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ON ZARDINI’S RULES FOR MULTIPLICATIVE
QUANTIFICATION AS THE SOURCE OF CONTRA(DI)CTIONS

UWE PETERSEN

Altonaer Stiftung für philosophische Grundlagenforschung (ASFPG)

Abstract. Certain instances of contraction are provable in Zardini’s system IK� which causes
triviality once a truth predicate and suitable fixed points are available.

§1. Introduction. Zardini [11] introduces forms of quantification which are
intended to generalize ⊗-conjunction and ⊕-disjunction in the way that usual
quantification generalizes ∧-conjunction and ∨-disjunction. In view of ⊗-conjunction
being called multiplicative this label then extends to the new form of quantification.
Moreover it is intended to preserve tenets of contraction-free logic so as to avoid
trouble with (semantic) paradoxes.

The aim of the present paper is to show that the rules for multiplicative quantification
proposed by Zardini allow the derivation of a limited form of contraction which lends
itself to proving triviality given an appropriate fixed point for the truth predicate.

My focus is on the formal logical side of proving a triviality result for Zardini’s system
IKT� augmented with specific fixed points. This means, in particular, that I do not
engage with Zardini’s motivation for restricting contraction as based on what he calls
“the metaphysical picture of the states-of-affairs expressed by paradoxical sentences as
being distinctly ‘unstable’.” In view of the results to be presented here, this metaphysical
picture is obviously not effective as a safeguard against a form of contraction sneaking
into the system and thus as a protection against paradoxes from self-reference. On the
one hand Zardini sets out to “show that ridding truth of contraction suffices for ridding
it of contradiction” [11, p. 500] but on the other he introduces rules for multiplicative
quantification which allow the derivation of a limited form of contraction.

As a consequence of this it is clear that Zardini’s original venture of adding his
infinitary rules for multiplicative quantification to a contraction-free logic and still
being able to keep the paradoxes of the truth predicate at bay cannot be upheld. It also
suggests that the cut elimination proof proposed in [11] is unsound and that beyond
the qualms raised by Fjellstad [4].

§2. Rules for multiplicative generalization. Zardini assumes a “standard first order
language L1 without identity” but with “paradoxical sentences in the language”
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ON ZARDINI’S RULES FOR MULTIPLICATIVE QUANTIFICATION 1111

[11, p. 506]. He also speaks of providing a “syntax of a language capable of a minimum
of self-reference” (p. 501). It may be a matter of contention what that “minimum”
includes, but certainly one of the anonymous referees of the present paper took IKT�

as containing fixed points of the kind employed in this paper, and that on the basis of
Zardini’s “metalinguistic coding scheme, however it works.” In view of this I just take
the liberty to assume that the fixed point fp provided by Definition 4.6(2) belongs to
that minimum.

The systems IK� and IKT� are formulated in sequential style with multisets instead
of sequents of formulas. The main difference to standard formulations of sequential
systems is that Zardini’s rules for multiplicative quantification are formulated by way of
employing rules with infinitely many premisses, i.e., a semi-formal system in the sense
of Schütte [8, p. 174]. For further details regarding Zardini’s system I refer interested
readers to [4, Section 2]. Very little indeed is needed to prove the main results of the
present paper and I want to keep the focus clearly on that.

In what follows I shall only deal with multiplicative generalization. Existentialization
can be treated analogously, respectively defined in the usual way in terms of
generalization and negation.

The rules for ⊗-conjunction to be generalized are

(⊗-R)
�1 ⇒ Δ1, A �2 ⇒ Δ2, B

�1, �2 ⇒ Δ1,Δ2, A⊗ B
and (⊗-L)

A,B,� ⇒ Δ
.

A⊗ B,� ⇒ Δ

Zardini’s rules for the multiplicative ∀-quantifier are designed as straightforward
extrapolations of these rules by allowing infinitely many premisses (upper sequents)
and infinitely long sequents.

Following Zardini’s paper, � and � (possibly with numerical subscripts) stand for
multisets.

