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We study the inverse flux of waves in one of the simplest geophysical fluid dynamics
models: one-dimensional rotating shallow water equations. Based on direct numerical
integration of the governing equations, we find that waves injected at small scales
get transferred upscale predominantly via resonant quartic interactions between wave
modes. The waves’ upscale transfer is non-local and involves turbulent transfer between
disparate scales of the flow. Our analysis reveals that the upscale transfer of waves is
extremely intermittent and is a result of localized-in-time bursts in wave action flux. These
intermittent events of flux bursts lead to shallower waves’ spectrum and relatively higher
amplitude wave fields in physical space. On examining statistics of the flow fields, we
find that low-energy high wavenumbers more or less comply with the assumptions used
in wave turbulence theory, such as uniformly distributed wave phases and the Gaussian
distribution of fields, while non-uniform distribution of wave phases and non-Gaussian
statistics dominate at large scales or low wavenumbers that contain a major share of
the flow energy. Our findings point out that the one-dimensional rotating shallow water
equations, despite being a simple geophysical fluid dynamic model, harbour complex
and intricate features associated with the upscale transfer of waves that have not been
recognized in the past.
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1. Introduction

Dispersive waves are ubiquitous in geophysical flows, such as flows in the atmosphere
and world’s oceans. These waves can spontaneously generate slowly evolving mean flows,
enhance turbulent diffusivity of flows and are hypothesized to form an energy sink
for balanced vortical flows (Bretherton 1969; Francois et al. 2014; Suanda et al. 2018;
Xia et al. 2019; Thomas & Daniel 2020, 2021; Thomas & Gupta 2022). The balanced
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vortical mode in geophysical flows contain a major fraction of the total flow energy
and mechanisms by which such mean flows can dissipate their energy is an unresolved
question. Additionally, the irreversible modification of vortical flows by the presence of
energetic dispersive waves is thought of as a means by which the lateral diffusivity of
oceanic flows can be increased (Shcherbina et al. 2015). Turbulent exchanges between
fast dispersive waves and slow vortical mean flows is therefore an active research area
in geophysical fluid dynamics, with investigations focusing on potential mechanisms by
which dispersive waves can form an energy sink for slow mean vortical flows and enhance
local turbulent flow diffusivity.

Further to energy exchanges with slow mean flows and enhancing flow diffusivity, the
turbulent dynamics of dispersive waves in geophysical flows are investigated to understand
detailed mechanisms by which wave energy is transferred from large inviscid to small
dissipative scales (Muller et al. 2015; Dong, Bühler & Smith 2020; Pollmann 2020).
While vortical flows generically transfer energy upscale via an inverse energy flux, waves
transfer energy downscale via a forward energy flux. This wave energy transfer from
large to small scales is the predominant mechanism by which small scale mixing takes
place in geophysical flows, especially in the world’s oceans. Consequently, resolving
mechanisms that trigger the forward flux of waves and identifying localized regions
where waves dissipate are imperative for developing better parametrizations for large-scale
atmosphere–ocean–climate models that are far from resolving the dynamics of a broad
spectrum of fast dispersive waves (Garrett & Kunze 2007; Alford et al. 2016; Moum 2021).

When compared with the above-mentioned interests and investigations into the energy
exchanges of waves with vortical flows, wave-induced modification of flow diffusivity
and the forward flux of waves, the least studied aspect of dispersive waves in geophysical
flows is the upscale or inverse flux of waves. The inverse flux of waves is a non-trivial
and counterintuitive feature that is specific to waves whose dispersion relationship does
not allow resonant triads. Such wave systems, with deep water surface gravity waves
and inertia-gravity waves in a shallow rotating fluid being popular examples, conserve
wave action in addition to wave energy (Nazarenko 2011). The conservation of wave
action and wave energy results in two kinds of turbulent transfers: a forward flux of wave
energy and an inverse flux of wave action. The phenomenology is qualitatively analogous
to that in two-dimensional hydrodynamic turbulence and quasi-geostrophic turbulence
characterized by an upscale energy transfer and a downscale enstrophy transfer (Salmon
1978; Vallis 2006).

Theoretical calculations based on the weakly nonlinear wave turbulence formalism
predicts the inverse flux of surface gravity waves (Zakharov, L’vov & Falkovich 1992),
and in recent times a broad set of studies have examined this upscale wave transfer
using direct numerical integration of the governing equations and laboratory experiments
(Annenkov & Shrira 2006; Korotkevitch 2008; Deike, Laroche & Falcon 2011; Falcon
et al. 2020). A key outcome of these and related studies is the appreciation that weakly
nonlinear turbulent wave fields can exhibit significant departures from the idealized states
assumed in wave turbulence formalism. Notably, non-Gaussian effects and intermittency
in turbulent transfers are features that are generically seen in surface wave turbulence
studies (Yokoyama 2004; Falcon, Fauve & Laroche 2007a; Falcon, Laroche & Fauve
2007b; Falcon et al. 2008; Korotkevitch 2008; Falcon, Roux & Laroche 2010). As a result,
in addition to confirming some of the predictions of wave turbulence theory, these past
studies have shed light on features that are missing in wave turbulence theory; providing
theorists new opportunities to further investigate and improve the existing machinery of
wave turbulence formalism.
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Upscale transfer of waves

Although the upscale transfer of waves is expected generically for dispersive waves
with prohibited triadic interactions, as reflected in the above discussion, most of the
upscale wave transfer investigations have focused on surface gravity waves and relatively
little is known of inertia-gravity waves in the shallow fluid approximation, as applied to
atmospheric and oceanic flows. The rotating shallow water equations (RSWE) capture the
dynamics of a thin layer of rotating fluid and are the leading-order approximation for flows
in the atmosphere and the ocean (Vallis 2006; Zeitlin 2018). As in the case of surface
gravity waves, the inverse flux of inertia-gravity waves in RSWE has been predicted based
on theoretical calculations (Falkovich 1992; Falkovich & Medvedev 1992; Glazman 1996).
However, the calculations in Falkovich (1992) and Falkovich & Medvedev (1992) use
classical wave turbulence theory that overlooks intrinsic features such as intermittency and
non-Gaussian statistics, while the calculations in Glazman (1996) includes higher-order
wave interaction effects, an adhoc inclusion that does not have a formal asymptotic
or a rigorous mathematical justification. Consequently, despite the upscale transfer of
inertia-gravity waves being predicted via theoretical calculations three decades back, no
confirmation for the phenomenon based on direct numerical integration of the governing
equations exist to date.

