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Linear dynamics of a thick liquid layer subjected
to an oblique temperature gradient
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The present study aims to demonstrate the application of the oblique temperature
gradient (OTG) to manipulate the buoyancy instabilities and resulting mixing. To
accomplish this, we consider a model consisting of a liquid layer supported by a perfectly
conducting bottom wall from below and the upper surface is exposed to ambient inert
gas in a shallow container. The stability analysis employs the pseudospectral method and
perturbation energy budget approach. The imposed OTG consists of a negative vertical
temperature gradient (VTG), which leads to unstable density stratification, and a negative
horizontal temperature gradient (HTG) component responsible for the Hadley circulation,
which can be utilised to control instabilities. Without the HTG, a Rayleigh–Bénard mode
of instability exists due to the imposed VTG termed as a VTG mode. The imposed
HTG induces a linear VTG term and a quintic polynomial VTG term in the bottom
wall-normal coordinate y. The induced linear VTG term reinforces the imposed VTG,
while the induced quintic polynomial VTG term opposes the imposed VTG. For the
vanishing Biot number (Bi), the induced quintic VTG term stabilises the VTG mode for
the Prandtl number, Pr = 7. However, for Pr = 0.01, the Reynolds stresses associated with
the Hadley circulation destabilise the VTG mode. For non-zero Bi, new streamwise and
spanwise instability modes arise for Pr = 7 due to the induced linear VTG term. Physical
arguments show that the unstable density stratification near the gas–liquid interface caused
by the synergistic effect of the imposed VTG and the induced linear VTG term lead to the
existence of the predicted new modes. The present study thus shows that the strength of
the HTG can be utilised to control the instability modes and critical parameters, thereby
demonstrating the utility of the OTG in manipulating the buoyancy instabilities.
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1. Introduction

In material processing and crystal growth (Lappa 2010), additive manufacturing (Kowal,
Davis & Voorhees 2018), industrial processes (Kistler & Schweizer 1997; Patne &
Oron 2022) and geophysical settings (Weber 1978; Ortiz-Pérez & Dávalos-Orozco 2011,
2014), the liquid layers are subjected to an oblique temperature gradient (OTG). Also,
maintaining a purely vertical temperature gradient (VTG) or horizontal temperature
gradient (HTG) in experiments while studying the thermally driven convection is difficult;
thus, inadvertently, a liquid layer is subjected to an OTG (Shklyaev & Nepomnyashchy
2004; Nepomnyashchy & Simanovskii 2009). An OTG consists of an imposed VTG
component responsible for the Rayleigh–Bénard convection and a HTG component, which
leads to Hadley circulation (Hart 1972).

The present study, however, is motivated by the application of an OTG to control the
buoyancy instabilities and consequent mixing as follows. The heating/cooling of a liquid
layer in a container is essential in chemical industries, metallurgical processes and food
processing industries. This is typically achieved by a heating/cooling jacket encasing the
container or heating the container from below, thus subjecting the liquid to an OTG or
a VTG. A local hot or cold spot formed in the liquid layer could lead to the degradation
of materials, thereby affecting product quality. This could be prevented by rapid mixing,
often achieved through a mechanical stirrer (Levenspiel 1999) or a magnetic field (Bau,
Zhong & Yi 2001; Yi, Qian & Bau 2002) or an electric field (Oddy, Santiago & Mikkelson
2001). These external agencies cause a rapid motion of the constituents that could result in
turbulence, which leads to enhanced mixing, but it comes at the cost of additional energy
and instrumental expenditure. What if we could employ the already imposed temperature
field to enhance the mixing, thereby reducing the dependence on the external forcing
and thus making the process energetically and structurally efficient? This translates to
enhancing the motion of the constituents or introducing turbulent convection by promoting
buoyancy instabilities in the liquid layer using the imposed OTG or converting the imposed
VTG to an OTG while keeping energy expenditure constant. Then, how can we employ the
imposed OTG to manipulate buoyancy instabilities? The present study tries to answer this
question by considering a simple model of a liquid layer in a rectangular cavity subjected
to an OTG. These applications typically involve the bottom support or bottom wall as a
perfectly conducting material; thus, we extend the analysis of Patne & Oron (2022) to a
perfectly conducting bottom wall.

It is well known that a liquid layer heated from below, i.e. subjected to a negative VTG,
is susceptible to buoyancy convection due to the temperature dependence of the liquid
density, which leads to unstable density stratification (Chandrasekhar 1981). The VTG
must exceed a minimal value for the onset of buoyancy convection due to a stationary or
monotonic mode henceforth referred to as ‘VTG mode’. However, a liquid layer subjected
to HTG exhibits buoyancy convection termed Hadley circulation for an arbitrary value
of HTG (Hart 1972, 1983). The strength of the convection induced by HTG depends on
the magnitude of HTG. It must be noted that similar thermocapillary convection also
exists in a liquid layer subjected to a HTG (Smith & Davis 1983a,b). The buoyancy
and thermocapillary convection are typically associated with the Rayleigh and Marangoni
numbers, respectively. The ratio of the Rayleigh and Marangoni numbers is the dynamic
Bond number, which is proportional to the square of the liquid layer thickness. Thus, as the
thickness of the liquid layer increases, the buoyancy instabilities become more relevant. In
the present analysis, we neglect the thermocapillary effect; thus, the results predicted here
are applicable to thicker liquid layers. Following the estimates provided by Patne & Oron
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Linear dynamics of a thick liquid layer subjected to an OTG

(2022), this restricts the applicability of our study to the liquid layers having a thickness
greater than 1 cm.

Hart (1972) first investigated the stability of the Hadley circulation. His analysis
predicted the existence of both oscillatory and stationary modes of instability. In the
context of liquid metals, Gill (1974) theoretically investigated the stability of the Hadley
circulation in liquid metals. The theoretical predictions of Gill (1974) were experimentally
validated by Hurle, Jakeman & Johnson (1974) by using molten gallium. Hart (1983)
extended his previous analysis (Hart 1972) to low Prandtl numbers. Walton (1985) studied
the buoyancy convection in a liquid layer subjected to an HTG due to the presence of a hot
patch. The nonlinear stability of the Hadley circulation was investigated by Kuo & Korpela
(1988) and Wang & Korpela (1989). Braunsfurth et al. (1997), Juel et al. (2001) and Hof
et al. (2004) extended the previous experimental and numerical studies with a focus on
Hadley circulation in molten gallium.

Weber (1973) first analysed the buoyancy instabilities in a liquid layer subjected to
an OTG for a small HTG. He assumed the boundaries to be stress-free and perfectly
conducting and predicted the stabilising influence of the HTG on the VTG mode.
The stability analysis of Weber (1973) was extended by Sweet, Jakeman & Hurle
(1977) to larger values of the imposed HTG by using the average values of the basic
velocity and temperature profiles in the base state instead of actual basic velocity and
temperature profiles. Weber (1978) extended his previous study by considering both
horizontal stress-free or rigid, perfectly conducting boundaries. His analysis predicted the
existence of both longitudinal and transverse rolls, with the Prandtl number playing as the
determining factor for the dominant mode. Nield (1994) carried out a detailed analysis of
the case of a liquid layer constrained between two rigid boundaries and affirmed the results
predicted by Weber (1973, 1978) and Sweet et al. (1977). Ortiz-Pérez & Dávalos-Orozco
(2011, 2014) extended the analysis of Nield (1994) to an arbitrary Pr. Their analysis
predicted a new oblique mode of instability, which becomes a dominant mode of instability
for 0.2 < Pr < 0.45.

Weber (1973, 1978), Sweet et al. (1977), Nield (1994) and Ortiz-Pérez &
Dávalos-Orozco (2011, 2014) studied the stability of a liquid layer constrained by both
horizontal free-surface or rigid, perfectly conducting boundaries. Geophysical flows and
industrial applications require consideration of a liquid layer constrained by a solid bottom
wall on one side, i.e. a rigid boundary and other surface exposed to an ambient gas phase.
Furthermore, they imposed perfectly conducting boundary conditions even at the free
surface. However, there will be heat exchange between the liquid and the ambient gas
phase at the free surface. Thus, the perfectly conducting boundary conditions at the free
surface are rather artificial. Motivated by this practically important gap, Patne & Oron
(2022) carried out the stability analysis of a liquid layer supported by a poorly conducting
bottom wall from below, the other surface exposed to an ambient inert gas phase and
subjected to an OTG. Their analysis predicted a complete stabilisation of the VTG mode
by the imposed HTG for Pr > 1. They further conjectured that owing to the absence of
a buoyancy mode of instability, the thermocapillary convection could be observed even
in thicker layers. For Pr < 1, owing to the base flow caused by the imposed HTG, a new
mode of instability was predicted to exist.

