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ON THE FRATTINI SUBGROUPS OF GENERALIZED 
FREE PRODUCTS WITH CYCLIC AMALGAMATIONS^ 

BY 

C. Y. TANG 

1. In [1] Higman and Neumann asked the questions whether the Frattini sub­
group of a generalized free product can be larger than the amalgamated subgroup 
and whether such groups necessarily have maximal subgroups. In [4] Whittemore 
gave answers to the special cases of generalized free products of finitely many free 
groups with cyclic amalgamation and of generalized free products of finitely many 
finitely generated abelian groups. In this paper we shall study the Frattini subgroups 
of generalized free products of any groups with cyclic amalgamation. Indeed if the 
amalgamated subgroup is a finite cyclic subgroup then we can completely deter­
mine the Frattini subgroup in terms of the Frattini subgroups of the generalized 
free factors. 

Throughout this paper we shall use O-free as in [4] to mean a group having 
trivial Frattini subgroup. 

2. We first note that since we place no restriction on the generalized free factors, 
it suffices to prove our theorems for generalized free products involving only two 
factors. 

The following lemma is not difficult to prove. 

LEMMA 2.1. Let H be a cyclic p-subgroup of a group G. If H contains no non-
trivial normal subgroup of G then there exists xeG such that Hx C\ H=\. 

LEMMA 2.2. Let P=(A * B)H where H is a finite cyclic subgroup. If H contains 
no nontrivial normal subgroup of P then there exists an element x of P such that 
Hxr\H=l. 

Proof. Let H=Hxx • • • xHr where the i / / s are the sylow subgroups of H. 
Since H contains no nontrivial normal subgroup of P, for each /, at least in one of 
A and B, fy contains no nontrivial normal subgroup of that group. Thus by Lemma 
2.1, for each i there exists an element y of A or B such that H\ C\ H~l, whence 
Hi n H=\. Let Hl9. . . , Hk be the set of i / / s for which there exists a{ e A such 
that H^ n H=l, i=l,. . . ,k. Thus for each of Hi9 i=k+l,. . . , r, there exists 
bi e B such that H** n 77=1. Let a G A and b e B such that a, b£H. Let x = 
a±ba2b • • • bakbk+1a • • • br_xabr. Let \^hte Hi9 i=l,. . . , r. It is not difficult to 
see that the length of/^ is not zero for each i. It follows that Hx C\ H=l. 
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Applying Lemma 2.2 and Proposition 2.3 of [4] the following theorem is 
immediate. 

THEOREM 2.3. If P is a generalized free product amalgamating a finite cyclic sub­
group H which contains no nontrivial normal subgroup ofP then P is <&-free. 

THEOREM 2.4. Let P= (A * B)H where H is any cyclic subgroup. If H has a non-
trivial subgroup normal in P then ®{P) £= N where N is the maximal subgroup of H 
normal in P. 

Proof. Consider P=PjN= (A * B)E where Â, B, H are respectively A/N, B/N, 
and HjN. Since N is the maximal subgroup of H normal in P it follows that H 
contains no nontrivial normal subgroup of P. Moreover H is finite cyclic. There­
fore by Theorem 2.3 0(P) = 1. But <fr(P)NjN ç O(P), whence $(P) c N. 

We shall now determine the Frattini subgroup of a generalized free product 
amalgamating a finite cyclic subgroup in terms of the Frattini subgroups of the 
generalized free factors. 

LEMMA 2.5. Let P=(A * B)H where H is cyclic. If N is a subgroup of H normal 
in P then <&(A) n N and ®(B) n N are contained in ®(P). 

Proof. Let x e ®(A) n N. Let S be any set of elements of P such that (S, x)=P. 
Now (x) characteristic in N and N <]P imply that (x) < |P . Thus for each element 
aeA there exists Sa e (S) such that a—Sax

a. Now Sa eA. It follows that A = 
(x, Sa; a e A). But x e O(^). Therefore A = (Sa; aeA)<^ (S), whence x e (S). 
Thus P=(S). Hence x e 0(P). 

The following lemma is easy to prove : 

LEMMA 2.6. Let G be any group and H a normal subgroup of prime order. Then 
0(G) n H=\ if and only if G splits over H. 

