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A FIRST-ORDER MARKOV-CHAIN MODEL OF 
ZEOLITE CRYSTALLIZATION 1 
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Abstract-A method using a finite, first-order Markov chain is presented to estimate rate constants for 
zeolite formation from experimental nuclear magnetic resonance (NMR) data on the abundance of different 
silica oligomers .. An experimental design is suggested by which this method can be implemented. The 
method uses ~e~ghted least squares to estimate transition probabilities from aggregate NMR data. Rate 
constants, equlhbnum constants, and free energies of elementary zeolite-forming reactions can be esti
mated. ~ypothetical zeolite-formi:'lg reactio.ns can also be modeled. An example of modeling, using 
hypothetIcal data, shows how zeolIte formatIOn can result from reactions involving mainly silica cyclic 
tetramers. 
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INTRODUCTION 

The mechanism by which zeolites and other alu
minosilicates form from relatively dilute solutions in 
nature is not well understood. Many explanations have 
been offered of the crystallization of synthetic zeolites 
from gels, but a gel stage does not seem to be involved 
in the crystallization of most natural zeolites. There
fore, the mechanisms that have been proposed and the 
kinetics presented may be applicable for synthetic zeo
lites, but are probably not applicable to the formation 
of natural zeolites under geologically reasonable con
ditions. Because of the similarity of various silica oligo
mers, e.g. , cyclic tetramers, to zeolite structural units 
several investigators (Hayhurst and Sand, 1977; Hawk~ 
ins 1981; Donahoe and Liou, 1985) have suggested 
that these oligomers are essential building blocks of 
natural zeolites. Donahoe and Liou, in particular, pre
sented strong evidence for the validity of this mecha
nism and showed that 29Si nuclear magnetic resonance 
(NMR) spectra can provide information on the distri
bution of the various oligomers during the crystalli
zation process. One difficulty with the data obtained 
to date (see Cary et aI., 1982; Donahoe and Liou, 
1985), is that only the aggregate distribution of the 
various silica oligomers at one particular time is re
ported. No data showing rate constants for zeolite
forming reactions involving specific silica or alumino
silicate oligomers have been presented. The purpose 
of the present paper is to propose a method whereby 
such aggregate data can be decomposed to yield esti-

I Presented at Symposium on the Geology, Genesis, Syn
theSIS, and Use of Zeolites at 38th annual meeting of The 
Clay Minerals Society, Jackson, Mississippi, October 1986, 
convened by R. J. Donahoe. Manuscript reviewing and ed
iting coordinated by R. J. Donahoe and R. A. Sheppard. 
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mates of rate constants for individual elementary re
actions. The proposed method uses a Markov chain 
model for the silica oligomerization and zeolite crys
tallization processes. 

Markov chains have been widely applied to simulate 
geologic processes (Harbaugh and Bonham-Carter, 
1970; Lin and Harbaugh, 1984; Davis, 1986), polymer 
formation (Lowry, 1970; Carman et al., 1977; Bruns 
et al. , 1981 ; Cheng, 1982), and chemical kinetics (For
mosinho and Miguel, 1979). Transition probabilities 
for a first-order Markov chain can be estimated from 
the aggregate data using the method of Kalbfleisch and 
Lawless (1984). These estimated transition probabili
ties can then be decomposed to yield rate constants for 
elementary oligomerization reactions. Extension of the 
method to include zeolite crystallization appears pos
sible. No actual numerical values of rate constants are 
reported here, because the data necessary for their cal
culation by this method are not available. The present 
paper draws on the above applications and applies them 
to the problem of silica polymerization and zeolite 
crystallization. 

MARKOV CHAIN MODEL 

A first-order Markov chain is a form of stochastic 
process involving discrete steps in time (space) in which 
the probability of the transition from one state to the 
next state in the chain depends upon the immediate 
previous state. This dependence is called the Markov 
property. A Markov-chain model is intermediate be
tween a purely random process and a completely de
terministic one. The basic properties of Markov chains 
are well described in the preceding references and in 
Kemeny and Snell (1976) and Strang (1976); only a 
brief, essentially non-mathematical treatment of Mar
kov chains is given here. 
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The starting point for a Markov chain analysis is the 
construction of a transition matrix. This matrix is N 
x N , where N is the number of states, e.g., different 
silica oligomers, the elements of which are the prob
abilities for the transitions from one state to another. 
This means that the sum of the elements of each row 
equals 1.00. 