The present work extends the analysis of Patne & Oron (2022) to a perfectly conducting
bottom wall. This may appear as a mere change in the thermal boundary condition at the
bottom wall. However, from the results shown in § 4, the bottom wall conductivity has
far-reaching consequences on the stability of the liquid layer, including the existence of
new modes of instability for Pr > 1. The existence of the new modes is further understood
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Figure 1. A schematic of the system considered here. The liquid layer is supported by a perfectly conducting
bottom wall at y = 0 and is subjected to an OTG. The dimensional VTG component is −β∗, and the
dimensional HTG component is −η∗, each shown by an arrow. The HTG induces the Hadley circulation,
while the imposed VTG leads to the density stratification.

using the perturbation energy budget analysis. The factors responsible for the existence of
the new modes and their role are explained using the energy budget analysis and physical
arguments.

The rest of the paper is arranged as follows. The base state velocity and temperature
profiles, the linearised perturbation governing equations and boundary conditions are
derived in § 2. The numerical methodology utilised to solve the eigenvalue problem is
outlined in § 3. The results are presented and discussed in § 4. The perturbation energy
budget analysis is carried out in § 5. Section 6 explains the physical mechanism of the
origin of various modes of instability. The major conclusions of the present investigation
are given in § 7.

2. Problem formulation

We consider an incompressible Newtonian liquid layer of mean thickness d∗, constant
dynamic viscosity μ∗ and thermal conductivity k∗

th where superscript (∗) signifies a
dimensional quantity. The layer is supported by a good conducting bottom wall and
exposed to an inert gas at the free non-deformable surface, as shown schematically in
figure 1. The density ρ is assumed to be a linear function of temperature as follows:

ρ∗ = ρ∗
0 [1 − α∗(T∗ − T∗

0 )], (2.1)

where α∗ is the coefficient of thermal expansion and T∗
0 is the reference temperature. The

entire system, consisting of the liquid layer, bottom wall and inert gas, is subjected to the
VTG, −β∗ and HTG, −η∗, forming an OTG. Here, VTG and HTG are perpendicular and
tangential to the bottom wall planes, respectively, as illustrated in figure 1. The imposed
VTG is β∗ = q∗(T∗

w − T∗∞)/(k∗
th + q∗d∗) where q∗, T∗

w and T∗∞ are the convective heat
transfer coefficient at the air–liquid interface, dimensional temperature of the bottom wall
and the ambient gas, respectively. Note that in the absence of the HTG, the problem
considered here reduces to the canonical Rayleigh–Bénard convection problem. Here, we
assume a negative VTG implying T∗

w > T∗∞.
We also assume the aspect ratio of the system to be small such that d∗/L∗ � 1, where

L∗ is the length of the container along the x and z directions. This allows us to analyse
the stability of the core parallel flow existing far from the sidewalls and neglect the effect
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Linear dynamics of a thick liquid layer subjected to an OTG

of sidewalls in agreement with the previous studies (Mercier & Normand 1996; Patne &
Oron 2022). The length, time, velocity, pressure and temperature are scaled by d∗, d∗2/κ∗,
κ∗/d∗, μ∗κ∗/d∗2 and β∗d∗, respectively. The dimensionless VTG is (−1) and HTG is
(−η = −η∗/β∗).

Let the scaled fluid velocity components be v = (vx, vy, vz) with vj being the
respective velocity component in the j direction. On imposing the above assumptions
in conjunction with the Boussinesq approximation, the dimensionless continuity and
momentum conservation equations are given as

∇ · v = 0, (2.2a)

1
Pr

[∂tv + (v · ∇)v] = −∇p + RaT + ∇2v, (2.2b)

where Pr = μ∗/ρ∗
0κ∗ and Ra = ρ∗

0α∗β∗d∗4g∗/μ∗κ∗ are the Prandtl and Rayleigh
numbers, respectively. The gradient and Laplacian operators are ∇ = (∂x, ∂y, ∂z) and
∇2 ≡ ∂2

x + ∂2
y + ∂2

z , respectively. Also, ∂j denotes the partial derivative with respect to
j = x, y, z, t and p is the pressure. The scaled heat advection–diffusion equation is

∂tT + v · T = ∇2T. (2.2c)

Equations (2.2) are subjected to the following boundary conditions. At the bottom wall
(y = 0), we assume no-slip, an impermeable bottom wall and a linearly decreasing
temperature in the x direction. The thermal boundary condition arises on account of the
consideration of a perfectly conducting bottom wall. Thus,

vx = 0; vz = 0; vy = 0; T = Tw − ηx. (2.3a)

At the gas–liquid interface (y = 1), we impose a kinematic boundary condition, continuity
of heat flux and the vanishing tangential stresses, as follows:

vy = 0, (2.3b)

∂yvx = 0, (2.3c)

∂yvz = 0, (2.3d)

∂yT + Bi(T − T∞ + ηx) = 0. (2.3e)

Here, Bi = q∗d∗/k∗
th, T∞ and q∗ are the Biot number, the dimensionless temperature of

the ambient gas and the heat transfer coefficient of the heat convection at the interface,
respectively. It must be noted that the assumption of a non-deformable gas–liquid interface
allows us to provide the boundary conditions in the above-simplified form.

Following the procedure of Mercier & Normand (1996) and Patne & Oron (2022), the
fully developed, steady-state core flow is

v̄x = −ηRa
48

(8y3 − 15y2 + 6y); v̄y = 0; v̄z = 0, (2.4a)

p̄ = pa + Ra
∫ 1

0
T̄(x, y) dy, (2.4b)

T̄ = Tw − ηx −
[

1 + Bi η2 Ra
320(1 + Bi)

]
y + η2 Ra y3

960
(20 − 25y + 8y2). (2.4c)

A comparison of the above base state temperature with that of Patne & Oron (2022)
shows that there is an extra term (−Bi η2 Ra/320(1 + Bi))y entering as a linear term in y.
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Additionally, similar to Patne & Oron (2022), there is a quintic polynomial term in y,
namely (η2 Ra y3/960)(20 − 25y + 8y2). These terms will be absent for η = 0 and are
functions of y but not of x (i.e. the imposed direction of the HTG), implying that these VTG
terms are induced by the imposed HTG. Henceforth, the terms (Bi η2 Ra/320(1 + Bi))y
and (η2 Ra y3/960)(20 − 25y + 8y2) will be referred to as induced linear VTG and
induced quintic VTG to differentiate from the imposed VTG and each other. Furthermore,
the induced linear VTG term possesses the same sign as the imposed VTG, reinforcing the
imposed VTG. In a similar setting, the previous studies of Patne, Agnon & Oron (2020b,
2021a,b) concerning the thermocapillary instabilities exhibited by a liquid layer predict the
existence of an induced VTG which opposes the imposed VTG. Their analysis predicted
a strong stabilising effect of the induced VTG on the instabilities caused by the imposed
VTG. However, in the present case, the induced VTG reinforces the imposed VTG. This
leads to anticipation that this extra VTG could lead to an interesting alteration of the liquid
layer dynamics, which is indeed the case as discussed in § 4.

In the subsequent discussion, we will analyse the linear stability of the above base
state. Thus, infinitesimally small perturbations are imposed on the base state (2.4).
Squire’s theorem does not apply to the system under consideration; thus, we consider
three-dimensional perturbations. The governing equations (2.2) are linearised around the
base state (2.4). In the linearised governing equations, we substitute normal modes of the
form

f ′(x, t) = f̃ ( y) exp[i(kx + mz) + st]. (2.5)

Here, f ′(x, t) is a perturbation to the dynamic quantity f (x, t) and f̃ ( y) is the corresponding
eigenfunction in the Laplace–Fourier space. The parameters k and m are the wavenumbers
in the x and z directions, respectively. The temporal stability of the base flow is determined
by the complex frequency s = sr + isi. The base flow is unstable if at least one eigenvalue
possesses sr > 0. The linearised equations after substitution of the normal modes (2.5)
lead to

ikṽx + Dṽy + imṽz = 0, (2.6a)

1
Pr

[
sṽx + ikv̄xṽx + ṽyDv̄x

] = −ikp̃ + (D2 − k2 − m2)ṽx, (2.6b)

1
Pr

[
sṽy + ikv̄xṽy

] = −Dp̃ + (D2 − k2 − m2)ṽy + Ra T̃, (2.6c)

1
Pr

[
sṽz + ikv̄xṽz

] = −imp̃ + (D2 − k2 − m2)ṽz, (2.6d)

sT̃ + ikv̄xT̃ + ∂x T̄ ṽx + ∂y T̄ ṽy = (D2 − k2 − m2)T̃, (2.6e)

where D ≡ d/dy.
The above (2.6) are to be solved using the following boundary conditions. At y = 0, the

boundary conditions become

y = 0 : ṽx = 0; ṽy = 0; ṽz = 0; T̃ = 0. (2.7a)
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Linear dynamics of a thick liquid layer subjected to an OTG

At y = 1, the assumption of a non-deformable interface leads to

ṽy = 0, (2.7b)

Dṽx = 0, (2.7c)

Dṽz = 0, (2.7d)

DT̃ + BiT̃ = 0. (2.7e)

Equations (2.6) along with boundary conditions (2.7) form an eigenvalue problem for ω

for a specified value of the parameters Ra, Bi, Pr, η and wavenumbers k and m. To solve
this eigenvalue problem, we employ the pseudospectral method, briefly explained below.