One-dimensional RSWE is one of the simplest geophysical fluid dynamic models
that captures multiple complex features of inertia-gravity waves and has been used
consistently in the past to investigate wave-vortex dynamics, forward flux of waves and
shock formation, dynamics of geophysical fronts, and the existence and stability of the
slow manifold (Kuo & Polvani 1997, 1999; Zeitlin, Medvedev & Polougonven 2003;
Bouchut, Le Sommer & Zeitlin 2004). In this paper we investigate the inverse flux of
waves and its intricate details in one-dimensional RSWE by direct numerical integration
of the governing equations.

We specifically focus on one-dimensional RSWE in this study since the one-dimensional
nature of the equations allows us to integrate the model for really long times maintaining
high numerical accuracy. As will be seen below, long-time integration of the equations is
crucial to the development of statistically steady upscale wave transfers. Additionally, it is
noteworthy that significant advances in wave turbulence has been brought out by studying
adhoc one-dimensional mathematical models such as the Majda–McLaughlin–Tabak
model (Majda, McLaughlin & Tabak 1997) and its generalizations (Cai et al. 2001;
Zakharov, Dias & Pushkarev 2004). Contrary to such adhoc models, one-dimensional
RSWE is a physically relevant model that is often used as a work horse in geophysical
fluid dynamic investigations. In this study we aim to explore features associated with the
upscale transfer of waves in one-dimensional RSWE.

The plan for the paper is as follows: we present the equations and numerical integration
details in § 2, upscale wave transfer results in § 3 and summarize our findings in § 4.

2. Equations, conservation laws, and numerical integration

The RSWE in one dimension are

∂u
∂t

− f v + g
∂h
∂x

+ u
∂u
∂x

= 0, (2.1a)

∂v

∂t
+ fu + u

∂v

∂x
= 0, (2.1b)

∂h
∂t

+ H
∂u
∂x

+ ∂(hu)

∂x
= 0, (2.1c)
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where (u, v) is the velocity vector, h is the height deviation from the mean height H, f is
the rotation rate and g is the acceleration due to gravity. We non-dimensionalize the above
equations using

x → Lx, t →
(

L
c0

)
t, f →

(c0

L

)
f , (u, v) → (εc0) (u, v), h → (εH) h.

(2.2a–e)

In the above non-dimensionalization x coordinate was scaled by a length scale L and L/c0
was used to scale time, with c0 = √

gH being the non-rotating gravity waves’ speed. The
velocity was non-dimensionalized by a scale U = εc0 while the height field fluctuations
with respect to the mean were scaled by εH. Note that from the velocity scaling we have
ε = U/c0. Therefore, ε is the Froude number, providing an estimate of how the flow
velocity scales with the linear gravity wave speed. Throughout this work we will be based
in the weakly nonlinear regime characterized by ε � 1. Consequently, from the above
scaling we have h � H (in dimensional form), which means that the fluctuations in the
height field are small compared with the mean height. Applying the scaling (2.2a–e) to
(2.1) gives us the non-dimensional equations

∂u
∂t

− f v + ∂h
∂x

+ εu
∂u
∂x

= 0, (2.3a)

∂v

∂t
+ fu + εu

∂v

∂x
= 0, (2.3b)

∂h
∂t

+ ∂u
∂x

+ ε
∂(hu)

∂x
= 0. (2.3c)

In the above equations, f is the non-dimensional rotation rate, based on the scaling
described in (2.2a–e).

Inertia-gravity waves and the geostrophically balanced vortical mode form the linear
modes of (2.3). In this work we discard the vortical mode and focus on the turbulent
dynamics of inertia-gravity waves. The linear waves in (2.3) posses the dispersion
relationship

ωk =
√

f 2 + k2. (2.4)

Total energy Eε is an integral conserved quantity of (2.3) and is given by the expression

Eε =
∫

x

{
1
2(1 + εh)

(
u2 + v2

)
+ 1

2 h2
}

dx. (2.5)

For ε � 1, the cubic energy expression (2.5) can be approximated by the quadratic
energy expression

E =
∫

x

{
1
2

(
u2 + v2

)
+ 1

2
h2
}

dx =
∑

k

{∣∣ûk
∣∣2 + ∣∣v̂k

∣∣2 +
∣∣∣ĥk

∣∣∣2} =
∑

k

Êk, (2.6)

where (ûk, v̂k, ĥk) is the Fourier transform of (u, v, h). Although the exact energy
expression (2.5) is cubic, in the weakly nonlinear regime with ε � 1, the quadratic and
cubic energies are indistinguishable. This was verified in all our numerical integrations
and we refer the reader to the Appendix for a detailed confirmation.
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Upscale transfer of waves

The absence of resonant triads is a feature of the inertia-gravity waves’ dispersion
relationship in (2.4) (see proof of this statement detailed in Babin, Mahalov &
Nicolaenko 1997 and Majda 2002). The lack of resonant triads results in the conservation
of wave action A given by (Falkovich 1992; Falkovich & Medvedev 1992; Glazman 1996)

A =
∑

k

Âk, Âk = Êk

ωk
. (2.7a,b)

It is important to note that the energy Êk that appears in (2.7a,b) is the quadratic wave
energy (2.6), excluding the vortical energy. Since in the present work we exclude the
vortical mode, the wave fields are identical to the total fields and wave energy is identical
to the total energy. The derivation of the conservation of wave action in (2.7a,b) requires
writing the solution of the flow variables as the superposition of linear plane waves
and then manipulating using the fact that linear waves have no potential vorticity. We
omit further details of this derivation that is sketched in Falkovich (1992) and also refer
the reader to chapter 8 of Nazarenko (2011) for a more generic derivation applicable to
arbitrary systems.

In the absence of the vortical mode, we therefore have conservation of wave energy and
wave action. Although the exact energy conserved by RSWE is cubic, as mentioned above,
the energy is very well approximated by the quadratic energy in the weakly nonlinear
regime. The conservation of wave energy and wave action leads to two kinds of turbulent
transfers: a downscale transfer of wave energy and an upscale transfer of wave action.
Below we will use numerical integration of the equations to determine features associated
with this upscale wave transfer.