To put first-order Markov chain analysis into more 
familiar geologic terms (Harbaugh and Bonham-Car
ter, 1970), assume that in a stratigraphic section four 
lithologic units exist consisting of sandstone, shale, 
limestone, and coal, in a cyclic depositional sequence. 
Assume also that one records the number of transitions 
from each rock unit to the next in progression upwards 
from the bottom of the section. In other words, the 
number of times that a coal is followed by a sandstone, 
shale, limestone is recorded, etc. In this example, the 
matrix is 4 x 4, each row represents the particular state 
(rock unit) being observed, and the column entries for 
that row are the number of times that particular rock 
unit is followed by another type of rock. If the counts 
in each row of this matrix of observed transitions are 
divided by the sum ofthe counts in that row, the entries 
are probabilities of transition from one state to the 
next. Thus, if one were in a "coal" state, meaning that 
the coal row is being used, the entries in that row rep
resent the probabilities of a coal being followed strati
graphically by a shale, sandstone, or limestone. In this 
paper, the corresponding transition probabilities are 
the probabilities that given silica oligomers are incor
porated into dimers, trimers, cyclic tetramers, etc. in 
the next observational time increment. 

An important property of Markov processes is that 
they eventually achieve a steady or equilibrium state. 
At equilibrium, all rows of the transition matrix are 
the same, meaning that the probabilities of passing 
from one state to another are independent of the start
ing state. These rows, called fixed probability vectors, 
represent the equilibrium proportions of the various 
states. Mathematically, they correspond to the eigen
vector of the transition matrix for which the corre
spondingeigenvalue is 1.00 (Strang, 1976, p. J 92). This 
means that if the transition matrix is designated as T 
and the fixed probability vector is designated as v, the 
following matrix equation holds: 

Tv = v. (1) 

To determine the equilibrium state of the transition 
matrix, the transition matrix must be multiplied by 
itself, i.e., the matrix must be "powered" a sufficient 
number of times until stability, as indicated by equality 
of the rows, is achieved. 

If data are available on the aggregate state of the 
system designated by the vector a at time t, by the 
vector a 1 at time t + I , and by the vector an at t + nOt, 
where Ot is the time increment, the problem is to es
timate the transition matrix T from these sequential 

observations of the aggregate state of the system. The 
problem of estimating the transition probability matrix 
from aggregate data vectors, ft , a" a2 , • • • , an, was ad
dressed by Kalbfleisch and Lawless (1984), who used 
a weighted least-squares method to estimate the in
dividual transition probabilities from sequential ob
servations of the aggregate state. The mathematics of 
the method of estimation were described in detail by 
Kalbfleisch and Lawless (1984) and will not be pre
sented here. The basic idea of the procedure is as fol
lows: 

(2) 
an = 3.- , X T. 

a is the vector of aggregate data at time t = 0, where 
T is the transition probability matrix, and a, is the 
aggregate data vector observed after time t = 1, a 2 is 
the aggregate data vector observed after t = 2, and an 
is the aggregate data vector at t = n. There are n equa
tions involving the transition probability matrix T, 
which is estimated from these n equations by weighted 
least squares (Kalbfleisch and Lawless, 1984). 

Once the transition probability matrix T is deter
mined, the equilibrium state of the aggregate k x I 
data vector can be calculated from 

p = [(t - I)(T - I), + ]]-1(1) (3) 

where p is the eqUilibrium state of the aggregate vector, 
1 is a k x k matrix of I' s, I is a k x k identity matrix, 
and I is a k x I vector of I 's. 

CHEMICAL CONSIDERA TlONS 

To apply Markov-chain models to silica oligomer
ization and zeolite crystallization, data are needed for 
the relative proportions of silica oligomers in solution 
at some time t. These data can be obtained for con
centrated solutions using 29Si NMR (Donahoe and Liou, 
1985). Because the process of silica oligomerization is 
conceptually simple and relatively easy to describe in 
terms of a Markov-chain model, the oligomerization 
is discussed in detail below. Modification of the model 
to include zeolite crystallization is then suggested. This 
model probably applies only conceptually rather than 
experimentally to silica oligomerization, because the 
rates at which different oligomers form and at which 
the system achieves equilibrium among these species 
is probably so fast that they cannot be observed ex
perimentally by the NMR method (R. 1. Donahoe, 
University of Alabama, Birmingham, Alabama, per
sonal communication). Zeolite crystallization, on the 
other hand, is sufficiently slow so that the data needed 
for the Markov-chain analysis can be gained by the 
NMR methods of Donahoe and Liou (1985). 

https://doi.org/10.1346/CCMN.1989.0370506 Published online by Cambridge University Press

https://doi.org/10.1346/CCMN.1989.0370506


Vol. 37, No.5, 1989 Markov-chain model of zeolite crystallization 435 

Table 1. Postulated elementary reactions. 