3. Numerical methodology

In the pseudospectral method, the eigenfunctions are expanded in the form of a series of
Chebyshev polynomials

f̃ ( y) =
m=M∑
m=0

amTm( y), (3.1)

where M is the highest degree of the polynomial in the series expansion and Tm( y) are
Chebyshev polynomials of degree m. The parameter M is also termed as the number of
collocation points. The series coefficients am are the unknowns to be solved for.

To implement the pseudospectral method, we transform the fluid domain 0 � y � 1
to −1 � y � 1 by using mapping y → 2y − 1. Upon discretisation using the above
procedure, the eigenvalue problem becomes

Pe + sQe = 0, (3.2)

where P and Q are matrices derived following the discretisation procedure and e is the
vector containing the coefficients of all series expansions.

The standard procedure to discretise the governing equations and boundary conditions
using Chebyshev polynomials can be found in Trefethen (2000) and Schmid & Henningson
(2001). The application of the pseudospectral method for similar problems can be found in
Patne, Agnon & Oron (2020a); Patne et al. (2020b, 2021a,b), Patne & Oron (2022), Patne
& Chandarana (2023) and Patne (2024). To solve the eigenvalue problem (3.2), we use
the eig MATLAB routine. The predicted eigenspectrum also contains numerical spurious
eigenvalues. To filter out these modes, we execute the code for N and N + 2 collocation
points, and the eigenvalues are compared with a specified tolerance, e.g. 10−4. To further
ascertain the genuine eigenvalues, the number of collocation points is increased by 25, and
the variation of the eigenvalues is observed. If the eigenvalue does not change more than a
specified precision, e.g. to the sixth significant digit, the same number of collocation points
is used to determine the critical parameters of the system. In the present work, N = 60 is
found to be sufficient to achieve convergence and to determine the leading, most unstable
eigenvalue within the investigated parameter range.

The numerical method employed here is validated as follows. The critical Rac value
for a liquid layer supported by a perfectly conducting bottom wall and heated from
below (i.e. only VTG) and exposed to inert ambient gas is available in Drazin (2002)
(p. 99). Drazin (2002) reports Rac = 1101 and the critical wavenumber kc = 2.682. The
corresponding problem in Drazin (2002) differs due to the thermal boundary condition at
the gas–liquid interface or free surface. He assumes a fixed temperature at the bottom wall

987 A32-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

40
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.409


G. Dixit, S.F. Bukhari and R. Patne

and free surface as well. To validate the present numerical methodology, we change the
boundary condition at the free surface to a fixed temperature instead of Newton’s cooling
law (2.7e) and substitute η = 0. The resulting problem predicts Rac = 1101 and kc = 2.681
in excellent agreement with Drazin (2002), thereby validating the numerical methodology
for η∗ = 0.

In the extreme limit of η∗ → ∞(β∗ = 0), the present problem corresponds to the
stability of Hadley circulation studied by Hart (1972), Gill (1974), Hart (1983), Laure &
Roux (1989) with altered boundary conditions. Thus, to validate the present numerical
methodology, we compare the results obtained using the pseudospectral method utilised
here with those of Hart (1983) and Laure & Roux (1989) as follows.

Hart (1983) and Laure & Roux (1989) consider two cases based on the boundary
conditions at the top and bottom of the liquid layer. Considering the present problem
of having a free upper surface and a rigid bottom wall, we validate our results with
their rigid-free case. Given the vast difference in the scaling and boundary conditions,
we have directly utilised base state equations (5) and (6) and the linearised perturbation
equations (10)–(12) of Hart (1983). Note that, for the parallel core flow far from the
sidewalls and shallow cavity, the constant a in his base state equations (5) and (6) is unity.
Also, we have utilised equations (10)–(12) of Hart (1983) since we wish to reproduce
select points from figure 3 of Laure & Roux (1989) for the spanwise (longitudinal) modes
of Laure & Roux (1989). Regarding the boundary conditions, following Hart (1983) and
Laure & Roux (1989), we assume an insulator at the bottom and a stress-free insulator
at the upper free surface. Note that, in the present problem, we consider a perfectly
conducting bottom wall and energy exchange at the free surface via convection.

Hart (1983) and Laure & Roux (1989) utilise the Grashof number, Gr = RaH Pr, to
characterise the inception of instability where RaH is the horizontal Rayleigh number
based on the imposed dimensional HTG, η∗. To validate our numerical methodology,
we utilise three points digitally extracted from figure 3 of Laure & Roux (1989), viz.,
(Pr, Grc) = (0.001, 16450), (0.01, 5310), (0.1, 2054) where Grc is the critical Grashof
number. Upon using the pseudospectral method, we find for Pr = 0.001, Grc = 16455, for
Pr = 0.01, Grc = 5313 and for Pr = 0.1, Grc ∼ 2052 in excellent agreement with figure 3
of Laure & Roux (1989) (curve for the spanwise or longitudinal modes) thereby validating
the present numerical methodology for β∗ = 0.

Additionally, the present problem differs from the problem solved by Patne & Oron
(2022) due to the boundary condition at the bottom wall, which also modifies the base
state. Thus, if we switch the base state and boundary condition to that of Patne & Oron
(2022), we should be able to reproduce their results, which is indeed the case. We obtained
the variation of the eigenvalue ω = is with η in the ωr–ωi space at Bi = 10−5, m = 0, k =
0.1, Ra = 400 and Pr = 10 for the problem of Patne & Oron (2022) and compared with
their figure 2. The comparison showed an excellent agreement thereby validating the
present numerical procedure.

4. Results and discussion

Before proceeding with the results, we first estimate the limitations of the present model
as follows. The applicability of the Boussinesq approximation necessitates α∗	T∗ � 1,
where 	T∗ = T∗

w − T∗∞. This implies

Ra � Ga = Bo
Ca

= ≡g∗d∗3

ν∗κ∗ (4.1)
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Linear dynamics of a thick liquid layer subjected to an OTG

where Ga, Bo and Ca are the Galileo, Bond and Capillary numbers, respectively, and ν∗ =
ρ∗

0/μ∗ is the kinematic viscosity. For a non-deformable free surface, the surface tension
must be dominant, implying Ca = μ∗κ∗/σ ∗d∗ → 0 where σ ∗ is the surface tension. Thus,
from (4.1), for a non-deformable free surface, an arbitrarily high value of Ra does not
violate the Boussinesq approximation. Note that, due to this strong constraint, we consider
a non-deformable free surface in the present study. From (4.1), the range of validity is

d∗ 
 d∗
1 ≡

(
Ramκ∗ν∗

g∗

)1/3

, (4.2)

where Ram = 109 is the maximum value of Ra considered here. For water, this gives d 

2 cm. The thermocapillary effect can be neglected if,

Ra 
 Ma ≡ γ ∗β∗d∗2

ν∗κ∗ (4.3)

where Ma is the Marangoni number whose definition contains the temperature gradient of
surface tension γ . This yields

d∗ 
 d∗
2 ≡

(
γ ∗

ρ∗
0 g∗α∗

)1/2

. (4.4)

For water, this yields d 
 1 cm. Thus, the present analysis is valid for liquid layers with
d 
 max(d1, d2). For a water layer, this leads to d 
 2 cm.

Next, we provide an estimate of the relevant parameters. The above analysis suggests
that the buoyancy instabilities would be relevant for the liquid layers with thickness
d∗ > 10−2 m thereby providing the lower bound on d∗. The ranges for the remaining
dimensional parameters are ρ∗

0 ∼ 103 kg m−3, α∗ ∼ 10−5 ∼ 10−3 1 K−1, k∗
th ∼ 10−6 −

10−3 J (m s K)−1, q∗ ∼ 1 − 102 J (m2 s K)−1, κ∗ ∼ 10−7–10−5 m2 s−1, and μ∗ ∼
10−3–102 Pa s (Ezersky et al. 1993; Braunsfurth et al. 1997; Li, Xu & Kumacheva 2000;
Juel et al. 2001; Hof et al. 2004; Ospennikov & Schwabe 2004; Mizev & Schwabe 2009).
Accordingly, the corresponding dimensionless numbers are Bi > 0.1, Ra > 0.1 and Pr ∼
O(10−3–103). The present study will use this parameter range to analyse various instability
modes. For ease of presentation, the results have been divided into two sections dealing
with the streamwise mode with a vanishing spanwise wavenumber and the spanwise mode
with a vanishing streamwise wavenumber.

4.1. Streamwise mode (m = 0)
As predicted below, the stability characteristics of the system are drastically different for
Pr < 1 and Pr > 1. Thus, we further divide this section into two subsections.