2.1. Numerical integrations
To examine the upscale transfer of waves, we integrated (2.3) with ε = 0.1 using a
dealiased pseudospectral scheme in the periodic domain x ∈ [0, 2π]. Selected integrations
were also performed in a domain twice the size to ensure that domain size did not affect
results discussed below. The time integration was performed by using the implicit–explicit
third-order Runge–Kutta method detailed in table 6 in Pareschi & Russo (2005). The
nonlinear terms were treated explicitly while the dissipative terms described below
were treated implicitly. We used the two-thirds dealiasing and denote the maximum
wavenumber obtained after dealiasing by kmax. Waves were forced in a narrow band
centred approximately around kmax/3. To ensure that the numerical results, especially
statistics associated with the waves’ transfer in the inertial range, were insensitive
to spatio-temporal resolution, we performed a series of numerical integrations with
successively increasing resolutions. We first integrated the equations with kmax = 512. At
this spectral resolution the numerical integrations were carried out at successively smaller
time steps until the solution was seen to be independent of the time step. Once converged in
time, the spectral resolution was doubled and the numerical integrations were carried out
again with decreasing time steps. This process was continued until it was confirmed that
the resolution kmax = 2048 generated solutions that were insensitive to further increase
in spectral resolution. Specifically, this resolution ensured that details of the turbulent
transfer across the inertial range and the associated statistics described in the following
section were robust and did not change on further increase in resolution. All the results
presented in this paper were therefore generated with the spectral resolution kmax = 2048.

For the results presented in this paper with the spectral resolution of kmax = 2048, waves
were forced as white noise in a narrow wavenumber band centred at wavenumber 600 as
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597 < k < 603, with a stochastic forcing scheme, similar to that described in Alvelius
(1999). To remove energy accumulating at small grid scales, we added hyperdissipative
terms of the form −ν∂16/∂x16(u, v, h) to the right-hand side of (2.3). To ensure that scales
to the left of the forcing were free of viscous effects, we set the hyperviscosity ν to 0 for
k � 640 and to 10−38 for k > 640. Linear drag terms of the form −γ (u, v, h) were added
to the right-hand side of (2.3) so that the drag formed an energy sink for wave energy
reaching low wavenumbers. The drag coefficient γ was set to 0 for k > 3, ensuring that
only a few low modes were effected by drag. Consequently, the inertial range that develops
in the wavenumber interval 3 < k < 640 was completely free of dissipative effects.

Numerical integrations were started from zero initial conditions, i.e. at t = 0 we set
u = v = h = 0, and the high wavenumber forcing was the only source of waves for the
system. Numerical integrations beginning from a state of rest were seen to be required to
go up to t ∼ 15 000 for the flow to form a broad spectrum of waves in a statistical steady
state. The long-time forced-dissipative equilibrated state of the system was confirmed by
monitoring energy and various statistical quantities described in the following section.
Once the flow was seen to reach an equilibrated state, the equations were integrated for
an interval �t = 50 000, this being the interval during which the averaging of statistical
quantities given below were computed. A further increase in the averaging time interval
was not seen to change the quantities by a noticeable margin, which is why we chose
�t = 50 000 as the averaging interval.

3. Results

As mentioned earlier, in a turbulent flow composed of inertia-gravity waves, wave action
is fluxed to larger scales. Consequently, the action flux moves waves forced at high
wavenumbers to low wavenumbers or larger scales. For unit rotation rate f = 1, figure 1(a)
shows the action spectrum of waves in forced-dissipative equilibrium. Since the waves’
dispersion relationship (2.4) prevents resonant triads, quartic resonances form the leading
interaction. For a wavenumber quartet (k, k1, k2, k3), we have the resonance conditions

k = k1 + k2 + k3 (3.1a)

and
ω(k) = ±ω(k1) ± ω(k2) ± ω(k3). (3.1b)

Note that every wavenumber, say k1 for example, can take positive and negative values,
which is why we did not add ± in the wavenumber relationship in (3.1a). Solving the above
resonance equations using the dispersion relationship (2.4) gives us k1 = −k2, k1 = −k3
and k2 = −k3 as the resonant curves. To examine the relevance of quartic resonances in
the waves’ upscale transfer, we computed the tricoherence coefficient

T (k1, k2, k3) = | 〈û∗
k ûk1 ûk2 ûk3

〉 |
〈|ûk|〉〈|ûk1 |〉〈|ûk2 |〉〈|ûk3 |〉

, (3.2)

where k = k1 + k2 + k3, ∗ denotes complex conjugate and 〈〉 denotes time averaging.
The tricoherence coefficient, 0 � T � 1, is similar to the bicoherence coefficient used
to examine triadic wave interactions (MacKinnon et al. 2013; Aubourg & Mordant 2015;
Meyrand et al. 2018). We examined T (k1, k2, k3) for a wide range of wavenumbers and
an example visualization of the coefficient in the k1–k2 plane for k3 = 30 is shown in
figure 1(b). Note that the high correlation regions, which appear as bright green lines in
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Upscale transfer of waves
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Figure 1. (a) Action spectrum for f = 1. Time-averaged spectral slope in the inertial range was seen to be
−3.6. Panel (b) shows T (k1, k2, k3) for k3 = 30. The high correlation bright green lines are the resonant
curves: k1 = −k3, k2 = −k3 and k1 = −k2.

the figure, correspond to resonant curves given by k1 = −k2, k1 = −30 and k2 = −30, as
predicted by the resonant quartic solutions.

Despite T (k1, k2, k3) being dominated by four wave resonances, there are signatures
of near-resonant and non-resonant transfers. A reader staring carefully at figure 1(b) will
notice that, although not as intense as the bright green lines, there are high correlation
(greenish) regions located away from the bright lines; these regions being an indication of
non-resonant transfers. Additionally, the exact resonance curves obtained by solving (3.1)
are straight lines with zero thickness, whereas the lines in figure 1(b) have finite thickness
and is a signature of near-resonant exchanges.

Overall, the behaviour seen in figure 1(b) was seen to be generic for wavenumbers
throughout the system. Despite signatures of non-resonant and near-resonant transfers
being persistent, high correlation regions in T (k1, k2, k3) generically coincide with
exact four wave resonance curves, indicating that quartic resonant interactions are the
predominant mechanism responsible for the upscale transfer of waves.