I use nominal forms in the sense of Schütte [8, p. 14],1 which will be communicated
by the Gothic letters F and C. Furthermore, it is assumed that there is a designated
complete enumeration of the set of closed terms of the language in question the elements
of which are communicated by ti for 0 ≤ i < �.

Definition 2.1. (1) Rules for ∀.

�0 ⇒ Δ0,F[t0] �1 ⇒ Δ1,F[t1] �2 ⇒ Δ2,F[t2] ...
,⊔

0≤i<�
(�i) ⇒

⊔

0≤i<�
(Δi),∀x F[x] (∀-R)

and

�,
⊔

0≤i<�
F[ti ] ⇒ Δ

.
�,∀x F[x] ⇒ Δ

(∀-L)

1 Compare also [7, Definition 12.5, pp. 89 f]
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(2) The system IK� is obtained from the contraction-free sequential propositional
calculus restricted to ¬ and → with the forgoing rules for ∀ added.2

(3) A⊕ B :≡ ¬A→ B , A⊗ B :≡ ¬(¬A⊕ ¬B), and ∃x F[x] :≡ ¬∀x ¬F[x].

Remark 2.2. (1) For convenience I shall employ the rules for ⊗ mentioned in the
introduction but in view of the foregoing definition it should be clear that they can be
cashed out in terms of ¬ and →.

(2) As has been observed in [2] it is possible with the rules ∀-R and ∀-L to prove

(A→ ∃x F[x]) → ∃x(A→ F[x]) ,

or, correspondingly, in terms of ∀ and ⊗:

∀x(A⊗ F[x]) → (A⊗ ∀x F[x]) .

That the provability of these wffs is the source of trouble as soon as a certain amount of
arithmetic is available has been discussed in [1], for instance, in the context of Łukasiwicz’
infinitely valued logic, and then in [2] in the context of Zardini’s system. Both focus on
an extrapolation of a result by Shaw-Kwei [9] which yields �-inconsistency, given a
suitable fixed point, and extends to full-fledged inconsistency with the help of induction
(or equally ∀-R). According to the authors of Da Ré and Rosenblatt [2] a referee of their
paper suggested that the provability of these wffs might indicate the presence of some
contraction absorbing rule which would render the inconsistency result less surprising, a
view, however, the authors regarded as “too hasty.” The present note can be seen as a
confirmation of the referee’s suggestion by showing that ∀-R and ∀-L do indeed provide
for certain instances of contraction.

(3) There is no provision in either usual formulations of a logical language or Zardini’s
paper that would rule out vacuous quantification, but my impression is that some people, at
least, feel uneasy about it. Apart from that, Zardini’s rules for multiplicative quantification
seem to be inseparable from non-vacuous quantification, so I decided to use the good old
device of adding (by way of ⊗-conjunction) a provable wff which provides a variable to
quantify over and only use vacuous quantification for the purpose of illustrating a proof
structure as in Remark 4.9(2).

Convention 2.3. Let C[s] be an IK�-provable wff for every term s . Depending on the
availability of a one-place predicate constant R1 (such as tru later), this can be simply
R1(s) → R1(s).3

Labels for inferences are taken from [11, p. 508].

§3. Proving instances of contraction in IK� .

Proposition 3.4. Inferences according to the following schemata are IK�-derivable
for arbitrary wffs A:

∀x (A⊗ C[x]),∀x (A⊗ C[x]), � ⇒ Δ
;

∀x (A⊗ C[x]), � ⇒ Δ
(1a)

2 Zardini has ⊕,⊗, and ∃ in addition but since they can be defined in terms of the others I do
not include them as primitive.

3 I used to have s = s but an anonymous referee rightly pointed out that Zardini’s system has
no identity. I take a standard first order language to have predicate constants available, as in
[10, Definition 1.1, p. 5], which I regard as sufficient for a formulation of C.
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∀x ¬(A⊗ C[x]),∀x ¬(A⊗ C[x]), � ⇒ Δ
;

∀x ¬(A⊗ C[x]), � ⇒ Δ
(1b)

A,∀x(A⊗ C[x]), � ⇒ Δ
.