Reaction number Elementary reaction Rate constant Rate expression I 

1 2M=D+W kl kl (M)2 
2 D+W=2M k2 k2 (D) (W) 
3 3M=Tm + 3W k3 k3 (M)3 
4 Tm + 3W=3 M k4 k4 (Tm) (W)3 
5 4M=Tt+4W k5 k5 (M)4 
6 Tt+4W=4M k6 k6 (Tt) (W)4 
7 5M=P+5W k7 k7 (M)' 
8 P+5W=5M k8 k8 (P) (W)' 
9 D + M=Tm + W k9 k9 (D) (M) 

10 Tm + W=D + M klO kl0(Tm)(W) 
11 2 D =Tt + 2W kll kll (D)2 
12 Tt+2W=2D k12 k12 (Tt) (W)2 
13 D+2M=Tt+3W k13 k13 (D) (M)2 
14 Tt+3W=D+2M k14 k14 (Tt) (W)3 
15 D + Tm=P + 2 W k15 k15 (D) (Tm) 
16 P + 2W=D + Tm k16 k16 (P) (W)2 
17 2D+M=P+3W k17 k17 (D)2 (M) 
18 P+3W=2D+M k18 k18 (P) (W)3 
19 D+3M=P+4W kl9 k19 (D) (M)' 
20 P+4W=D+3M k20 k20 (P) (W)4 
21 Tm + M=Tt + 2 W k21 k21 (Tm) (M) 
22 Tt + 2 W=Tm + M k22 k22 (Tt) (W)2 
23 Tm + 2M=P + 3 W k23 k23 (Tm) (Mf 
24 P + 3 W=Tm + 2 M k24 k24 (P) (W)3 
25 Tt+M=P+2W k25 k25 (Tt) (M) 
26 P+2W=Tt+M k26 k26 (P) (W)2 

, Rate = kl (M)2, etc. M = monomer = H4Si04; D = dimer = H 6Si20 7; Tm = cyclic trimer = H 6Si30 9; Tt = cyclic tetramer 
= H.Si40'2; P = cyclic pentamer = HlOSi,O,,; W = water = H20. 

The questions addressed here are: (1) How do the 
different silica oligomers form? (2) What are the rela
tive rate constants for the pertinent formation reac
tions? That the oligomers form by collision of mono
mers to form dimers, trimers, cyclic tetramers, etc. is 
assumed. The various possible elementary kinetic re
actions are shown in Table 1. Because these are ele
mentary reactions in the kinetic sense, the rate equa
tions can be written by inspection from the 
stoichiometry of the different elementary reactions. 
Furthermore, because of the molecularity of the dif
ferent elementary reactions, the likelihood of the oc
currence of these reactions and, hence, the importance 
of the elementary reactions to the overall reaction can 
be estimated. Although numerical values cannot be 
assigned a priori to the rate constants, the various re
actions can be ranked in order of importance to the 

overall rate equation. Furthermore, the various rate 
constants of the elementary reactions can be recast in 
the form of equilibrium constants, which can be used 
to relate the various reactions. 

The following criteria were used to judge the im
portance of the different reactions and associated rate 
constants: (1) Bimolecular reactions are much more 
probable than reactions of higher molecularity. (2) Re
actions in which the reactants are present at high con
centrations are more important than those in which 
the reactants are present at low concentrations. (3) 
Monomolecular reactions in which a species decom
poses to two other molecules are more likely than those 
leading to three or more product molecules. 

The reactions arranged according to molecularity and 
concentration of reactants are shown in Table 2. Using 
these criteria, the following rank order was assigned to 

Table 2. Molecularity of reaction vs. concentration of reactants.' 

Molecularity Large Moderate 

Mono- 2 

Bi- 1 9 
Ter- 3 13 
Quadra- 5 19 
Penta- 7 

, Numbers in table refer to reaction numbers in Table 1. 

Concentration 

Small 

4,10 

11,21, 15,25 
17,23 

Very small 

6,8, 12, 14, 16 
18,20,22,24,26 
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Table 3. Transition reaction matrix. 