3.1. Non-local transfer of wave action
The above discussion of resonant modes indicates that wavenumbers of disparate lengths
can interact and influence each other. For instance, a set of wavenumbers consisting of
wavenumbers that are a decade apart, (k, k1, k2, k3) = (30, 300, −300, 30), interact since
this set lies on the resonant manifold k1 = −k2. In general, the resonant manifolds k1 =
−k2, k1 = −k3 and k2 = −k3 are all composed of a broad set of non-local wavenumbers,
indicating that the upscale transfer of waves in RSWE involves the interaction of non-local
modes.

Of course, non-local wavenumbers being involved in the turbulent transfer term does
not necessarily imply that the transfer itself is non-local. For instance, as is the case in
three-dimensional homogeneous isotropic turbulence (3-D HIT), the turbulent transfer can
be local although non-local modes participate in the transfer. To place these ideas on a firm
foundation, especially for the sake of readers unfamiliar with local and non-local turbulent
transfers, we will briefly visit these well established notions in 3-D HIT before dwelling
into the locality of transfers in RSWE.
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In 3-D HIT energy is fluxed downscale via triadic interactions. The energy equation in
spectral space reads

∂Êk

∂t
=
∑
k1

∑
k2

SE(k|k1, k2) =
∑
k1

TE(k|k1) = RE(k). (3.3)

In the above equation, SE(k|k1, k2) is the triadic nonlinear term in spectral space
responsible for all energy transfer between wavenumbers k1, k2 and k subject to the
triadic constraint k = k1 + k2. Summing SE(k|k1, k2) over k2 gives us the transfer function
TE(k|k1), which captures transfers between wavenumbers k and k1. Finally, summing over
k1 gives us the net energy transfer at a specific wavenumber, RE(k).

Locality of transfers in turbulent flows is quantified based on TE(k|k1) in (3.3), which
captures the transfers between wavenumbers k and k1. Since SE(k|k1, k2) was summed
over k2 to obtain TE(k|k1), it is clear that non-local triads contribute towards transfer
of energy across scales. For instance, the lengths of wavenumbers k and k1 can be
comparable, while k2 can be of really small length resulting in k2 � k ∼ k1. Such
widely separated or non-local wavenumbers can affect the transfer. Although non-local
wavenumbers participate in the transfer, conventionally in hydrodynamic turbulence a
transfer is identified as local if most of the transfer term TE(k|k1) is concentrated on
wavenumbers k ∼ k1. This means that the transfer at a specific wavenumber k is due to
wavenumbers k1 in the neighbourhood of k such that k/k1 ∼ 1. On the other hand, if
wavenumbers k1 significantly away from k such that k/k1 
 1 or k/k1 � 1 contribute
towards the transfer at wavenumber k, it is termed a non-local transfer (Brasseur & Wei
1994; Lesieur 2008).

A broad set of studies focusing on 3-D HIT have revealed that although non-local
wavenumbers play a role in the transfer, the energy transfer from large to small scales
is local (Domaradzki & Rogallo 1990; Yeung & Brasseur 1991; Ohkitani & Kida 1992;
Waleffe 1992; Zhou 1993; Brasseur & Wei 1994; Domaradzki & Carati 2007; Eyink &
Aluie 2009; Cardesa, Vela-Martin & Jimenez 2017). Figure 2(a) shows an example plot of
time averaged TE(k|k1) normalized by the maximum absolute value of the transfer term
from a 20483 resolution 3-D HIT numerical integration with k being chosen to be in the
middle of the inertial range. The numerical set-up was similar to that used in Thomas
& Daniel (2020, 2021), except that the incompressible Navier–Stokes equations were
integrated instead of the Boussinesq equations integrated in Thomas & Daniel (2020,
2021). The flow was stochastically forced at low wavenumbers and was dissipated at
small scales by hyperdissipation. We skip further technical details here primarily since
figure 2(a) is a popular result that has been persistently observed in a wide range of studies
exploring the locality of turbulent transfers in 3-D HIT (see similar figures in Domaradzki
& Rogallo (1990) and Yeung & Brasseur (1991) for example). For a reader unfamiliar with
the locality of transfers in HIT, it is crucial to note that the transfer function T(k|k1) is
localized around k ∼ k1. Observe how the function is negative for k < k1 and positive for
k > k1, implying that energy is being transferred locally from left to right. The energy
transfer at a specific wavenumber k is therefore exclusively due to wavenumbers k1 in the
neighbourhood of k. Figure 2(a) therefore summarizes a well-established feature of the
turbulent energy cascade in 3-D HIT: despite non-local wavenumbers being involved in
the transfer term, the turbulent downscale transfer of energy is local.

Although 3-D HIT has no straightforward connections to the present study focusing
on RSWE, the above discussion of locality of transfers in 3-D HIT was to introduce an
unfamiliar reader to key technical details of the locality of turbulent transfers. Given the
understanding summarized in the above passages on the locality of transfers, we will now
961 A2-8
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Figure 2. Transfer terms normalized by their absolute maximum for (a) 3-D HIT and (b) RSWE. The transfer
terms were time averaged to remove fast-in-time high frequency fluctuations.

examine the locality of transfers in RSWE. To get a handle on wave action transfer in
RSWE, we take the Fourier transform of (2.3) and manipulate to form the wave action
equation in spectral space as

∂Âk

∂t
=
∑
k1

TA(k|k1). (3.4)

Above, TA(k|k1) captures action transfer between wavenumbers k and k1 and summing
over k1 gives us the net action transfer at a specific wavenumber k. Figure 2(b) shows
the time-averaged transfer function TA(k|k1) normalized by the absolute maximum of the
transfer term for RSWE with k = 50, a wavenumber in the middle of the inertial range as
can be seen from figure 1(a). Observe that the transfer term is highly non-local: the transfer
has little contribution from the local neighbourhood of k ∼ k1 and the major fraction of
the contribution to the transfer term is from wavenumbers k1 located significantly away
from k. Although the quantitative details in figure 2(b) are for a specific wavenumber
k = 50, the qualitative nature of the figure was seen to be generic for wavenumbers
across the inertial range, i.e. extremely disparate wavenumbers k1 are responsible for the
transfer at a wavenumber k. The upscale transfer of inertia-gravity waves is therefore
a non-local turbulent transfer involving the action transfer between extremely disparate
scales or wavenumbers. Interestingly, examples of highly non-local transfers in dispersive
wave turbulence have been observed in the past (see, for example, discussions in Cai
et al. 1999), non-local transfers being a feature that distinguishes scale-local strongly
nonlinear transfers in 3-D HIT from resonance-dominated transfers in weakly nonlinear
wave turbulence such as the one explored in our present study.