LEMMA 2.7. Let H={h) be a finite cyclic subgroup of order n in a group G. If K 
is a subgroup of orderp,p aprime, such that K<\ G and G splits over K with comple­
ment C, then C n H=(hp), and p2)fn. 

Proof. Since C complements K in G, C n H complements K in H. Hence H= 
(C n H)xK, since H is abelian. Moreover since H is cyclic the orders of C n H 
and K must then be coprime. 

THEOREM 2.8. Let P=(A * B)H where H=(h) is a finite cyclic subgroup. Let N 
be the maximal subgroup of H normal in P. If <$)(A) n N=Q(B) n JV=1, //zeft 
<D(P)=1. 

Proof. If H has no nontrivial normal subgroup of P then by Theorem 2.3 our 
theorem is true. Thus we need only prove the case when TV^l. Now, by [3], 
<3>(A) n N=l implies that ®(i\T) = l. Since N is cyclic, it follows that the 
order of N is a product of distinct primes. Let \N\=n=p1 • • -pr, where 
them's are distinct primes. Let qi=p1 • • • Pi_!pi+1 ' ' 'pr- By Theorem 2.4 O(P) ç 
JV. Let A =̂<Aa> and d)(P) = (hfi). If 0 ( P ) ^ 1 , then, for some qi9 h"Qi G O(P). NOW 
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the order of (ff**)**^ ispt. Moreover H{< A and <S>{A) n H~\. Thus by Lemma 
2.6 A splits over H€. In the same way B splits over Ht. Let C and D be comple­
ments of H{ in A and J? respectively. Then by Lemma 2.7 C n i/=.D O # . But 
this means (C, D) is a complement of / ^ in P. Hence h*Qi $ 0(P) contradicting 
the hypothesis that haQi G 0(P). This completes the proof. 

THEOREM 2.9. Lef P=(A * .#)# w/iere / / is a finite cyclic subgroup. If N is the 
maximal subgroup of H normal in P then <P(P)=(®(yl) C\ N, 0(j?) n JV). 

Proof. Let U=®(A) n JV and F=<D(J5) n JV. Let 0 and %p be homomorphisms 
mapping P onto P=P/U=(Â * B)s and P=P/V=(Â * B)s respectively where 
i W f l , 2?=£(9, i ? = # 0 , Â=Ay>, B=By>, and /?=J5fy. Let N=Nxx ••• x # f 

where the iV/s are the cyclic sylow subgroups of N. Then l/=Af1x • • • xMfc, 
where Af< c JV,. Let J7=JV0 and N=Nip. Now 0 (1 ) n N=l implies that TV is 
O-free. Thus order of N is a product of distinct primes, whence the order of N~ 
N{0 is a prime for each i. In the same way we have that the order of N^N^ is a 
prime for each i. We can let V=M[X • • • xM'sxMk+1 x • • • xMt where M< £ JVt. 
and s<k. Indeed M'~Mi possibly for some i. Moreover the order of JVt- is a prime 
for each i>s. 

Suppose now 0 (1 ) n ^ ( O ( ^ ) n JV)y. Since (0(4) n JV)y £ 0 ( i ) n N, 
this implies that for some />&, we have N{ Ç <D(4) n N. Now 0(-4) n JV==1 and 
the order of J7f is a prime. Thus by Lemma 2.6, 4" splits over JV*. Let C be a com­
plement of N{ in X Let K and L be respectively the sets of all pre-images of C and 
Nt in A. Then .£ n L=ker 0. Thus jKy n Lip=£ï1x • • • xMfc where M—M^. 
Also Lxp=MxX ••• xMkxNi. Therefore Jfy n ^ = l . But (K, L)=A implies 
that (jRfy, Lip)=A. Thus (ify, Ni)=A. Since the order of j ^ is a prime, we have 
by Lemma 2.6 A splits over Ni whence Ni<^Q{Â) contradicting the choice of N{. 
Thus 0 (1 ) n JV=(<Ï>(4) n N)y. 

Now let Q=PI(<3>(A) n JV)y. Then g is O-free, whence 0(P)=<Dr, F). 
3. In this section we shall discuss the Frattini subgroups of generalized free 

products amalgamating infinite cyclic subgroups. The nature of these Frattini 
subgroups is much more elusive. Indeed we can construct generalized free products 
of two O-free groups amalgamating an infinite cyclic subgroup H where in one 
instance 0(P) g H and in another <D(P)=H. Even in the case when H contains no 
nontrivial normal subgroup of P we can only give a partial result. 