4.1.1. For Pr > 1
In the absence of the applied HTG or η = 0, a monotonic or stationary VTG instability
mode exists with Rac = 669 and kc = 2.09 for Bi � 1. Henceforth, this instability mode
arising due to the imposed VTG will be referred to as ‘VTG mode’. In contrast with the
longwave VTG mode predicted by Patne & Oron (2022) for a similar problem, we predict
a finite-wavenumber VTG mode in the present study. It must be noted that Patne & Oron
(2022) considered a poorly conducting bottom wall while here we consider a perfectly
conducting bottom wall. The change in the type of the instability mode is a consequence
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Figure 2. The effect of variation in the strength of the HTG (i.e. η) on the VTG mode of instability in the si–sr
plane at Ra = 800, Pr = 7, k = 2 and Bi = 10−5. The figure demonstrates the strong stabilising effect of the
HTG on the VTG mode.

0.2 0.4 0.6 0.8 1.0

x
0

0.2

0.4

0.6

0.8

1.0

y

Figure 3. The contour plots of v′
y for the streamwise VTG mode at Ra = 4235, Bi = 10−5, k = 7, Pr = 7

and η = 0 such that sr ∼ 0 for the VTG mode. The form of the rolls indicates a stationary mode of instability.

of the thermal boundary condition imposed at the bottom wall. If we switch on the HTG,
as η increases, the VTG mode is strongly stabilised. At a certain value of η, the VTG mode
is completely stabilised by the HTG as shown in figure 2. The form of the convection rolls
for a streamwise VTG mode is shown in figure 3.
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Linear dynamics of a thick liquid layer subjected to an OTG
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Figure 4. The neutral stability curves and variation of the critical Rayleigh number with the dimensionless
strength of the HTG at Bi = 10−5 and Pr = 7. (a) Neutral stability curves for select values of η. An increasing
η decreases the neutral stability island size, which disappears at η = 0.21. (b) Variation of Rac with η. The
long wave mode due to VTG forms an island of instability as a result of stabilisation by the imposed HTG. The
island is constrained to η < 0.21.

Figure 2 shows the stabilisation of the VTG mode by the imposed HTG at a fixed
value of the wavenumber. To understand the impact of variation in η on the critical
parameters, neutral stability curves corresponding to sr = 0 are shown in figure 4(a).
As η increases, the neutral stability curve shifts towards higher Ra. The minimum in
the curve for η = 0 occurs at k = 2.09, implying a critical wavenumber kc = 2.09. Even
as η increases, the value of kc remains approximately constant. Thus, even though an
increasing η leads to an increase in the critical Rayleigh number Rac, it fails to change
kc. The increasing η does succeed in reducing the range of the unstable wavenumber.
This leads to the formation of an island of instability by the neutral stability curves. An
increasing η reduces the size of this island, which disappears at a sufficiently high η. The
stabilisation by the imposed HTG is accomplished through the induced quintic VTG term,
namely (η2 Ra y3/960)(20 − 25y + 8y2) since for Bi � 1 the other term arising due to the
imposed HTG, namely the induced linear VTG term, does not have any effect.

The disappearance of the island of instability in k–Ra space at a sufficiently high η leads
to the formation of a corresponding island of instability in the η–Rac parametric space as
shown in figure 4(b). The base state is unstable inside the island and stable outside of the
island. It must be noted that a similar island of instability was also predicted by Patne &
Oron (2022) for a poorly conducting bottom wall. The physical mechanism by which such
a stabilisation manifests has been discussed in § 6. The absence of instability outside of the
island also implies for η → ∞, i.e. purely HTG, the base flow will remain linearly stable.

The buoyancy instabilities are typically observed in thick fluid layers due to the strong
influence of thermocapillary forces for thin layers. A ratio of the Rayleigh number to
the Marangoni number, i.e. Ra/Ma ∼ d2, provided that other parameters are constant.
Thus, typically, it is assumed that the thermocapillary instabilities will be relevant for thin
layers. From figure 4(b), the imposed HTG stabilises the VTG mode. However, from Patne
et al. (2021a), thermocapillary instabilities exist in the same setting since the imposed
OTG leads to a new mode of instability. Thus, we conjecture that for water with Pr = 7,
one could experimentally observe a thermocapillary mode even for liquid layers with
d ∼ O(10−2) m.
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Figure 5. Variation of sr in the si–sr plane at Pr = 7, k = 6, η = 10 and Bi = 10. The figure shows the
existence of a new mode of instability at high η.

For liquid layers with d 
 O(10−2) m, Bi 
 0.1. In this case, for sufficiently high
η, from the base-state temperature profile (2.4c), the induced linear VTG term, namely
(−Bi η2 Ra/320(1 + Bi))y becomes relevant. As mentioned in § 2, this term arises due to
the imposed HTG, and it is linear in y, thus termed induced linear VTG. This term has the
same sign as the imposed VTG and thus reinforces the imposed VTG. This reinforcement
neutralises the stabilising effect of the induced quintic VTG term. This results in the
existence of a new streamwise mode of instability shown in figure 5, which arises at a
much higher k and η than the VTG mode. Additionally, the new mode is an upstream
travelling mode since si > 0 while the VTG mode is a downstream mode for non-zero η.

The origin of the new mode can be well understood using the neutral stability curves
shown in figure 6(a). From the neutral stability curves for Pr = 7 and Bi = 10−5, from
figure 4(a), an increasing η leads to the formation of the island of instability in the k–Ra
plane. This island shrinks with increasing η to disappear eventually. From figure 6(a),
for η /= 0, the neutral stability curve forms a pinch point at the higher Ra part, as shown
in the curve for η = 0.2. An increasing η then pinches the neutral stability curve and
divides it into two separate neutral stability curves for the VTG and new modes (see the
curves for η = 0.25). The VTG mode also forms an island of instability much akin to the
case of Bi = 10−5 and Pr = 7 shown in figure 4(a). Upon further increase in η, the VTG
mode vanishes while the neutral stability curve for the new mode shifts towards lower Ra,
implying its destabilisation by an increasing η.

The island of instability in the η–Rac is absent for liquid layers with Bi = 10 due to the
presence of the new mode. Instead, from figure 6(b), the VTG mode passes the baton to
the new mode with the latter exhibiting a much higher Rac initially, which decreases with
an increasing η.

If the induced linear VTG term were to only counter the stabilising influence of the
induced quintic VTG term on the VTG mode, then for higher η as well, Rac should achieve
a constant value corresponding to a liquid layer subjected to a purely VTG. However, from
figure 6(b), it is clear that such is not the case. Instead, Rac decreases with an increasing
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Linear dynamics of a thick liquid layer subjected to an OTG
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Figure 6. The neutral stability curves and variation of Rac with η at Bi = 10 and Pr = 7. (a) Neutral stability
curves for select values of η. The new mode originates as a high Ra part of the neutral stability curve. For
η = 0.6, the VTG mode completely disappears while the new mode dominates the instability of the layer.
Thus, the neutral stability curve for the VTG mode is absent. (b) Variation of Rac with η. The new mode
exhibits Rac ∼ 1/η scaling for η > 0.7.

η exhibiting the scaling Rac ∼ 1/η, implying that the induced linear VTG term not only
counters the stabilising influence of the induced quintic VTG term but also leads to further
destabilisation in conjunction with other effects. The physical mechanism responsible for
the existence of the new mode is discussed in §§ 5 and 6. The contour plots of v′

y for the
new streamwise mode are shown in figure 7. The structure of the rolls readily indicates
the convective nature of the new mode and upstream travelling direction. Additionally,
these convection rolls show a strong resemblance with those predicted by Smith & Davis
(1983a) for hydrothermal waves in a liquid layer subjected to a purely HTG.

The scaling Rac ∼ 1/η also implies that for a purely HTG (η → ∞), Rac → 0. For
example, for η = 105, the stability analysis predicts Rac ∼ 0.07. Thus, when the system
is subjected to a purely HTG, the base flow will be purely destabilised by the imposed
HTG, and the critical Rayleigh number for the instability can be estimated in terms of the
horizontal Rayleigh number RaH using relation RaH = ηRa.

4.1.2. For Pr < 1
For Pr = 7 and Bi � 1, there was an absence of buoyancy instability for η > 0.21 as
shown in figure 4. This occurs due to the strong stabilising effect of the imposed HTG
through the induced quintic VTG term of the base state temperature profile (2.4c).
However, for a non-zero Bi, a new mode of instability arises as a result of the imposed
VTG reinforcement by the induced VTG. We follow similar steps here by first analysing
the case with Bi � 1 and then for non-zero Bi.

For Bi � 1 and Pr = 0.1, from figure 8, similar to the case with Pr = 7, an increasing
η has a strong stabilising effect on the VTG mode. However, for η > 0.15, the HTG has a
destabilising effect on the same mode. For η > 0.6, the curve shows the characteristic
scaling Rac ∼ 1/η. Thus, this leads to a rather unique-shaped curve in the η–Rac
parametric space. It must be noted that in the case of a poorly conducting bottom wall
studied by Patne & Oron (2022), a similar behaviour was predicted in contrast to the
perfectly conducting bottom wall considered here. This indicates that for low Bi and
Pr = 0.1, the thermal conductivity of the bottom wall does not alter the stability picture.
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Figure 7. The contour plots of v′
y for the new streamwise mode at Ra = 836.1, Bi = 10, k = 7, Pr = 7 and η =

10 such that the new mode is marginally stable. The appearance of the streamwise convection rolls resembles
the hydrothermal waves predicted by Smith & Davis (1983a).
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Figure 8. Neutral stability curves in the k–Ra plane (a) and variation of Rac with η (b) at Pr = 0.1 and
Bi = 10−5. Similar to the case with Pr = 7, at low η, an increasing η stabilises the VTG mode. However,
for η > 0.15, the VTG mode is destabilised by an increasing η.