3.2. Intermittency in upscale transfers
Our findings so far point out that upscale wave transfers based on resonant four wave
interactions is robustly seen in RSWE, as predicted by wave turbulence theory. Despite
observing the upscale transfers as per the theoretical prediction, we found features of
the flow such as intermittency and non-Gaussian statistics, indicating departures from
assumptions used in classical wave turbulence theory. Intermittency of turbulent transfers
is a persistent feature seen in turbulent wavy flows (Falcon et al. 2007a,b, 2008, 2010;
Falcon & Mordant 2022) and we found strong features of intermittency in our solutions
and transfer across scales. On tracking different variables associated with the turbulent
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transfer, the action flux was seen to be an obvious indicator of intermittent transfers.
Summing (3.4) from the lowest wavenumber to an arbitrary wavenumber gives us the
time evolution equation of wave action contained in the wavenumber band [0, k] as

d
dt

(n=k∑
n=0

Ân

)
= Πk, (3.5)

where Πk is the flux of wave action. Since action is being transferred from smaller scales to
larger scales, on average the flux Πk should be positive. Figure 3(a) shows the probability
density function (PDF) of flux for an example wavenumber k = 50, with the dashed red
line showing the mean of the PDF. Note that the flux PDF is almost symmetric, with a
slight skewness to the right. The mean of the action flux is positive, indicating that waves
are on average getting transferred upscale. To highlight a specific detail of the transfer,
figure 3(b) shows a short-time series of the action flux. Observe that the flux oscillates
between positive and negative values with intermittent positive jumps: a notable positive
jump is seen at t = 24.5 in figure 3(b). The upscale transfer of waves is associated with
such localized-in-time positive jumps in the action flux, these intermittent events being
the cause of the slightly skewed PDF with a positive mean shown in figure 3(a). Although
these details correspond to k = 50, the intermittency of flux was observed generically for
wavenumbers in the inertial range.

The intermittent upscale transfers described above were seen to directly affect the
inertial range of waves. Specifically, the slope of the waves’ spectrum was seen to change
with time, with the spectrum becoming shallower following the positive bursts in flux.
Figure 3(c) shows the slope of the spectrum, n(t), as a function of time in the same time
interval as figure 3(b). The time-averaged slope of the spectrum is −3.6 and is marked by
the dashed red line, this being the slope marked in figure 1(a). On comparing figures 3(b)
and 3(c), it can be seen that the positive jump in flux at t = 24.5 is followed by the highest
slope in the time interval shown. On examining different windows of time series of the
waves’ spectral dynamics, this was seen to be a generic feature: intermittent positive jumps
in flux are followed by the waves’ spectrum becoming shallower, indicating an energization
of waves across scales in the waves’ spectrum.

The intermittent dynamics of waves in spectral space described above corresponds to
similar changes in physical space. A common tool to visualize intermittency is to track
the changes in the PDF of velocity differences δu(τ ) = u(t + τ) − u(t) (Frisch 1995).
Specifically, PDFs of velocity increments, δu, deform with time lag τ . At short-time
lags, δu has fat tails compared with a Gaussian distribution, while at longer τ the PDF
approaches a Gaussian distribution. This behaviour of PDFs of increments in velocity
deforming with time lag is a signature of intermittency and has been reported multiple
times in surface wave turbulent flows (Falcon et al. 2007b, 2010). Figure 3(d) shows the
PDFs of the δu for τ = 0.2 and τ = 5. The deformation of the PDF from a fat tailed
distribution at lower τ to approaching a Gaussian distribution for larger τ is a direct
reflection of intermittent turbulent transfers.

Tracking the flux and the inertial range behaviour of waves, we found that the
intermittent events started at small scales and then propagated to larger scales. This
information is reflected in figure 3(d), which indicates that intermittency is highest at
small scales and lowest at large scales. The intermittent positive bursts in flux transfers
waves upscale, eventually affecting domain-scale waves. On carefully monitoring the wave
fields over time, we consistently observed that the intermittent positive jumps in flux were
followed by higher energy level domain-scale waves. An illustration of this is shown in
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Figure 3. Panel (a) shows the PDF of action flux Πk for k = 50 while the inset shows a smaller part of the
PDF. The mean of the PDF is shown by the dashed red vertical line. The PDF has skewness 0.19 and kurtosis
5.6. Panel (b) shows a short-time series of the action flux Πk for k = 50 and t0 is a reference time instant. The
mean of the time series is indicated by the dashed red horizontal line. Observe that the flux time series shows a
strong positive jump at t = t0 + 24.5. Panel (c) shows a short-time series of the slope of the inertial range. Note
that the slope takes up a high value, i.e. becomes shallower, following the positive burst in flux at t = t0 + 24.5.
The mean slope, n = −3.6, is indicated by the horizontal dashed red line and is marked by the straight black
line in figure 1(a). Panel (d) shows the PDF of the velocity increment δu = u(t + τ) − u(t) for τ1 = 0.2 and
τ2 = 5.

figure 4, the four panels corresponding to four different times in the time interval shown in
figures 3(b) and 3(c). Note that the wave field’s amplitude is highest in figure 4(c), which
corresponds to the flux burst at t = t0 + 24.5 seen in figure 3(b). Away from the flux burst
point, the amplitude of the wave field is relatively small, as can be seen in panels 4(a),
4(b) and 4(d). On examining the physical structure of waves across long-time intervals, we
observed that the intermittent positive burst in the waves’ flux goes hand in hand with an
amplification of the waves’ strength in physical space, i.e. high wave amplitudes were in
general positively correlated with flux bursts.

