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ON WEYL’S THEOREM FOR TENSOR PRODUCTS
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Abstract. Let A and B be operators acting on infinite-dimensional spaces. In
this paper we prove that if A and B are isoloid, satisfy Weyl’s theorem, and the Weyl
spectrum identity holds, then A ⊗ B satisfies Weyl’s theorem.
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1. Notation and terminology. By an operator we mean a bounded linear
transformation of a Hilbert space into itself. We work in a Hilbert space setting,
although the results in this paper hold in a Banach space setting with essentially
the same proofs. Let T be an operator, and let N (T) and R(T) denote kernel and
range of T , respectively. Consider the classical partition {σP(T), σR(T), σC(T)} of the
spectrum σ (T), where σP(T) = {λ ∈ �:N (λI − T) �= {0}} is the point spectrum (i.e.
the set of all eigenvalues of T), σR(T) = σP(T∗)∗\σP(T) is the residual spectrum (where
T∗ denotes the adjoint of T and �∗ = {λ ∈ �: λ ∈ �} denotes the set of all complex
conjugates from a subset � of �), and σC(T) = σ (T)\(σP(T) ∪ σR(T)) is the continuous
spectrum. Let σw(T) = {λ ∈ �: λI − T is not a Fredholm operator of index zero} be
the Weyl spectrum of T , which is a subset of the whole spectrum σ (T); that is,

σw(T) = {λ ∈ σ (T): λI − T is not a Fredholm operator of index zero}.

The set

σ0(T) = {λ ∈ σP(T): R(λI − T) is closed and

dimN (λI − T) = dimN (λI − T∗) < ∞}

is precisely a complement of the Weyl spectrum σw(T) in the whole spectrum σ (T) (see
e.g. [5] or [6, Section 5.3]). Hence,

σw(T) = σ (T)\σ0(T),

and so {σw(T), σ0(T)} forms another partition of spectrum σ (T). Set σPF (T) = {λ ∈
σP(T): dimN (λI − T) < ∞}; the set of all eigenvalues of T of finite multiplicity so that
σ0(T) ⊆ σPF (T) and σR(T) ∪ σC(T) ∪ (σP(T)\σPF (T)) ⊆ σw(T). Set

π00(T) = σiso(T) ∩ σPF (T),
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where σiso(T) denotes a set of all isolated points of spectrum σ (T). One says that an
operator T satisfies Weyl’s theorem if

σ0(T) = π00(T),

and it is said to satisfy Browder’s theorem if

σ0(T) ⊆ π00(T).

An operator T is isoloid if σiso(T) ⊆ σP(T) (i.e. if every isolated point of the spectrum
is an eigenvalue).

2. The question. Consider a tensor product A ⊗ B of a pair of operators A and B.
It is known from [1] that the spectrum of a tensor product coincides with the product
of the spectra of factors

σ (A ⊗ B) = σ (A) · σ (B).

For the Weyl spectrum it was proved in [3] that the inclusion

σw(A ⊗ B) ⊆ σw(A) · σ (B) ∪ σ (A) · σw(B)

holds. However, since then it remained as an open question whether the preceding
inclusion is an identity or not. That is, it was not known if there existed a pair of
operators A and B for which the above inclusion was proper. This question was solved
quite recently by using a counterexample from [4, Section 3] (which exhibits a pair of
operators that satisfy Weyl’s theorem whose tensor product does not satisfy Browder’s
theorem) together with Corollary 6 from [7] (which says that Browder’s theorem is
transferred from a pair of operators to their tensor product if and only if the above
inclusion is an identity). Thus, there exists a pair of operators for which the above
inclusion is proper. If a pair of operators A, B is such that

σw(A ⊗ B) = σw(A) · σ (B) ∪ σ (A) · σw(B),

then we say that the Weyl spectrum identity holds for A and B. It was shown in
[7, Proposition 5] that if the Weyl spectrum identity holds for A and B, then

σ0(A ⊗ B) ⊆ σ0(A) · σ0(B),

and it was also shown that the above inclusion may be proper even if the Weyl spectrum
identity holds for A and B, with A, B and A ⊗ B being isoloid operators that satisfy
Weyl’s theorem (see [7, Remark 2]).