In this case, also, owing to the scaling Rac ∼ 1/η, Rac → 0 as η → ∞ since for η = 105,
Rac ∼ 0.055. Thus, the liquid layer will be unstable even if it is subjected to a purely HTG.

For Pr = 0.01 and vanishing Bi, the HTG fails to stabilise the VTG mode. Instead, the
HTG enhances the VTG mode to result in a more destructive VTG mode by lowering
Rac as indicated by the shifting of the neutral stability curves to lower Ra in figure 9(a).
The variation of Rac with η is shown in figure 9(b), affirming the conclusions of the
neutral stability curves. Similar to the case of Pr = 0.1 shown in figure 8(b), for η >

0.15, the Rac curve exhibits the scaling Rac ∼ 1/η. For a poorly conducting bottom wall,
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Linear dynamics of a thick liquid layer subjected to an OTG
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Figure 9. Neutral stability curves (a) and Rac variation with η (b) at Bi = 10−5 and Pr = 0.01. The neutral
stability curves appear similar to those for Pr = 0.1 in figure 8(a). However, unlike the Pr = 0.1 case, from
(b), the VTG mode is destabilised by an increasing η irrespective of the value of η.

Patne & Oron (2022) predicted the presence of a new mode of instability at low Pr, which
bifurcated from the island of instability at low η. In the present case, there is an absence of
a new mode; instead, the VTG mode gets destabilised by imposed HTG, which leads to the
predicted stability picture. From figure 8(b), Rac ∼ 1/η, thus Rac → 0 in the extreme limit
η → ∞. For example, for η = 105, Rac ∼ 0.00085. Thus, the liquid layer can become
unstable even in the absence of the imposed VTG. As discussed in §§ 5 and 6, the HTG
achieves destabilisation through the Reynolds stress work, which becomes a bridge in
transferring the kinetic energy from the base flow to the perturbations.

For non-zero Bi and Pr = 0.01, the variation of Rac with η is shown in figure 10. While
a non-zero Bi leads to a new streamwise mode for Pr = 7, figure 10 shows that there is
absence of such a mode for Pr = 0.01. An increasing Bi stabilises the VTG mode in the
absence of the imposed HTG. However, from figures 9(b) and 10, the imposed HTG has
a destabilising effect on the same VTG mode irrespective of the Bi value for low Pr. This
destabilisation by the HTG nullifies the stabilising effect of the increasing Bi at sufficiently
high η. Thus, as Bi increases, the critical parameter curve shifts to higher Rac for low
and intermediate values of η, while in the region where η is high, the HTG dominates
and removes the effect of Bi. This leads to the merging of the curves for different Bi at
high η. Note that, as explained later in § 6, for low Pr and high η, the Reynolds stress
work dominates the other perturbation energy sources/sinks, which could also explain the
irrelevance of Bi at high η.

4.2. Spanwise mode (k = 0)

4.2.1. For Pr > 1
For Pr = 7 and Bi � 1, the spanwise mode is also strongly stabilised by the imposed
HTG owing to the induced quintic VTG term in the base state temperature profile (2.4c).
From figure 2, the streamwise VTG mode becomes a downstream mode of instability
(since si < 0) due to the imposed HTG while the spanwise mode remains stationary (since
si = 0). Similar to the island of instability for the streamwise mode shown in figure 4,
the spanwise mode also forms an island of instability in the k–Ra plane, not shown here
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Figure 10. The variation of Rac with η at Pr = 0.01 for two value of Bi. At high η, the curves for different
values of Bi merge, showing the irrelevance of Bi when HTG is stronger than the VTG.
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Figure 11. The island of instability in η–Rac parametric space for the spanwise VTG mode at Pr = 7 and
Bi = 10−5. Similar to the streamwise VTG mode, the imposed HTG has a strong stabilising effect on the VTG
mode.

for brevity. From figure 11, the spanwise VTG mode also forms an island of instability in
η–Rac space.

As we change Bi from 0 to 10 while keeping Pr = 7, similar to the streamwise mode,
a new spanwise mode originates. The neutral stability curves for the same are shown in
figure 12(a). At η = 0.213, the neutral stability curve forms a pinch point at the higher Ra
part. This pinch further develops and divides the neutral stability curves into two separate

987 A32-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

40
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.409


Linear dynamics of a thick liquid layer subjected to an OTG
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Figure 12. (a) The effect of variation in η on the neutral stability curves in the m–Ra plane at Pr = 7 and
Bi = 10. The figure demonstrates the origin of the new spanwise mode in the m–Ra plane. (b) The variation of
Rac with η for Pr = 7. (c) The variation of the critical spanwise wavenumber mc with η for Pr = 7.

curves for the VTG and new modes (see the curves for η = 0.25). Upon further increase
in η, the VTG mode vanishes while the neutral stability curve for the new mode shifts
towards lower Ra, implying its destabilisation by an increasing η.

The variation of Rac due to variation in η for Bi = 1, 10 and Pr = 7 is shown in
figure 12(b). An increasing Bi has a stabilising effect on the VTG mode even in the absence
of the imposed HTG. Additionally, the imposed HTG also has a stabilising influence on
the VTG mode. This leads to the shifting of the curve in the η–Rac plane to a higher Rac
value for η < 0.3. However, an increasing Bi has a destabilising effect on the new spanwise
mode. Thus, for η > 0.3, the curve shifts downward with increasing η. As explained in
§ 6, the lowering of Rac due to increasing Bi for the new mode is a direct result of the
influence of the induced linear VTG term in the base state temperature (2.4c). Irrespective
of the value of Bi, for η > 0.3, the curves exhibit characteristic scaling Rac ∼ 1/η. From
figure 12(c), for η < 0.3, where the VTG mode is the dominant mode, mc is almost
constant. Corresponding to the jump in Rac curves of figure 12(b), where the dominant
mode switches from the VTG mode to the new spanwise mode curve, there is also a jump
in mc curves. At high η, mc for the new spanwise mode also achieves a constant value
with higher Bi systems having lower mc. The structure of the convection rolls due to the
new spanwise mode is shown in figure 13. The form of the rolls is similar to that for the
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Figure 13. The contour plots of v′
y for the new spanwise mode at Ra = 705.15, Bi = 10, m = 7, Pr = 7 and

η = 10 such that sr ∼ 0 for the new spanwise mode. The rolls exhibit a structure similar to the purely VTG
rolls shown in figure 3 owing to the stationary nature of the new spanwise mode.

VTG mode except for a change in the velocity contour density near y = 0, 1. For the new
spanwise mode, similar to the new streamwise mode, as η → ∞, Rac → 0 implies the
existence of an unstable flow even in the limit of a purely imposed HTG.

4.2.2. For Pr < 1
For Pr = 0.01, unlike the streamwise VTG mode, the imposed HTG has a much more
powerful impact, as shown in figure 14(a). For η < 0.0188, there is only one unstable
mode. An increasing η leads to an additional unstable mode. The original VTG mode and
the new unstable mode have the same si but different sr. These modes at η = 0.018862
possess equal growth rates. Any further increase in η leads to the origin of a pair of
unstable modes having the same sr and |si| but an opposite sign of si. Thus, these two
modes travel in opposite directions. The imposed HTG initially stabilises the newly formed
pair until η = 0.2, beyond which the HTG destabilises. This initial stabilisation leads to a
small hump in the curve, but at high η, the curve shows the scaling Rac ∼ 1/η as shown
in as shown in figure 14(b). It must be noted that both the modes in the pair possess the
same Rac.

For Bi /= 0, it is similar to the streamwise mode as shown in figure 15. For Pr = 0.01 and
Bi = 1, as η � 1, the critical wavenumber attains a constant value ∼2.3 while in the limit
η 
 1, mc ∼ 1.35. Similarly for Bi = 10, mc in the limits η � 1 and η 
 1 is mc ∼ 2.6
and mc ∼ 1.75, respectively.

4.3. Oblique modes (k /= 0 and m /= 0)
In the previous two §§ 4.1 and 4.2, we have analysed the stability of the streamwise mode
for which m = 0 and spanwise mode for which k = 0. Along with these modes, there
are also oblique modes possessing k /= 0 and m /= 0. This section aims to analyse these
oblique modes. If there exists an oblique mode, which has Rac lower than the streamwise
mode for a particular combination of k and m, then the growth rate sr must increase for a
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Figure 14. (a) Movement of eigenvalues in the si–sr plane at Pr = 0.01, m = 2, Ra = 900 and Bi = 10−5.
The figure demonstrates the existence of a pair of unstable spanwise modes for low Pr originating from two
unstable stationary spanwise modes. (b) The effect of variation in η on Rac at Pr = 0.01 and Bi = 10−5 for
the spanwise VTG mode. For 0.01 < η < 0.2, the imposed HTG stabilises the VTG mode. For η > 0.2, an
increasing η destabilises the VTG mode.
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Figure 15. The variation of Rac with η. An increasing Bi number has a purely stabilising effect on the
spanwise mode for low Pr.

particular combination of k and m. To demonstrate, here we consider two cases, one where
the VTG mode determines the stability of the layer (figure 16a) and the other where the
new mode controls the stability of the layer (figure 16b).

