|2
ω2dx

= I∞(ω) + ε = mr,∞(a) + ε.

This clearly indicates that mr,∞(a) is the infimum of {σµn(a)}, and by lemma 2.8,
lim
n→∞

σµn(a) = mr,∞(a) = m∞(a). �

Proof of theorem 1.6. Let (un, λn) be the solution in theorem 1.4, which satisfies

−∆un − µn

|x|2
un + λnun = f(un), (5.1)

where µn → 0− as n→ ∞, and then Pµn(un) = 0. As in the proof of theorem 1.4, we
can establish that un → u in H1

(
RN
)
and λn → λ > 0, and (u, λ) ∈ H1

r

(
RN
)
×R+

is the normalized ground state solution of Eq. (1.8). Additionally, by the strong
maximum principle, u > 0. �

Proof of proposition 1.7. The proof of proposition 1.7 can be derived from the proof
of proposition 1.2 by applying the same method. To avoid unnecessary repetition,
we do not provide the proof here. �
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Schrödinger et de Klein-Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293
(1981), 489–492.

[9] H. Berestycki and M. J. Esteban. Existence and bifurcation of solutions for an elliptic
degenerate problem. J. Differential Equations 134 (1997), 1–25.

[10] H. Berestycki and P.-L. Lions. Nonlinear scalar field equations. I. Existence of a ground
state. Arch. Rational Mech. Anal. 82 (1983), 313–345.

[11] B. Bieganowski and J. Mederski. Normalized ground states of the nonlinear Schrödinger
equation with at least mass critical growth. J. Funct. Anal. 280 (2021), 26.

[12] B. Bieganowski, J. Mederski and J. Schino. Normalized solutions to at least mass critical
problems: singular polyharmonic equations and related curl-curl problems. J. Geom. Anal.
34 (2024), 32.
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