∀x(A⊗ C[x]), � ⇒ Δ
(1c)

Proof. As regards 1a it is sufficient to show

IK� � ∀x(A⊗ C[x]) ⇒ ∀x(A⊗ C[x]) ⊗ ∀x(A⊗ C[x]),

which can be done as follows employing ∀-R.
Due to the constraints of space on a page, the premisses for the derivation below are

established separately beforehand:

A⊗ C[t0] ⇒ A⊗ C[t0] A⊗ C[t2] ⇒ A⊗ C[t1] A⊗ C[t4] ⇒ A⊗ C[t2] ...
∀-R .⊔

0≤i<�
(A⊗ C[t2i ]) ⇒ ∀x(A⊗ C[x])

and:

A⊗ C[t1] ⇒ A⊗ C[t0] A⊗ C[t3] ⇒ A⊗ C[t1] A⊗ C[t5] ⇒ A⊗ C[t2] ...
∀-R .⊔

0≤i<�
(A⊗ C[t2i+1]) ⇒ ∀x(A⊗ C[x])

These two can now be employed to continue as follows:
⊔

0≤i<�
(A⊗ C[t2i ]) ⇒ ∀x(A⊗ C[x])

⊔

0≤i<�
(A⊗ C[t2i+1]) ⇒ ∀x(A⊗ C[x])

⊗-R⊔

0≤i<�
(A⊗ C[t2i ]),

⊔

0≤i<�
(A⊗ C[t2i+1]) ⇒ ∀x(A⊗ C[x]) ⊗ ∀x(A⊗ C[x])

equivalent formulation in view of the use of multisets (not an inference)
⊔

0≤i<�
(A⊗ C[ti ]) ⇒ ∀x(A⊗ C[x]) ⊗ ∀x(A⊗ C[x])

∀-L .
∀x(A⊗ C[x]) ⇒ ∀x(A⊗ C[x]) ⊗ ∀x(A⊗ C[x])

Analogously for 1b.
As regards 1c it is sufficient to show

IK� � ∀x(A⊗ C[x]) ⇒ A⊗ ∀x(A⊗ C[x]) ,

which can be seen as follows:

A⇒ A
K-R

A, C[t0] ⇒ A
⊗-L

A⊗ C[t0] ⇒ A
A⊗ C[t1] ⇒ A⊗ C[t0] A⊗ C[t2] ⇒ A⊗ C[t1] ...

∀-R⊔

0<i<�

(A⊗ C[ti ]) ⇒ ∀x(A⊗ C[x])

⊗-R⊔

0≤i<�
(A⊗ C[ti ]) ⇒ A⊗ ∀x(A⊗ C[x])

∀-L .
∀x(A⊗ C[x]) ⇒ A⊗ ∀x(A⊗ C[x])
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Remark 3.5. The foregoing proofs make use firstly of the fact that C[tj ] ↔ C[tk] is
trivially provable for all j and k ∈ N and secondly of the possibility of rearranging the
natural numbers according to different order types. In the specific case of the proofs of 1a
and 1b the latter comes down to the possibility of separately enumerating terms according
to whether their index number is even or odd, while that of 1c only requires the possibility
of separating a single element from N while the rest still suffices to carry out a ∀-R
inference.

§4. Proving triviality by means of a truth predicate in conjunction with fixed points.
In view of the provable instances of contraction established in the foregoing section it
is not surprising that there are fixed points which give rise to triviality when added to
IK� augmented with a truth-predicate.

For a supply of self-referential sentences I adopt Zardini’s approach and simply
assume that we “have paradoxical sentences in the language.”4 Nothing much hinges on
the way fixed points are introduced, and I wish to avoid the impression that arithmetic
would play a crucial role in the triviality proof for IKT� .