For the parameter set η = 10, Pr = 0.01, Bi = 10−5, Ra = 15, the streamwise VTG
mode becomes unstable at a much lower Ra than the spanwise VTG mode; thus, the
former is the dominant mode. In this case, we probe for a more unstable oblique mode.
Thus, the spanwise wavenumber (m) is increased while keeping other parameters constant
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Figure 16. (a) The VTG mode exhibits a lower growth rate as it becomes an oblique mode due to an increasing
spanwise wavenumber m at η = 10, Pr = 0.01, Bi = 10−5, Ra = 15 and k = 1.5. The parameter m has been
increased in steps of 0.25, and the mode with the highest sr is for m = 0. For k = 0, the mode leads to a
pair of spanwise modes, as shown in figure 14(a). (b) The new spanwise mode is stabilised due to increasing
streamwise wavenumber k for η = 10, Pr = 7, Bi = 10, Ra = 750 and m = 7. The point with the highest sr
corresponds to k = 0, and k has been increased in steps of unity. The same mode for m = 0 becomes the new
streamwise mode whose neutral stability curves and Rac variation with η are given in figure 6.

in figure 16(a). This increase in m implies we are looking at oblique modes. It turns out
that the growth rate of the oblique modes is always lower than the streamwise mode. It
must be noted that although not shown here, we have also explored different combinations
of k and m; still, the analysis did not predict the existence of a mode with higher sr.

Figure 16(b) shows the second case where the new mode determines the stability of
the layer. In this case, the new spanwise mode has a lower Rac than the new streamwise
mode. Once again, we probe for an oblique mode with a higher sr than the spanwise mode
by trying different combinations of k and m. One such exercise is shown in figure 16(b)
by keeping m constant and varying k. An increasing k leads to a decrease in sr, thereby
indicating that the new spanwise mode is more unstable. Thus, for the parameter range
explored in the present study, either streamwise or spanwise mode is the most unstable or
dominant mode of instability. The oblique modes will always have sr lying between these
two modes. Thus, we will not be exploring these modes in detail.

4.4. Dominant mode
From §§ 4.1, 4.2 and 4.3, for a given parameter set, various modes of instability become
unstable. Experimentally, as Ra is increased, the mode with the lowest Rac or the dominant
mode becomes unstable first, followed by the other modes. The dominant mode also
exhibits a higher growth rate than the other modes; thus, the dominant mode is expected
to be observed in the experiments. From § 4.3, the oblique modes always have a growth
rate less than the streamwise or spanwise mode. Thus, in this section, we compare the
streamwise and spanwise modes based on Rac required to destabilise the mode and provide
a guideline for the experiments to observe the instabilities predicted here.

4.4.1. For Pr = 7
For Bi � 1, from figures 4(b) and 11, both the streamwise and spanwise VTG modes
form an island of instability in η–Rac space. The comparison of these instability islands
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Linear dynamics of a thick liquid layer subjected to an OTG
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Figure 17. A comparison of Rac for the streamwise and spanwise modes to determine the dominant mode of
instability for Bi = 10−5 and Bi = 10. (a) The Rac required for the spanwise VTG mode is lesser than the
streamwise VTG mode for η > 0.03; thus, the former is the dominant mode of instability. (b) In this case also,
the spanwise mode is the dominant mode.

is shown in figure 17(a). The spanwise VTG mode becomes unstable at a lower Rac than
the streamwise VTG mode, implying that the former is the dominant mode in this case.
Additionally, the island for the spanwise VTG mode extends to a larger η than for the
streamwise VTG mode, thereby showing that the former resists the stabilising influence of
the induced quintic VTG term better than the latter.

For Bi = 10, new streamwise and spanwise modes exist, which determine the stability
of the layer. The comparison of Rac for the streamwise and spanwise new modes is shown
in figure 17(b). Here, as well, the streamwise new mode has a higher Rac than the spanwise
new mode, indicating that the latter is the dominant mode of instability. To conclude, if
one were to conduct experiments for the present system and the experimental fluid is water
(Pr ∼ 7), then the experimentally observed instability could be due to the spanwise mode
irrespective of the Bi value.

4.4.2. For Pr = 0.01
From §§ 4.1 and 4.2, the induced quintic VTG term fails to stabilise the streamwise and
spanwise VTG modes completely, unlike the Pr = 7 case. Also, even for non-zero Bi,
there is an absence of a new mode of instability. A comparison of Rac for the streamwise
and spanwise modes for two values of Bi is shown in figure 18. For 0.01 < η < 0.2, the
imposed HTG has a stabilising effect on the spanwise mode, which leads to an increase in
Rac, but this stabilisation disappears for η > 0.2. This stabilisation separates the behaviour
of the streamwise mode since an increasing η has a monotonic destabilising effect on the
streamwise mode. This difference established at low η becomes crucial at high η as well by
making the streamwise mode a dominant mode of instability for Pr = 0.01. The scenario
remains unchanged even as Bi increases to 10, as shown in figure 18(b).

5. Perturbation energy budget analysis

In § 4, the stability analysis predicted new streamwise and spanwise modes for Bi /= 0
and Pr = 7. To understand the factors responsible for the existence of these modes, here
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Figure 18. The Rac required for the spanwise mode is higher than the streamwise mode for η > 0.01; thus,
the latter is the dominant mode of instability irrespective of the Bi value for Pr = 0.01. Here (a) Bi = 10−5;
(b) Bi = 10.

we analyse the perturbation energy budget using the approach of Hu, He & Chen (2016),
Hu et al. (2017), Patne et al. (2021a) and Patne & Oron (2022). To accomplish this, the
momentum conservation equations (2.2b) are linearised around an arbitrary base state to
yield

1
Pr

∂v′

∂t
= −∇p′ + ∇ · τ ′ + RaT ′∇y − 1

Pr

[
(v′ · ∇)v̄ + (v̄ · ∇)v′] , (5.1)

where τ is the stress tensor and a prime, ′, implies a perturbation quantity. To obtain the
perturbation energy equation, (5.1) is scalar multiplied by the perturbation velocity vector
v′. The resulting equation is then integrated over the liquid layer to yield

1
Pr

∂E
∂t

= −1
2

∫
τ ′ : γ̇ ′ dV + Ra

∫
T ′ v′

y dV − 1
Pr

∫
v′ · ¯̇γ · v′ dV

≡ −Ib + IRB − IR, (5.2)

E = 1
2

∫
v′ · v′ dV. (5.3)

Here, the integrals Ib, IRB and IR are the bulk stress work, Rayleigh–Bénard integral
or buoyancy work, and the Reynolds stress work (Drazin 2002), respectively, and dV
is the volume element. The quantities γ̇ ′ = ∇v′ + ∇v′T and ¯̇γ = ∇v̄ + ∇v̄T are the
strain-rate tensors in the perturbed and base states, respectively. It must be noted that
while obtaining the above equation, we have used the continuity equation, ∇ · v′ = 0. The
pressure perturbation energy term vanishes at the bottom wall and free surface due to the
vanishing normal velocity perturbations.

The bulk stress work Ib = 1
2

∫
τ ′ : γ̇ ′ dV represents viscous dissipation of the

perturbation energy. For a Newtonian fluid, τ ′
ij = γ ′

ij, thus, Ib = 1
2τ ′ : γ̇ ′ = 1

2γ ′
ijγ

′
ji � 0.

This leads to the immediate conclusion that the bulk stress work will always lead to a
decrease in the perturbation energy for a Newtonian fluid. The same is not the case for
viscoelastic fluids as predicted by Hu et al. (2016, 2017) and Patne et al. (2021a, 2020a)
where Ib could lead to new instabilities.
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Linear dynamics of a thick liquid layer subjected to an OTG

The Rayleigh–Bénard integral or buoyancy work IRB arises purely due to the buoyancy.
Typically, for a liquid layer subjected to a purely negative VTG, causing unstable density
stratification, IRB is positive, thereby leading to the VTG mode. To accomplish that, IRB
must overcome the stabilising impact of the dissipation factors, such as viscous forces and
thermal diffusion of the energy.

The third integral, viz., the Reynolds stress work (IR), arises purely as a consequence
of the imposed HTG. For a liquid layer subjected to a purely VTG, the base state is a
vanishing velocity field. In that case IR = (1/Pr)

∫
v′ · ¯̇γ · v′ dV will vanish since ¯̇γ = 0.