The problem of transferring Weyl’s theorem from isoloid operators A and B to
their tensor product A ⊗ B was considered in this journal in [8], where it was stated that
if A and B are isoloid operators that satisfy Weyl’s theorem, then A ⊗ B satisfies Weyl’s
theorem. Their proof stands only if it is further assumed that the Weyl spectrum identity
holds for A and B (which is not true in general), and also that σ0(A) · σ0(B) ⊆ σ0(A ⊗ B)
(which may fail even if the Weyl spectrum identity holds and all operators are isoloid
and satisfy Weyl’s theorem). However, under these extra two assumptions, the problem
of transferring Weyl’s theorem from isoloid operators A and B to their tensor product
A ⊗ B survives.
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PROPOSITION 1. Let A and B be operators acting on infinite-dimensional spaces. If

(a) A and B are isoloid,
(b) A and B satisfy Weyl’s theorem, and
(c) the Weyl spectrum identity holds for A and B,

then the tensor product A ⊗ B satisfies Weyl’s theorem if, in addition,

(d) σ0(A ⊗ B) = σ0(A) · σ0(B).

Proof. [7, Corollary 5]. �
Question: Is condition (d) necessary in Proposition 1? In other words, is the next

conjecture true?

CONJECTURE 1. If A and B are isoloid, satisfy Weyl’s theorem, and the Weyl spectrum
identity holds, then A ⊗ B satisfies Weyl’s theorem.

We shall show in the next section (Theorem 1) that the above conjecture is, in
fact, a theorem: It holds true for operators acting on infinite-dimensional spaces. (If
the spaces are finite-dimensional, where every subspace is closed and every operator
is isoloid with spectrum consisting only of eigenvalues of finite multiplicity, then the
conjecture holds trivially.) The proof is carried out by using results originally proved
in a Hilbert space setting, which clearly still holds in a Banach space setting.

3. The answer. Before proving Theorem 1 we need the following auxiliary results.
Let A, B and T be arbitrary operators.

LEMMA 1. If A and B satisfy Browder’s theorem, and if the Weyl spectrum identity
holds, then the tensor product A ⊗ B satisfies Browder’s theorem.

Proof. [7, Proposition 7(a)]. �
LEMMA 2. If T satisfies Browder’s theorem but not Weyl’s theorem, then

σw(T) ∩ π00(T) �= ∅.

Proof. T satisfies Browder’s theorem but not Weyl’s theorem if and only if the
proper inclusion σ0(T) ⊂ π00(T) holds true, which implies that there exists an isolated
eigenvalue of finite multiplicity not in σ0(T) (i.e. in σw(T) = σ (T)\σ0(T)). �

LEMMA 3. If A and B are isoloid operators on infinite-dimensional spaces, then

π00(A ⊗ B) ⊆ π00(A) · π00(B).

Proof. [7, Proposition 4]. �
LEMMA 4. If A and B are operators on infinite-dimensional spaces, then

0 �∈ σPF (A ⊗ B).

Proof. [7, Proposition 1]. �
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LEMMA 5. Suppose σiso(A) �= ∅ and σiso(B) �= ∅. If λ ∈ σ (A), μ ∈ σ (B), and
λμ ∈ σiso(A ⊗ B), then

λ ∈ σiso(A) and μ ∈ σiso(B).

Proof. [7, Proof of Proposition 3(a)]. �
LEMMA 6. If λ ∈ σP(A), μ ∈ σP(B), and λμ ∈ σPF (A ⊗ B), then

λ ∈ σPF (A) and μ ∈ σPF (B).

Proof. [7, Proof of Proposition 2(a)]. �
Suppose A and B are operators acting on infinite-dimensional spaces.