3.3. Departure from Gaussian statistics
Gaussian statistics for the flow fields and a random distribution of wave phases are typical
assumptions used in wave turbulence theory (Zakharov et al. 1992; Nazarenko 2011).
Therefore, a random uncorrelated distribution for the phases arg(ûk), arg(v̂k), arg(ĥk) is
expected in wave turbulent flows. We examined the statistics of the flow variables from our
solutions and figure 5(a) shows the distribution of the phase, arg(ûk) ∈ [−π, π], for three
wavenumbers, (k1, k2, k3) = (10, 50, 300). The phases were averaged over a long interval
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Figure 4. The physical structure of u at four different times in the neighbourhood of the positive jump in
flux at t = t0 + 24.5 seen in figure 3(b). Specifically, u is shown at (a) t = t0 + 23.9, (b) t = t0 + 24.2,
(c) t = t0 + 24.5, (d) t = t0 + 24.7. The insets in panels (a,b) show a zoomed-in view of the red rectangular
regions in the main figures. The highest amplitude waves, seen in panel (c) above, correspond to the flux burst
at t = t0 + 24.5 in figure 3(b).
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Figure 5. (a) The PDF of phases of ûk for three different wavenumbers (k1, k2, k3) = (10, 50, 300). (b) The
PDF of the real part of ûk for the same three wavenumbers. A Gaussian curve is shown by a dashed green line
for reference.

such that the distribution saturated to that shown in the figure. As seen in the figure,
the phases are less uniform at low wavenumbers and approach a uniform distribution at
high k. A similar behaviour is seen for the PDF of Re(ûk), the real part of ûk, shown
in figure 5(b). Observe that the lowest wavenumber shows a bimodal distribution that
transitions gradually into a Gaussian distribution for the highest wavenumber.
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It is intriguing that although intermittency was seen to propagate from small scales
to large scales, as discussed in § 3.2, the departure of wave phase and amplitude from
idealized Gaussian distribution that is typically assumed in wave turbulence theory is
highest at large scales. Furthermore, it is noteworthy that large scales carrying most of the
energy departing from Gaussian distribution is a feature that has been observed in multiple
past studies, especially studies focusing on waves undergoing a forward flux (Yokoyama
2004; Chibbaro & Josserand 2016). Given these past results, we speculate that our finding
of the departure from Gaussian statistics at large scales might not be specific to the upscale
transfer of waves. The large scales carrying most of the total energy in the system departing
from idealized Gaussian assumptions could be a more generic result applicable to arbitrary
turbulent wavy systems, independent of whether the waves undergo forward or inverse
flux.

3.4. Effect of increasing rotation rate
On increasing the rotation rate we observed that upscale transfers were weakened and it
took a much longer time to form broad spectrum waves in forced-dissipative equilibrium.
As follows from the dispersion relationship (2.4), for a fixed wavenumber, the wave
frequency increases with f and the group velocity of waves cg = k/

√
f 2 + k2 decreases

with increasing f , making propagation of wave packets slower. Furthermore, increasing
f reduces the scale-specific Rossby number, Rok = kUk/f , where Uk is the flow velocity
magnitude at wavenumber k. The reduction in Rossby number and wave group velocity
weakens the nonlinear interactions, making turbulent transfers slow and inefficient at
higher rotation rates. A qualitatively similar effect was seen in Farge & Sadourny (1989)
while investigating wave-vortex dynamics in two-dimensional RSWE. Farge & Sadourny
found that high rotation rates led to a ‘freezing’ of the turbulent transfers in their
relatively short-time interval numerical integrations. In our investigation, due to weakened
upscale transfers, we had to numerically integrate the equations for much longer times.
With weakened nonlinear interactions and slower turbulent transfers, we found the wave
energy levels to slightly increase at an intermediate wavenumber, rather than the lowest
wavenumbers, resulting in slightly steeper wave spectra at higher f .

The features mentioned above can be seen in the waves’ spectra for different f in figure 6:
observe that the energy content at low wavenumbers, k � 15, is less for f = 4 and f = 2
when compared with the f = 1 case, and the spectra are slightly steeper at higher f . Apart
from reduced upscale transfers and other minor quantitative changes, all the qualitative
features described earlier for f = 1, i.e. resonant quartics playing the major role in upscale
transfers, the non-local nature of the transfer, intermittency of the transfer observed in the
inertial range and in the physical structure of the waves, and low wavenumbers departing
the most from idealized Gaussian assumptions, were seen to be similar at higher rotation
rates. We therefore omit further figures on turbulent transfers at high rotation rates and end
on the note that upscale transfers are retarded on increasing the rotation rate.

3.5. Comparison with predictions based on wave turbulence theory
As discussed earlier, wave turbulence theory has been applied to RSWE to obtain
predictions for the turbulent spectra corresponding to the waves’ upscale transfer. Based
on theoretical calculations, Falkovich (1992) and Falkovich & Medvedev (1992) found that
the waves’ action spectrum was between k−13/3 ≈ k−4.3 and k−8/3 ≈ k−2.7 for different
limits of rotation and dispersion. Following this, Glazman (1996) extended the theoretical
calculations by including higher-order wave interactions and obtained slightly refined
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Figure 6. Action spectra for different f . The black curve is the same spectrum shown in figure 1. Note that
the energy content at low wavenumbers decreases at higher f .

estimates for the waves’ spectrum. It is noteworthy that all the spectra we obtained by
numerical integration of the governing equations lie between k−4.3 and k−2.7 (see figure 6),
which is the range of spectra predicted based on wave turbulence theoretical calculations
by Falkovich (1992) and Falkovich & Medvedev (1992).

Despite the waves’ spectra we obtained being within the interval predicted by previous
theoretical estimates, multiple caveats must be emphasized here. In wave turbulence
theoretical formalism, the waves’ spectrum emerges as an equilibrium solution, that is,
the exponent n of the spectrum k−n is a fixed number. However, as explained earlier, the
waves’ upscale transfers are intermittent and not steady, leading to a waves’ spectrum
that fluctuates significantly over time (recall figure 3c). Additionally, Gaussian statistics
and random phases for wave fields are central assumptions in wave turbulence theory,
these conditions also not being satisfied by the solution of the equations we found (recall
figure 5). To obtain improved estimates for the waves’ spectrum, Glazman (1996) included
higher-order wave interaction terms and assumed the locality of transfers in spectral space,
a feature that was seen to be violated in upscale transfers in RSWE, as explained in
connection to figure 2.

The above discussion brings out the challenges in comparing theoretical wave
turbulence based predictions with numerical results obtained in the present work. Much
of the idealized assumptions used in wave turbulence theory are not satisfied by the
solutions of the governing equations we obtained via direct numerical integrations.
Not surprisingly, similar departures have been reported in numerical and laboratory
experiments exploring turbulent dynamics of waves in different set-ups (Yokoyama 2004;
Falcon et al. 2007a,b; Korotkevitch 2008; Falcon et al. 2008, 2010; Chibbaro & Josserand
2016). Our results therefore add to the growing list of evidence of wave turbulence
theoretical predictions departing from numerical and experimental results on weakly
nonlinear turbulent wave-dominated flows. These findings in general stress the need to
improve the theoretical foundations of wave turbulence theory, so as to obtain better
theoretical predictions that align with numerical and experimental results.