Definition 4.6. (1) Rules for the truth-predicate tru:

(tru-L)
A,� ⇒ Δ

,
tru(�A�), � ⇒ Δ

and (tru-R)
� ⇒ Δ, A

.
� ⇒ Δ, tru(�A�)

(2) Rules for the fixed point fp:

(fp – L)
∀x(¬tru(�F �) ⊗ C[x]), � ⇒ Δ

,
F, � ⇒ Δ

and (fp–R)
� ⇒ Δ, ∀x(¬tru(�F �) ⊗ C[x])

.
� ⇒ Δ, F

(3) The system IKT� is IK� endorsed with the primitive symbols tru and � � plus the
rules for the truth predicate tru and the rules for the fixed point fp.5

Remark 4.7. Of course, there are other fixed points which would do as well, such
as F ↔ ∀x¬(tru(�F �) ⊗ C[x]) and F ↔ ¬∀x(tru(�F �) ⊗ C[x]), but in the interest of
keeping things simple I prefer to focus on just one.

Theorem 4.8. IKT� is trivial.

Proof. Take the fixed point F ↔ ∀x(¬tru(�F �) ⊗ C[x]) provided by fp. I present
two ways of arriving at a contradiction, one using 3.4.1c, i.e., a form of contraction,
and another one that doesn’t, i.e., where the contraction is hidden in the working of
the ∀-rules (as essentially used in the proof of 3.4.1c.

4 Zardini [11, p. 506]. Against that, Da Ré and Rosenblatt [2, p. 628] conclude from a similar
result: “there are self-referential sentences that are simply not expressible in the language of
Zardini’s theory.” Whichever way one may want to see that, “there is a sense in which ...
Zardini’s theory once properly formulated, is inconsistent,” as one anonymous referee put it.

5 Assuming that the fixed point fp is available in IKT� these rules could be derived.
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Proof 1.

∀x(¬tru(�F �) ⊗ C[x]) ⇒ ∀x(¬tru(�F �) ⊗ C[x])
fp-R

∀x(¬tru(�F �) ⊗ C[x]) ⇒ F
tru-R

∀x(¬tru(�F �) ⊗ C[x]) ⇒ tru(�F �)
¬-L

¬tru(�F �), ∀x(¬tru(�F �) ⊗ C[x]) ⇒
1c

∀x(¬tru(�F �) ⊗ C[x]) ⇒
fp-L

F ⇒
tru-L

tru(�F �) ⇒
¬-R

⇒ ¬tru(�F �) ⇒ C[t0]

⇒ ¬tru(�F �) ⊗ C[t0]

as on the left, only

with t1 instead of t0

⇒ ¬tru(�F �) ⊗ C[t1] ...
fp-R .

⇒ ∀x(¬tru(�F �) ⊗ C[x])

We thus have established a contradiction for the wff ∀x(¬tru(�F �) ⊗ C[x]).
2. Without the use of 3.4.1c. The first inference is one according to ∀-R:

¬tru(�F �) ⊗ C[t1] ⇒ ¬tru(�F �) ⊗ C[t0] ¬tru(�F �) ⊗ C[t2] ⇒ ¬tru(�F �) ⊗ C[t1] ...
∀-R⊔

0<i<�

(¬tru(�F �) ⊗ C[ti ]) ⇒ ∀x(¬tru(�F �) ⊗ C[x])

fp-R⊔

0<i<�

(¬tru(�F �) ⊗ C[ti ]) ⇒ F
tru-R⊔

0<i<�

(¬tru(�F �) ⊗ C[ti ]) ⇒ tru(�F �)

¬-L
¬tru(�F �),

⊔

0<i<�

(¬tru(�F �) ⊗ C[ti ]) ⇒
K-L

¬tru(�F �), C[t0],
⊔

0<i<�

(¬tru(�F �) ⊗ C[ti ]) ⇒
⊗-L⊔

0≤i<�
(¬tru(�F �) ⊗ C[ti ]) ⇒

∀-L
∀x(¬tru(�F �) ⊗ C[x]) ⇒

fp-L .
F ⇒

The remainder as for Proof 1.

Remark 4.9. (1) The first of the above proofs shows how the contraction established
in 3.4.1c is used and I thus take it to render the inconsistency result less surprising.