THEOREM 1. If A and B are isoloid, satisfy Weyl’s theorem, and the Weyl spectrum
identity holds, then A ⊗ B satisfies Weyl’s theorem.

Proof. Suppose A and B satisfy Weyl’s theorem. Thus, A and B satisfy Browder’s
theorem. Therefore, if the Weyl’s spectrum identity holds, then A ⊗ B satisfies Browder’s
theorem according to Lemma 1. Suppose A ⊗ B does not satisfy Weyl’s theorem, then
it follows by Lemma 2 that

σw(A ⊗ B) ∩ π00(A ⊗ B) �= ∅.

Since the Weyl’s spectrum identity holds, that is, since

σw(A ⊗ B) = σw(A) · σ (B) ∪ σ (A) · σw(B),

it follows that every product λμ with λ ∈ σw(A) and μ ∈ σ (B) or with λ ∈ σ (A) and
μ ∈ σw(B) lies in σw(A ⊗ B). Thus, ν ∈ σw(A ⊗ B) if and only if ν = λμ for arbi-
trary λ,μ such that (λ,μ) ∈ σw(A) × σ (B) or (λ,μ) ∈ σ (A) × σw(B). First suppose
ν ∈ σw(A ⊗ B) is such that

ν = λμ for an arbitrary pair (λ,μ) ∈ σw(A) × σ (B).

If ν ∈ π00(A ⊗ B), then

ν ∈ π00(A) · π00(B)

by Lemma 3 because A and B are isoloid, so that

ν = λ′μ′ for some pair (λ′, μ′) ∈ π00(A) × π00(B).

Thus, if

ν ∈ σw(A ⊗ B) ∩ π00(A ⊗ B),

then it follows by Lemma 4 that 0 �= ν = λμ = λ′μ′ , with

λ = ν

μ
∈ σw(A), λ′ = ν

μ′ ∈ π00(A) = σ0(A),

μ = ν

λ
∈ σ (B), μ′ = ν

λ′ ∈ π00(B) = σ0(B),
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because A and B satisfy Weyl’s theorem. Thus, λ �= λ′, since they live in complementary
sets, and so μ �= μ′. Since

σiso(A) �= ∅ and σiso(B) �= ∅

(because λ′ ∈ π00(A) ⊆ σiso(A) and μ′ ∈ π00(B) ⊆ σiso(B)), and since

ν = λμ ∈ π00(A ⊗ B) ⊆ σiso(A ⊗ B),

it follows by Lemma 5 that

λ ∈ σiso(A) and μ ∈ σiso(B).

Recalling again that A an B are isoloid, we get

λ ∈ σP(A) and μ ∈ σP(B).

Thus, since λμ = ν ∈ π00(A ⊗ B) ⊆ σPF (A ⊗ B), it follows by Lemma 6 that

λ ∈ σPF (A) and μ ∈ σPF (B).

Therefore, since A satisfies Weyl’s theorem,

λ ∈ σw(A) ∩ σiso(A) ∩ σPF (A) = σw(A) ∩ π00(A) = σw(A) ∩ σ0(A) = ∅,

which is a contradiction. On the other hand, if ν ∈ σw(A ⊗ B) is such that

ν = λμ for an arbitrary pair (λ,μ) ∈ σ (A) × σw(B),

then, similarly and symmetrically,

μ ∈ σw(B) ∩ σiso(B) ∩ σPF (B) = σw(B) ∩ π00(B) = σw(B) ∩ σ0(B) = ∅,

which is again a contradiction because B satisfies Weyl’s theorem as well. Therefore,
if A and B are isoloid, both satisfy Weyl’s theorem, and the Weyl spectrum identity
holds, then A ⊗ B must satisfy Weyl’s theorem. �

REMARK. The a-version of Theorem 1 was considered in [2]: If A and B are a-
isoloid, satisfy a-Weyl’s theorem and the a-Weyl spectrum identity holds, then A ⊗ B
satisfies a-Weyl’s theorem (where the prefix ‘a’ means that spectrum is replaced with
approximate point spectrum in every definition).
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