4. Summary and perspectives

In this paper we explored the upscale transfer of inertia-gravity waves in one-dimensional
RSWE. The dispersion relationship of inertia-gravity waves in RSWE prohibits resonant
triads, leading to a second integral conserved quantity in addition to energy: wave action.
Consequently, in a turbulent flow consisting of inertia-gravity waves, wave energy is
transferred to small scales while wave action gets transferred to larger scales. Although
theoretical calculations based on wave turbulence theory have predicted the possibility
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of upscale wave transfers three decades back, no study has confirmed the phenomenon
by integrating the governing equations. The lack of an investigation exploring the details
of the waves’ upscale turbulent transfer inspired our present work, where we used direct
numerical integration of the equations to study the upscale transfer of waves.

Our study revealed that resonant four wave interactions were primarily responsible for
the waves’ upscale transfer. Non-local wavenumbers were involved in the turbulent transfer
and the transfer itself was non-local, i.e. wave action was exchanged between extremely
disparate scales. Additionally, the turbulent transfer was not continuous in time, rather
upscale transfers took place via localized-in-time bursts of the action flux that moved
waves on average to larger scales. These intermittent bursts in action flux went hand
in hand with the shallower waves’ spectra and energetic high amplitude wave fields in
physical space. The intermittency of upscale wave transfers were therefore noticeable in
spectral space and physical space. Finally, the statistics of the wave field were seen to
depart from Gaussian at larger scales, while smaller scales exhibited Gaussian behaviour.
This shows a departure from typical assumptions used in wave turbulence theory, where
the wave phases, for example, are assumed to be random and uncorrelated with Gaussian
dynamics.

Contrary to vortical turbulent dynamics that requires at least two physical dimensions,
wave turbulence can be realized in a single dimension. This attractive feature has
inspired the development and integration of multiple one-dimensional mathematical
models exploring turbulent dynamics of a broad spectrum of waves (Majda et al. 1997;
Cai et al. 2001; Zakharov et al. 2004). Similar inspirations have led to studies exploring
wave turbulent-like dynamics in one-dimensional Burgers equation (see discussions
and references in Murray & Bustamante 2018). The key here is that long-time high
accuracy numerical integration is possible for one-dimensional models with affordable
computational resources, allowing us to dwell into details of turbulent transfers that
are not straightforward with higher-dimensional models. On a relative comparison,
one-dimensional RSWE is a more realistic physical model than previously mentioned
adhoc toy models and is a popular work horse in the geophysical fluid dynamics
community. With the forward flux and multiple related dynamics of this model being
explored in the past, our findings point out that the model also captures the rich non-trivial
dynamics associated with the inverse flux of waves. Consequently, one-dimensional
RSWE could be used as a slightly more realistic model than pre-existing adhoc models
for future studies focusing on aspects related to the upscale transfer of dispersive waves.

Despite capturing the inverse flux of inertia-gravity waves, a notable feature observed in
the present study was that the upscale transfers were generically slow, with t ∼ O(10 000)

being the typical time scale to obtain a broad spectrum of waves in forced-dissipative
equilibrium. Figure 7 shows, for example, the different stages of the waves’ spectra until
it reaches an equilibrated state. Given the slow nature of the process, it is unclear how
noticeable the upscale transfer of waves would be in realistic atmospheric and oceanic
flows where many other processes operate on much faster time scales. However, although
the waves’ spectrum takes a long time to reach equilibrium, intermittent and bursty
upscale transfers detailed with figures 3 and 4 were seen during the intermediate stages
shown in figure 7, before reaching equilibrium. Therefore, even on relatively short-time
scales, wave activity at small scales can intermittently propagate to larger scales and
accumulate at the inertial frequency, this being the ubiquitous low frequency peak in the
oceanic wave spectrum (Garrett 2001; Alford et al. 2016). Direct forcing by wind and
spontaneous emission by vortical flows are considered to be the prominent mechanisms
responsible for the inertial peak (D’Asaro 1985; Vanneste 2013). Notably, there is no
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Figure 7. Action spectra for f = 1 case at three different times. The broad spectrum of waves reaches an
equilibrated state around t = 15 000.

obvious explanation for near-inertial waves in regions with negligible wind forcing and
vortical flow. Therefore, the inverse flux of inertia-gravity waves could play a role in
energizing an inertial frequency peak in such regions, despite the slow nature of the waves’
upscale transfers.

Turbulent transfers in coastal oceanographic regions is another area where upscale wave
transfers could have potential relevance. Multiple observations have indicated upscale
transfers in shallow oceanographic regions near the coast (Soh & Kim 2018; Yoo, Kim
& Kim 2018; Elgar & Raubenheimer 2020). However, quite often the inverse flux is
attributed to the vortical mode alone and the waves’ contribution is not critically evaluated.
In other words, although upscale transfers are observed in coastal areas, there has been no
dedicated efforts to separate the transfers due to waves alone from the vortical transfers. As
mentioned earlier, given the slow nature of the upscale transfer of waves, further studies in
realistic settings are needed to compare the relative rates of the upscale transfer of vortices
and waves so as to examine whether the inverse flux of waves in coastal regions can form
a non-negligible contribution to the net inverse flux of the flow.

Finally, the results of the present work point towards interesting ramifications for
long term dynamics of RSWE, specifically in two dimensions. Given that our study
confirms the inverse flux of inertia-gravity waves in one dimension, we anticipate the same
phenomenon in two dimensions. Furthermore, the vortical mode that was ignored in the
present study evolves and fluxes energy upscale in two dimensions. This means that both
waves and the vortical mode can exhibit upscale transfers in two dimensions, challenging
a well-established paradigm in geophysical fluid dynamics. In geophysical flows waves
typically dissipate at small viscous scales due to downscale energy transfer while the
vortical mode transfers energy upscale and undergoes negligible dissipation. As a result
of waves disappearing from the system by small-scale dissipation, the long-time state of
geophysical flows is assumed to be composed primarily of the vortical mode and negligible
waves, this process being an example of turbulent geostrophic adjustment (Bartello 1995;
Reznik 2015).