To: 

From: Monomer Dimer Trimer Tetramer Pentamer 

Monomer U kll k3, k9 kS , kI3,k21 k7,kI7,kI9, k23,k25 
Dimer k2 U k9 kll, k13 klS, k17, k19 
Trimer k4,klO klO U k21 k15, k23 
Tetramer k6,kI4,k22 k12,k14 k22 U k2S 
Pentamer k8, kI8, k20,k24, k26 kI6, kI8, k20 k16, k24 k26 U 

1 Symbols, e.g., kl, refer to rate constants for reactions listed in Table 1. Italicized values indicate dominant reactions 
according to criteria discussed in text. 

the reaction rates for the various elementary reactions 
of Table 1. 

1 :» 2 = 9 > 4, la, 11,21,25 > 15 > 3 
> 6,8, 12, 13, 14, 16, 18,20, 22,24 
> 17,23>5 > 19 > 7. 

These reactions were arranged in a form appropriate 
for a Markov analysis as shown in Table 3. In this 
table, the rows indicate transitions from a given state 
to subsequent states as indicated by the columns. Thus, 
row 1 = "Mon." indicates the transition from the mo
nomeric state to a monomeric state (column I) or a 
dimeric state (column 2), trim eric state (column 3), etc. 
The designation "U" indicates that the state was un
changed by this transition. The designations kl, k3, 
etc. indicate the rate constants of the reactions shown 
in Table I associated with these transitions. Italicized 
values are those which, according to the criteria above, 
are likely to be important reactions. This table sum
marizes in the form of a transition matrix the impor
tant elementary reactions likely to be involved in the 
oligomerization of silica. 

RATE CONSTANTS AND 
TRANSITION PROBABILITIES 

The relation between rate constants and transition 
probabilities can be shown simply for the familiar first
order reaction of radioactive decay. It is easily shown 
(see, e.g., Daniels and Alberty, 1966, p. 709) that if'p' 
(the probability of disintegration of the nucleus in a 
time element ot) is independent of the past history of 
the nucleus, then for a sufficiently short time period, 
'p' is proportional to 5t, or p = kOt, where k is a pro
portionality constant, the decay constant for the re
action. The probability that the nucleus will survive n 
such intervals is (I - ktln)n, where t = not. 

For large values of n and small values of ot, the 
limiting condition is 

limn _ = = (1 - ktln)n = e-kt , 

which is the integrated form of the first-order reaction 
for which the rate of the reaction is 

-dN/dt = kN. 

Thus, k = the first-order rate constant, and the tran-

sItlOn probability is equal to kot. Formosinho and 
Miguel (1979) generalized this approach and extended 
it to higher-order reactions. 

PROPOSED APPLICATIONS 

To test the proposed method and to obtain useful 
information on the mechanism of zeolite formation, 
Donahoe and Liou's (1985) NMR experiments should 
be repeated at several different temperatures, and the 
quantities of the various silica oligomers measured at 
a number of fixed time increments for each tempera
ture. The resulting data will consist of the quantities 
of monomer, dimer, trimer, etc. in solution at times t 
= I , t = 2, .. . , t = n. These results will constitute the 
aggregate data which can then be used by the method 
of Kalbfleisch and Lawless (1984) to give n estimates 
of the transition probabilities for the transition matrix 
shown in Table 3. Once the transition probabilities are 
estimated, the rate constants for the various reactions 
can be calculated as shown by Formosinho and Miguel 
(1979). This calculation should be straightforward for 
those rate constants lying adjacent to the main diagonal 
of the matrix in Table 3. If a transition probability 
corresponds to an aggregate of reactions, e.g. , many of 
those off the main diagonal of this matrix, transition 
probabilities may be difficult to decompose into rate 
constants for the individual reactions. Because of the 
Markov process and the chemistry of the system, how
ever, a number of constraints can be imposed on the 
rate constants and transition probabilities. Thus, some 
ofthese rate constants can probably be estimated from 
the composite probabilities by means of linear pro
gramming. 

The proposed application discussed here is limited 
to the formation of silica oligomers. The method can 
be readily extended to the crystallization of zeolites by 
adding one or more rows and columns to the transition 
matrix of Table 3. Thus, Table 4 is a matrix for a 
process in which mainly cyclic tetramers are involved 
in the formation of a zeolite and in which only a slight 
probability exists that oligomers will return from the 
zeolite to the solution phase. These conditions can be 
seen from the entries in Table 4, in which the proba
bility "tetramer-to-zeolite" is .30, and "zeolite-to-var
ious oIigomers" is .0001. 
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Table 4. Hypothetical transition matrix. 