Thus, it does not contribute to the VTG mode. However, in the present case, due to
the HTG component of the imposed OTG, the base state velocity in the x direction is
non-zero, thus ¯̇γ /= 0. The integral IR represents a volume-averaged correlation between
the perturbations in the horizontal and vertical components of the velocity field. This
integral is also responsible for the energy exchange between the base state and the
perturbation fields. The presence of 1/Pr in the integral IR indicates that for low Pr, this
term will play a major role in determining the stability of the layer, which is indeed the
case as discussed below. Furthermore, the base state strain-rate tensor ¯̇γ directly depends
on η. Thus, an increasing η will lead to an increase in ¯̇γ thereby enhancing the importance
of the Reynolds stress work in influencing the stability of the layer.

Before proceeding with the numerical calculations of the integrals, the following
conclusions can be drawn by using the definitions of the integrals. The absolute values
of the integrals may not provide the exact roles of the different terms. Thus, we normalise
the integrals by the absolute value of IRB. From (5.2), we have

Ib

IRB
= 1

2Ra

∫
τ ′ : γ̇ ′ dV∫
T ′ v′

y dV
. (5.4)

As explained later in § 6, for the buoyancy convection to exist, the destabilising forces,
i.e. Raleigh–Bénard work term, must overcome the viscous dissipation forces represented
by Ib. From above expression, as Ra → ∞, Ib/IRB → 0. Physically, this implies that as
Ra increases, the Rayleigh–Bénard work term overpowers the viscous dissipation term to
result in an instability, which is indeed the case for η = 0.

The other ratio is

IR

IRB
= 1

Pr Ra

∫
v′ · ¯̇γ · v′ dV∫

T ′ v′
y dV

. (5.5)

Only ¯̇γxy and ¯̇γyx components of the base state strain-rate are non-zero. Thus, the above
equation using the base state velocity (2.4a) modifies to

IR

IRB
= − η

4Pr

∫
( y − 1)(4y − 1)v′

xv
′
y dV∫

T ′ v′
y dV

. (5.6)

This implies that an increase in Ra will not directly affect the value of this ratio. Instead,
it is the strength of the imposed HTG η that will directly affect this ratio. Additionally,
the presence of Pr in the denominator implies that cases with the Pr < 1 will have a
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Parameters Ib IR

Ra = 8000, η = 1 0.084438 −0.22753
Ra = 900, η = 10 0.117480 −0.497464
Ra = 100, η = 100 0.259310 −2.13793

Table 1. Values of the bulk stress work (Ib) and Reynolds stress work (IR) normalised by the buoyancy
work (IRB) in the energy balance equation (5.2) for the streamwise new mode at Bi = 10, k = 7, m = 0 and
Pr = 7. In each case, the streamwise new mode is unstable. As expected, the normalised bulk stress work is
positive, implying its stabilising influence. The normalised Reynolds work term is negative, thereby having a
destabilising influence. The Rayleigh–Bénard work term is found to be positive for the above combination of
parameters.

better chance of being destabilised by the Reynolds stress work IR. This is indeed the case
from figures 8 and 9 where Pr < 1 leads to the destabilisation of the VTG mode unlike
in the case of Pr = 7. The volume-averaged correlation

∫
( y − 1)(4y − 1)v′

xv
′
y dV must be

positive to contribute to the growth of the perturbations via (5.2).
We focus on the new streamwise mode and try to understand the impact of various

terms in (5.2) in introducing the new modes. The values of the integrals normalised by
the Rayleigh–Bénard integral for a set of parameters corresponding to the new streamwise
mode in an unstable regime are given in table 1. The bulk stress work (Ib) is positive and
thus will lead to the dissipation of the perturbation energy. The Reynolds stress work (IR),
on the other hand, is always negative, implying that it will lead to the enhancement of
the perturbation energy. For η = 1, both normalised Ib and IR are less than unity; thus,
the Rayleigh–Bénard work term (IRB) is larger than both the terms, indicating the major
role of IRB in introducing the new mode of instability. It must be noted that the integral IRB
could achieve such a high value as a direct result of the presence of the induced linear VTG
term. This term, as noted in § 4, counters the stabilising influence of the induced quintic
VTG term even for η < 1 (see figure 6). The base-state velocity (2.4a) is proportional
to η; thus, at low η, the integral IR would have a lower contribution. As η increases, the
value of IR also increases, and for η = 100, it is two times larger than IRB. Thus, while IRB
plays a vital role in introducing the new mode, IR is the one which drives the new mode at
high η.

It must be noted that the perturbation energy analysis carried out here can only
provide qualitative information about perturbation energy sources/sinks that may lead
to destabilisation (Drazin 2002). However, the correct critical parameter values may be
obtained only using the general linear stability analysis discussed in § 4.

6. Physical mechanism

From figure 4, the VTG mode is completely stabilised by the imposed HTG for vanishing
Bi and Pr > 1. While for Pr < 1 and Bi ∼ 0, the imposed HTG may have a stabilising
effect at the beginning, but eventually, it leads to destabilisation of the VTG mode (see
figures 8 and 9). For Bi /= 0, new streamwise and spanwise modes appear as shown in
figures 6 and 12. These modes do not exist when a liquid layer is subjected to a purely
VTG but arise due to an interaction between the imposed VTG and HTG. This physical
manifestation of the stabilising/destabilising effect of the imposed HTG remains to be
understood, which is precisely the aim of this section.

A liquid layer subjected to a purely negative VTG (i.e. the bottom wall is at a higher
temperature than the ambient gas) exhibits Rayleigh–Bénard convection due to the lighter
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Linear dynamics of a thick liquid layer subjected to an OTG

liquid at the bottom and heavy liquid at the top owing to the temperature dependence of the
liquid density. One can describe this convection phenomenon in terms of liquid movement
as follows. Consider a liquid parcel located at y = y0. Assuming the density of the liquid
is a linearly decreasing function of the temperature, the parcel located at a higher level
y = y0 + 	y will have a higher density than that of the liquid layer present at y = y0.
Here Δ � 1 and a positive quantity. Due to the imposed gravity field, the liquid parcel at
y = y0 will try to move to y = y0 + 	y. The viscous forces and thermal diffusion of the
energy from the parcel to the surrounding liquid will oppose this movement. If the imposed
VTG strength is strong enough, the parcel will overcome the viscous and thermal energy
diffusion resistance and move to y = y0 + 	y, resulting in the buoyancy convection. For
the convenience of discussion, this section will be divided into two subsections: (i) Bi � 1
and (ii) Bi /= 0.

6.1. For Bi � 1

6.1.1. For Pr > 1
From figure 4, the VTG mode is stabilised for η > 0.22. Patne & Oron (2022) discussed
the stabilisation of the longwave mode that originates due to the imposed VTG. Their
analysis indicates the presence of an opposing VTG induced by the imposed HTG, which
leads to the predicted stabilisation. From base state temperature (2.4c), at Bi → 0, there
is a linear term in y with coefficient (−1) and a quintic polynomial term, viz., induced
quintic VTG term. The average total VTG can then be obtained by differentiating base
state temperature (2.4c) with respect to y and integrating it over the fluid domain in the y
direction to obtain (

∂T̄
∂y

)
avg

= η2Ra
320

− 1, (6.1)

where the subscript avg indicates the average temperature gradient. The positive term
η2Ra/320 opposes the imposed VTG, thereby weakening it.

The physical manifestation of this stabilisation can be understood as follows. As
discussed above, for the buoyancy instability to exist, the imposed VTG must be strong
enough to overcome the resistance offered by the viscous forces and thermal diffusion
away from the fluid parcel. The quintic polynomial term induced by the HTG weakens the
imposed VTG, thus adding more resistance to the development of buoyancy instability.
The weakened VTG fails to cause instability, thus the predicted stabilisation. At a
sufficiently high η, the average temperature gradient will become positive, thereby
removing the possibility of the existence of buoyancy instability.

6.1.2. For Pr < 1
As discussed in § 4, for Pr = 0.1 and Pr = 0.01 (see figures 8 and 18), the imposed HTG
fails to stabilise the VTG mode even for Bi � 1. The failure to stabilise the VTG mode
could be understood from the perturbation energy analysis discussed in § 5 as follows.

For Bi � 1, the induced linear VTG term does not affect the stability of the layer. Thus,
the Rayleigh–Bénard work term IRB of (5.2), which plays a major role in introducing the
new mode for Bi /= 0, will not be of much relevance. Furthermore, the same IRB term fails
to counter the stabilising effect of the imposed HTG through the induced quintic VTG
term for Pr = 7; thus, it is expected that such a term will not be the stability-determining
term. In fact, at a sufficiently high η from (6.1), owing to the induced quintic VTG term,
the VTG will reverse the sign, resulting in a stable density stratification. In that case,
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the IRB term will have a stabilising effect. The bulk stress work term Ib always leads to
the viscous dissipation of the perturbation energy. The only remaining term that can lead
to the growth of the perturbation energy is the Reynolds work term IR. This term must
overcome the stabilising effect of Ib and IRB to result in instability. From figures 8 and 18,
the IR term succeeds in this endeavour, thereby leading to the predicted results.