LEMMA 3.1. Let P=(A * B)H. Let K be a subgroup of H. If 0 is a homomorphism 

of P onto P with ker 0=KP where Kp is the normal closure of K in P, then Pœ 
(Â * B)E where I=A/A O Kp, B=BjB n Kp, and H=H/H n Kp. 

Proof. Let 01 and 02 be the homomorphisms mapping A and B onto Â and B 
respectively with ker 6X=A n Kp and ker 62=B n Kp. Since H n (A n X P ) = 
# n X p , it follows that H1=H61^HIH n Z p . In the same way H2=H62& 
HI H n # p . Thus H^H2. Let g = (4 * B)HI=H2 where # x and # 2 are identified 
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under the natural isomorphism. Now by [2] 0X and d2 can be extended to a homo-
morphism ip of P onto Q. It is not difficult to verify that ker y>=ker 0 whence the 
lemma follows. 

THEOREM 3.2. Let P=(A * B)H where H= (h) is an infinite cyclic subgroup. If for 
every strictly descending sequence of subgroups H=K0 => Kx => • • • => Kt => • • • , 
we have (K^, Kf) g K^for all i, then P is ®-free. 

Proof. Let p be any prime. Let K~(hp%) with z"=05 1 , 2 , . . . and N~Kf. Also 
let Pi=PlNi9 Ai=AjA n Ni9 B—BjB n Nt and H—H/H n # , . Now by Lemma 
3.1, P ^ ( ^ *£<)* ,=&. Clearly |#,|=/>*. Moreover (K^l9 Kf) g * £ i implies 
that X ^ is not normal in P. It follows that Hi contains no nontrivial normal sub­
group of Qi9 whence by Theorem 2.3, g* *s ^-free. But this implies that i\- is O-
free. Thus <D(P) <= iV, for all i. Hence O(P) s D £ i JV<=(ri£i * i ) P = l . 

COROLLARY 3.3. TTze generalized free product P of any free groups amalgamating 
a cyclic subgroup which is not normal in P is Q-free. 

Corollary 3.3 is also implicitly proved in [4]. 
In the case when the amalgamated subgroup contains a nontrivial normal sub­

group of the generalized free product, then Theorem 2.4 is about the most we can 
say about its Frattini subgroup. The following example will illustrate the point. 
This example in fact is a modification of Baumslag's example in [4], which was 
also constructed independently by the author before he came to know Whittemore's 
work [4]. 

Let A~{ai) be infinite cyclic groups. Let p{ denote the zth prime. For each i 
define H^ {(%«). Let 

\ t - l IB. 

where H is the amalgamated subgroup under the identification a^2i=a!P
j
2j for all 

i,j. We shall show that ®(>4) = 1. 
Since H<A we have <5>(A) ç H Let H=(h) where h=a*2i. We shall show that 

ha £ $>(A) for any nonzero a. For any oc^O, there exists k such thatp2k+1)(oL. Con­
sider the group S=(ha

9 c%2k+1; f = l , 2 , . . .). Since (a,p2k+i)=:l, it follows that 
(ha

9 flj
2*+1) = (flj2,ai, o?»*+1>=^<. Thus S=A. Suppose now ha=ap

af
2k^ • • • a£f2k+1. 

It is not difficult to see that a?af
%k+1 e H. Thus p2oCi \ &. Let y, -p 2 a .=^. . Then 

flM«+i==Ay<»2*+i# Hence h"=h7***+1 where y=2t=i7*- s i n c e H i s infinite cyclic 
this means oc=/?2fc+1y contradicting the choice of p2k+i whence (a%2k+1; i== 1, 2 , . . ,)j& 
A. Hence 0 ( ^ ) = 1 . 

Now let 5 , = <6<> be infinite cyclic groups. Let £*= (ô?2*-1). Let 5 = (UZi * -#*)ir 
where isTis the amalgamated subgroup under the identification b\2i~1—bvv-x for all 
i,j. Then 0 ( P ) = 1 . Let P = ( ^ * B)H==K with cÇ**^*'-1. It is easy to see that P is 
the same group as in Baumslag's example in §2.5 [4]. Thus <D(P)=i7. By modifying 
the construction, we can make ®(P) S H. 
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