In light of the present study, it is natural to speculate that the upscale transfer of
waves would result in a non-negligible amount of waves at large scales, along with the
vortical mode. Consequently, contrary to the conventional hypothesis based on geostrophic
adjustment, the long-time limit of RSWE in two dimensions could be a mixture of fast
inertia-gravity waves alongside slowly evolving vortices. Surprisingly, almost four decades
back Warn (1986) used equilibrium statistical mechanics machinery to predict that the
long-time state of RSWE would be rich with fast inertia-gravity waves (also see the
generalization of Warn’s result by Renaud, Venaille & Bouchet 2016). This unusual result
of Warn and the details of the process remain untested to date, primarily due to the lack of
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extremely long-time numerical integration results of two-dimensional RSWE with waves
and vortical modes. Past studies that have numerically integrated two-dimensional RSWE
have focused primarily on the dynamics of the vortical mode, wave-vortex interactions on
short-time scales and the forward flux of waves and shock formation (Farge & Sadourny
1989; Polvani et al. 1994; Yuan & Hamilton 1994; Remmel & Smith 2009; Ward & Dewar
2010; Lahaye & Zeitlin 2012), contributing to the lack of an understanding of the long-time
state of RSWE. Given the upscale wave transfers in RSWE, although specific details might
differ, it is tempting to think that Warn’s conclusion might have some significance in the
long-time limit of RSWE.

Of course, investigating the above-mentioned realistic processes and the long-time limit
of RSWE mentioned in the previous paragraph will require high-resolution long-time
direct numerical integration of the two-dimensional RSWE by including the vortical mode.
As mentioned earlier, in the present study the one-dimensional nature of the equations
allowed us to integrate the equations for really long-time scales with high precision
numerical accuracy. A typical time scale for obtaining forced-dissipative equilibrium flows
and collecting all the relevant statistical quantities in our one-dimensional study was
t ∼ O(50 000) and it is extremely challenging to integrate the two-dimensional RSWE for
such long times. Consequently, decoding turbulent upscale transfers in two-dimensional
RSWE remains to be an exceptionally challenging undertaking. In conclusion, although
many different facets of RSWE have been explored in the past (Zeitlin 2018), the
turbulent long-time state of RSWE still remains an open question that requires a detailed
investigation.
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Appendix. Confirmation that linear waves dominate the flow

All the numerical integrations of (2.3) with ε � 1 were performed with wave forcing
alone, excluding the vortical mode. Here we present details of the flow structure to confirm
that the flow was dominated by linear inertia-gravity waves alone.

As mentioned in § 2, the quadratic and cubic energies given by (2.5) and (2.6) are
indistinguishable in the weakly nonlinear regime. In all our numerical integrations, the
quadratic energy E was seen to approximate the cubic energy Eε very well. Furthermore,
the quadratic and cubic energies were seen to agree well pointwise in physical and spectral
space. A specific example is shown in figure 8(a) for f = 1; note that the red and black
curves denoting the spectrum of quadratic and cubic energies overlap, indicating that the
quadratic energy approximates the cubic energy very well.

The linear modes of RSWE comprise of inertia-gravity waves and a geostrophically
balanced vortical mode. In our forced-dissipative simulations, although we ensured that the
stochastic forcing scheme injected only waves and no vortical mode, nonlinear interactions
generated a weak vortical field. This can be seen in figure 8(a), which shows the energy
spectrum of the quadratic vortical energy Ev = 1/2(uV

2 + vV
2 + hV

2). Note that the
vortical spectrum is more than eight orders of magnitude below the total energy spectrum,
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Figure 8. (a) A comparison between quadratic Êk (black line) and cubic Êε
k (red line) energy spectra

of RSWM at a certain time instant. The low-energy vortical energy spectrum Êk,v is shown in blue;
(b) ûω

k , the frequency-wavenumber spectrum of u; (c) time-averaged quadratic energy spectrum Êk compared

with a time-filtered energy spectrum ˆ̃Ek. The quadratic energy spectrum was time averaged over the same time
interval used to generate the time-filtered energy spectrum. The agreement between the two confirms that the
flow is almost entirely composed of linear waves.

indicating that the vortical field is negligible in the flow and inertia-gravity waves almost
entirely make up the full flow field.

Based on a numerical integration of (2.3) with f = 1, figure 8(b) shows the
frequency–wavenumber spectrum of u, denoted as ûω

k . The frequency–wavenumber
spectrum, ûω

k , was obtained by storing the time series of each wavenumber of ûk and then
performing a Fourier transform to the time series to get the frequency content of ûk for each
wavenumber k. Observe that the high intensity region in figure 8(b) aligns with the straight
line ω = k, which approximates the dispersion relationship of waves, ω =

√
f 2 + k2, for

k 
 f .
In addition to the confirmation from figures 8(a) and 8(b) that linear waves dominate

the flow fields, we further used a filtering approach to separate the linear wave component
from the total flow fields. For the u velocity component, for example, we took ûω

k and, for
each wavenumber k, identified a frequency band

√
f 2 + k2 − δ � ω �

√
f 2 + k2 + δ. For

pure linear waves, each wavenumber k would correspond to the exact frequency
√

f 2 + k2.
However, as can be seen in figure 8(b), weakly nonlinear interactions lead to some spread
in the frequency content of the flow fields. By filtering the flow fields at each wavenumber
k to the frequency window

√
f 2 + k2 − δ � ω �

√
f 2 + k2 + δ, we obtain the part of the

flow field that is closely aligned with the linear wave field. We chose δ to be f /100 so that
the frequency window was concentrated on the dispersion relationship. After the filtering
operation is performed on ûω

k , inverse Fourier transform on ω takes the frequency-filtered
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field back to the time domain. We denote such filtered fields with a tilde; for example,
ˆ̃uk is the frequency-filtered component of ûk. Once all the fields are filtered, the energy

spectrum of the filtered fields is given by ˆ̃Ek = |ˆ̃uk|2 + | ˆ̃vk|2 + |ˆ̃hk|2. Figure 8(c) shows the
comparison between the unfiltered energy spectrum |ûk|2 + |v̂k|2 + |ĥk|2 and the filtered

energy spectrum ˆ̃Ek. The exceptional agreement between these two energy spectra shows
that the flow fields are almost entirely linear waves, with insignificant residue.
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