(2) Zardini says nothing about vacuous quantification but for those who are prepared to
deal with it there is the option of taking the fixed point F ↔ ∀¬ tru(�F �)) which, in view
of the truth of the equivalence F ↔ tru(�F �) can be shortened to F ↔ ∀¬F . In this
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way the triviality proof becomes particularly conspicuous (with fp1 properly adjusted, of
course):6

¬F ⇒ ¬F ¬F ⇒ ¬F ¬F ⇒ ¬F ...
∀-R⊔

¬F ⇒ ∀¬F
fp1-R⊔

¬F ⇒ F
¬-L

¬F,
⊔
¬F ⇒

‡⊔
¬F ⇒

∀-L
∀¬F ⇒

fp1-L
F ⇒

¬-R
⇒ ¬F

∀-R
⇒ ∀¬F

¬F ⇒ ¬F ¬F ⇒ ¬F ¬F ⇒ ¬F ...
∀-R⊔

¬F ⇒ ∀¬F
fp -R⊔

¬F ⇒ F
¬-L

¬F,
⊔
¬F ⇒

‡⊔
¬F ⇒

∀-L
∀¬F ⇒

cut .
⇒

What I take to be the crucial point in this proof is the possibility of keeping the
assumptions (antecedent) “open” until after a generalization on the right has been carried
out and its result added to the assumptions. ‡ is thus not indicating an inference but just
expressing that the new occurrence of ¬F can be absorbed in the

⊔
¬F without any

further ado.
(3) There is nothing specifically semantic about the paradoxes that have been considered

here; corresponding fixed points can be obtained with unrestricted abstraction as in
[6, p. 382] (without arithmetization) and the proof goes through with the fp-inferences
replaced by a fixed point derived by λ -inferences as formulated in [6, p. 367]. If the term Z
is defined as λy ∀x¬((y∈y) ⊗ C[x]), then the fixed point provided by F :≡ Z ∈Z does
the job: F ↔ ∀x¬(F ⊗ C[x]) . This can equally be obtained fromF ↔ ∀x¬(tru(�F �) ⊗
C[x]) with the help of F ↔ tru(�F �).7

§5. On the relevance for cut elimination. In [3, 4] it was pointed out that Zardini’s
cut elimination proof for IKT� is not conclusive.8 As Fjellstad emphasizes, however,
this does not foreclose the possibility that cuts in IKT� can still be eliminated by an
alternative strategy.

Obviously, cut cannot be eliminable in IKT� if it includes a fixed point like fp and it
is instructive to look at what happens to the cut yielding the empty sequent with the
cut formula ∀x(¬tru(�F �) ⊗ C[x]) in the first proof of Theorem 4.8, when the usual

6 This can be seen as a somewhat dual version to the one presented in [5, p. 254], i.e., formulated
in terms of ∀¬ instead of ¬∃.

7 I wish to point out that quite in general the notion of truth on its own combined with self-
reference isn’t the source of any paradox that wouldn’t have a corresponding one obtainable
with unrestricted abstraction alone. It is only with additional semantic notions such as
description or denotation that one gets genuine semantic paradoxes, i.e., paradoxes with a
structure not to be found in higher order logic alone.

8 This concerns, in particular, subsubsubcase 3eaa on page 529 of [11]. Compare [4, pp. 884 f].
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strategy of reducing a cut after a contraction is applied. I replace ¬tru(F ) by A to
simplify the presentation.

⇒ A⊗ C[t0] ⇒ A⊗ C[t1] ...
∀-R

⇒ ∀x(A⊗ C[x])

A,∀x(A⊗ C[x]) ⇒
1c

∀x(A⊗ C[x]) ⇒
cut .

⇒

Of course, this cut is not suitable for elimination, but it is nevertheless instructive to
try the usual reduction steps on it.9 This would amount to the following:

⇒ A

⇒ A⊗ C[t0] ⇒ A⊗ C[t1] ...
∀-R

⇒ ∀x(A⊗ C[x]) A,∀x(A⊗ C[x]) ⇒
cut

A⇒
cut .