To: 

Mono-
From: mer Dimer Trimer Tetramer Pentamer Zeolite 

Monomer .9274 .07 .0025 .00008 .00001 .00001 
Dimer .05 .8395 .10 .01 .0004 .0001 
Trimer .06 .06 .8495 .03 .0004 .0001 
Tetramer .05 .01 .04 .54 .06 .30 
Pentamer .05 .02 .02 .05 .8595 .0005 
Zeolite .0001 .0001 .0001 .0001 .0001 .9995 

The process of modeling zeolite crystallization by 
this procedure is illustrated in Tables 4 and 5 and is 
based on the assumed vectors of aggregate data shown 
in Table 5. Row I is the distribution of silica oligomers 
before onset of zeolite formation, and rows 2 and 3 
represent the "observed" silica oligomers and zeolite 
mass after time increments I and 2. The transition 
probability matrix that converts row I to row 2, etc. 
is that given in Table 4. In actuality, rows 2 and 3 of 
Table 5 were calculated using row I of Table 5, the 
transition matrix T of Table 4, and Eq. (2). In practice, 
the rows of Table 5 would be determined experimen
tally, and the transition matrix T would be calculated 
by the method of Kalbfleisch and Lawless (1984). Once 
matrix T has been determined, the equilibrium distri
bution of the silica oligomers and the zeolite can be 
obtained from Eq. (3). For the vectors and matrices of 
this proposed application, the equilibrium vector is 
shown in row 4 of Table 5. Note that at the equilibrium 
conditions shown here, the concentration of the silica 
oligomers is very small, indicating that most of the 
silica has been converted to zeolite. Note also, that this 
conversion to zeolite was accomplished mainly through 
the cyclic tetramer path, with very small additions of 
the other oligomers directly to the zeolite. Rate con
stants can be estimated from Tables 3 and 4. From 
Table 3, the rate constants kl and k2 can be seen to 
correspond to transition probabilities .07 and .05 of 
Table 4. As shown above, p = kot, thus, k = plot for 
the simple first-order reaction (2). If the actual time 
increment is known, the numerical values of k can be 
calculated, although the rate expressions will be more 
complicated because most of the reactions are not first 
order. As stated above, Formosinho and Miguel (1979) 
provided examples of such calculations. Many other 
possible zeolite-forming reactions involving the gain 
and loss of the other oligomers by the zeolite structure 
can be modeled in similar fashion. 

SUMMARY AND CONCLUSIONS 

One of the very powerful features ofa Markov anal
ysis is the ability to predict the equilibrium state of the 
system. The individual aggregate data for each of the 
'n' increments can be used to calculate the equilibrium 
distribution of the species for the system and, perhaps 

Table 5. Hypothetical concentrations of silica oligomers and 
zeolite. 

Mono-
mer Dimer Trimer Tetramer Pentamer Zeolite 

Time I' .430 .260 .220 .0600 .0300 .0000 
Time 2' .429 .263 .217 .0431 .0296 .0181 
Time 3' .428 .265 .214 .0339 .0282 .0311 
Time equiL3 .0234 .0156 .0110 .00149 .00143 .9473 

Time to reach equilibruim3 = 1500 x ot, where ot = time 
2 - time I. 

I Assumed initial silica distribution, from Cary et al. (1982). 
, Calculated from Eq. (2). 
3 Calculated from Eq. (3). 

more importantly, the time required for the system to 
reach equilibrium. Thus, each observational time in
crement is ot. The transition matrix can be "powered" 
until the final equilibrium matrix is obtained, as in
dicated by the equality of all the rows of the matrix, 
and no change in value upon further self multiplication. 
The total time to achieve this state for the experimental 
conditions is not, where n is the exponent to which the 
transition matrix must be raised to achieve stability. 
As shown in Table 5, n = 1500 transitions for the 
example discussed here. 

Because the proposed application of the method 
would obtain data at several temperatures, the use of 
the Arrhenius equation should allow rate constants at 
other temperatures and corresponding equilibrium 
constants to be estimated. From these data, free energy 
data on these reactions could be calculated. The pre
cision of the experimental results and numerical pro
cedures used in calculating the equilibrium state and 
estimating the rate constants will profoundly affect the 
overall precision of such thermodynamic calculations. 
Reasonable estimates of parameters for geochemically 
important reaction mechanisms may thus be obtained 
that might not be possible otherwise. 

Another useful attribute of the Markov chain anal
ysis is that it provides a means to model possible zeolite 
crystallization mechanisms, as was done in the pro
posed application discussed above. Here, the transition 
matrix chosen was a hypothetical one reflecting esti
mates of the various transition probabilities on the 
basis of the criteria enumerated above. The starting 
aggregate data (row I , Table 5) were the distribution 
of silica oligomers reported by Carey et al. (1982). 
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