From perturbation energy equation (5.2), IR has a multiplier 1/Pr. Thus, as Pr decreases,
there will be a corresponding increase in the IR value. The base state velocity (2.4a) also
has a multiplier ηRa. Thus, an increasing η and Ra and a decreasing Pr will exacerbate the
destabilisation caused by IR, which succeeds for Pr = 0.01. For Pr = 0.1, from figure 8,
due to a moderate value of Pr, the IR term is weak at low η; thus, the VTG mode is
stabilised. However, as η and Ra increase, the IR term gains enough strength to counter the
stabilising influence of Ib and IRB resulting in the predicted curve.

6.2. For Bi /= 0
From figures 6 and 12, for Bi /= 0, new streamwise and spanwise modes emerge. As
noted in § 4, these modes originate due to the presence of the induced linear VTG
term in the base-state temperature (2.4c), namely (−Bi η2 Ra/320(1 + Bi))y. The physical
mechanism by which the induced linear VTG term achieves this can be explained as
follows.

The average total base state VTG for Bi /= 0 is
(

∂T̄
∂y

)
avg

= η2Ra
320

− η2 Bi Ra
320(1 + Bi)

− 1. (6.2)

For low Bi, the term η2 Bi Ra/320(1 + Bi) will not be significant. However, as Bi → ∞,
the same term modifies to η2Ra/320 which is exactly equal to the stabilising term.
Thus, the induced linear VTG term can counter the effect of the induced quintic VTG
term, provided that Bi is sufficiently high. Once this induced quintic VTG term effect
nullification occurs, the imposed VTG introduces the unstable density stratification,
leading to the convection. At face value, we are returning to the liquid layer system
subjected to a purely negative VTG. It turns out that the liquid layer is hiding a much
more interesting dynamics, as described below.

To extract the additional information, we plot the variation of the base state temperature
gradient obtained by differentiating (2.4c) with respect to y. The result of such an exercise
is shown in figure 19 in the parametric regime where the new streamwise mode is
unstable. Unlike in the case of a liquid layer subjected to a purely VTG, where ∂T̄/∂y < 0
throughout the liquid layer, there are two regions with ∂T̄/∂y < 0. Thus, there are two
regions which could potentially lead to the existence of the new mode. This raises the
question, which of these two regions is responsible for the existence of the predicted new
streamwise mode?

The analysis of Patne & Oron (2022) for a similar problem with a poorly conducting
bottom wall predicted a new mode of instability at low Pr. Their analysis shows that the
reverse flow shown in the schematic 1, near the bottom wall, could be responsible for
the predicted new mode. In the present case, there is also the presence of reverse flow,
which plays a role in causing an unstable stratification near the bottom wall shown in
figure 19. However, as pointed out previously, the term (−Bi η2 Ra/320(1 + Bi))y could
be responsible for the existence of the new mode of instability. This term contains the
Biot number Bi, which enters through the thermal boundary condition at the free surface
at y = 1, and the second region with unstable stratification exists near the free surface.
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Linear dynamics of a thick liquid layer subjected to an OTG
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Figure 19. The base state temperature gradient variation with y at Bi = 10, η = 10 and Ra = 900 where the
streamwise new mode of instability is unstable. There are two regions with dT̄/dy < 0, i.e. with unstable
density stratification.

These arguments indicate that the unstably stratified region near the free surface is
responsible for the existence of the new mode.

The requirement of sufficiently high Bi = qd/kth for the existence of the new mode also
indicates that there is a need for efficient heat transfer from the liquid layer to the ambient
gas, which then will result in the formation of a strong negative temperature gradient. As
Bi increases, the corresponding negative temperature gradient will also become severe,
thereby exacerbating the instability and lowering Rac. This does not imply that Bi → ∞
will lead to Rac → 0 for sufficiently high η. For Bi 
 1, it can be eliminated from the term
−Bi η2 Ra/320(1 + Bi) by taking the limit Bi → ∞ to obtain η2Ra/320 thereby achieving
a finite value. Thus, as Bi increases beyond 10, it will not lead to a much change in Rac at
high η. From perturbation energy budget analysis in § 5, an increasing η also enhances the
role of the Reynolds stress term, which dominates at high η and the induced linear VTG
term plays a supporting role.

7. Summary

In the present study, we carry out the linear stability analysis of a liquid layer supported
by a perfectly conducting bottom wall and the other non-deformable free surface exposed
to an inert ambient gas. The bottom wall, liquid layer and ambient gas are subjected to an
OTG. The liquid density is assumed to be a linearly decreasing function of temperature.
The imposed OTG consists of a negative VTG component, which leads to the canonical
Rayleigh–Bénard convection and a HTG component, which leads to Hadley circulation.
Using normal mode analysis, the linearised perturbation equations are reduced to a set
of ordinary differential equations, becoming an eigenvalue problem in terms of growth
rate s. We employ the pseudospectral method (using Chebyshev polynomials) to solve the
resulting eigenvalue problem. The numerical predictions are further explained using the
perturbation energy budget analysis and physical arguments.
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In the absence of the imposed HTG (i.e. η = 0), instability modes exist due to
the imposed VTG. All the VTG modes of instability, viz., the streamwise (k /= 0 and
m = 0), spanwise (k = 0 and m /= 0) and oblique modes (k /= 0 and m /= 0) become
unstable at the same value of Rayleigh number Ra = 669, thus the critical Rayleigh
number Rac = 669. Upon switching on the HTG, it leads to an induced linear VTG
term ((−Bi η2 Ra/320(1 + Bi))y) and an induced quintic VTG term ((η2 Ra y3/960)(20 −
25y + 8y2)).

For low Bi, the induced linear VTG term can be neglected. For Pr > 1, the induced
quintic VTG term has a strong stabilising effect on the VTG modes. This stabilisation
leads to an island of instability in the k–Ra and η–Rac planes for Pr > 1. The physical
arguments reveal that the induced quintic VTG term weakens the imposed VTG, which
fails to overcome the resistance offered by the viscous dissipation and thermal energy
diffusion, thereby increasing Rac. The spanwise VTG mode exhibits a larger island of
instability than the streamwise VTG mode. Thus, the spanwise mode is the dominant mode
of instability for Pr > 1 and low Bi.

For Pr = 0.1 and Bi � 1, the HTG stabilises the VTG mode for η < 0.15 and the
opposite effect for η > 0.15. In this case, the stabilisation occurs through the induced
quintic VTG term. However, as η increases beyond 0.15, the Reynolds stress term, which
facilitates the energy transfer from the base flow to the perturbations, becomes relevant.
This term then leads to the subsequent destabilisation. At sufficiently high η, the Rac
versus η curve exhibits Rac ∼ 1/η scaling. For Pr = 0.01 and Bi � 1, the HTG has
a destabilising effect for an arbitrary value of η on the streamwise VTG mode. For
the spanwise VTG mode, the HTG exhibits a destabilising effect except for low η. For
Pr = 0.01 and Bi � 1, the streamwise mode is the dominant mode of instability.

For Bi /= 0 and Pr > 1, the induced linear VTG term becomes important. The
perturbation energy analysis reveals that the same term reinforces the imposed VTG and
helps cancel the stabilising effect of the induced quintic VTG term. This leads to the
existence of new modes of instability. These new modes originate from the high Ra part
of the neutral stability curves for the VTG mode as η increases. Thus, the liquid layer will
exhibit instability at an arbitrary η in contrast with the case for low Bi. The variation of
the base state temperature gradient with y reveals the existence of two zones with unstable
density stratification, the first near the bottom wall and the second near the free surface.
The presence of the Biot number (Bi) in the induced linear VTG term indicates that the
unstable zone near the free surface could be the main culprit behind the existence of the
new modes.

For Pr = 7, the new spanwise mode becomes more unstable at a lower Ra than the
new streamwise mode; thus, the spanwise mode is the dominant mode of instability. At
Pr = 0.01, an increasing Bi stabilises the streamwise mode at low η while at high η, curves
in the η–Rac plane for various Bi merge. However, the spanwise mode at Pr = 0.01 is
stabilised by the increasing Bi for the whole range of η. Thus, the streamwise mode is the
dominant mode of instability for Pr < 1, irrespective of the value of Bi.

New streamwise and spanwise modes for Pr > 1 and finite Bi, and VTG mode for Pr <

1 exhibit the scaling Rac ∼ 1/η in the limit of large η. Thus, Rac → 0 as η → ∞ for the
above-mentioned modes. This implies the existence of an unstable base flow even if the
imposed VTG is negligible. The results predicted here could be readily recast in terms of
the Rayleigh number based on the imposed HTG, RaH . By definition, the Rayleigh number
based on the imposed VTG and RaH are related by RaH = ηRa.

The present analysis thus shows the possibility of using an OTG to intensify the
mixing by manipulating buoyancy instabilities. Industrial applications could involve
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non-Newtonian fluids; thus, the present study could be extended to non-Newtonian fluids.
Also, the instabilities predicted in the present study could be experimentally confirmed.
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