⇒

Now a single cut has been replaced by two cuts, and while the first one can be justified
as usual by a reduced complexity of its derivation, the second would have to rely on
something like the complexity of the cut formula which is not necessarily reduced in
the presence of self-reference.

The point of a cut elimination proof that secures the consistency of a truth predicate
in the face of self-reference would be that no reduction of this kind is required, i.e., no
cut the justification of which is based on the complexity of the cut formula.

Systems which are truly contraction-free are not confronted with this problem; in
fact I am inclined to take that as a criterion for a (sequential) system Σ to be “truly
contraction free”: there is a cut elimination proof for Σ that does not require an
induction on the complexity of the cut formula. As was pointed out in [6, p. 374]: “in
the absence of contraction, normalization and cut elimination can be proved without
a recourse to the length of the formula in question (maximum or cut formula). It is
this that makes logic without contraction so safe against all antinomies arising from
abstraction.” The problem is that despite the absence of explicit rules of contraction,
there are still many ways of smuggling in some form of contraction through new
constants. Zardini’s multiplicative quantification is an example.

But what does that mean for the possibility of obtaining a cut elimination proof
for IK� , i.e., a system which has neither a truth predicate nor self-reference? Just as
classical logic on its own allows cut elimination, even if it becomes inconsistent when a
truth predicate and self-reference are added, IK� on its own may allow cut elimination.

Given the provability of a reduced form of contraction in IK� it will not come
as a surprise that the familiar procedure of shifting a cut “upwards” in a deduction
as part of proving a cut elimination theorem runs into complications well-known
from classical and intuitionistic systems, i.e., systems which have contraction as a
basic rule.

9 Compare [7, Section 114b] for the example of a “reduction” of a cut yielding the empty
sequent in the case of Russell’s paradox.
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Take a cut of the following form:

Γ0 ⇒ A⊗ C[t0] Γ1 ⇒ A⊗ C[t1] ...
∀-R⊔

0≤i<�
(Γi) ⇒ ∀x(A⊗ C[x])

A,∀x(A⊗ C[x]),Π ⇒ Δ
1c

∀x(A⊗ C[x]),Π ⇒ Δ

cut ,⊔

0≤i<�
(Γi),Π ⇒ Δ

which is just the situation we are confronted with in view of the proof of 1c. The usual
strategy for reducing a cut of this kind as exemplified in [10, p. 334], and expressly
isolated as a separate case in [7, p. 423] under the label “bifurcation step,” and pp. 432 f
(Remark 37.17), would amount to the following derivation:

Γk ⇒ A⊗ C[tk]

Γk ⇒ A

Γ0 ⇒ A⊗ C[t0] Γ1 ⇒ A⊗ C[t1] ...
⊔

0≤i<�
(Γi) ⇒ ∀x(A⊗ C[x]) A,∀x(A⊗ C[x]),Π ⇒ Δ

cut
A,

⊔

0≤i<�
(Γi),Π ⇒ Δ

cut ,
Γk,

⊔

0≤i<�
(Γi),Π ⇒ Δ

where a further step would have to accommodate Γk in
⊔

0≤i<�(Γi) and it might look
like we are facing trouble. This, however, can be easily dealt with in the foregoing
case by applying the strategy from the proof of 3.4.1c: change the enumeration of
the antecedents of the premisses of the ∀-R inference and construct the following
derivation:

Γ0 ⇒ A⊗ C[t0]

Γ0 ⇒ A

Γ1 ⇒ A⊗ C[t0] Γ2 ⇒ A⊗ C[t1] ...
⊔

0<i<�

(Γi) ⇒ ∀x(A⊗ C[x]) A,∀x(A⊗ C[x]),Π ⇒ Δ

cut
A,

⊔

0<i<�

(Γi),Π ⇒ Δ

cut .⊔

0≤i<�
(Γi),Π ⇒ Δ

It is open, however, if this can be turned into a general strategy that can be employed
in a cut elimination proof for IK� . Even if it can, this will not provide a consistency
proof for IKT� because of the problem of assigning a measure of complexity to the cut
formula of the second cut.
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