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Introduction

The feeblest of the four fundamental interactions governing the natural world is
gravitation.1

The General Theory of Relativity2 (GTR) is the formulation of gravitation set
out by Albert Einstein in 1915 (Einstein, 1915c,d,a) and completed one year later
(Einstein, 1916). It is the simplest possible gravitational theory compatible with his
Special Theory of Relativity (STR) (Einstein, 1905). For contemporary compre-
hensive expositions of GTR, see, for example, Fok (1959), Synge (1960), Weinberg
(1972), Hawking and Ellis (1973), Wald (1984), Stephani (1990), Cheng (2009),
Padnanabhan (2010), Ohanian and Ruffini (2013), Zee (2013), Misner et al. (2017),
Carroll (2019), Thorne and Blandford (2021), Schutz (2022), and Kenyon (2023).
Some recent review articles, which appeared in the literature on the occasion of its
last centenary, are, for example, Blandford (2015), Iorio (2015a), and Debono and
Smoot (2016).

The time-honoured Law of Universal Gravitation proposed by Isaac Newton
at the end of the seventeenth century in his immortal book Philosophiæ Natu-
ralis Principia Mathematica (Newton, 1687; Chandrasekhar, 1995) describes it by
means of a mysterious – remarkably, for Newton himself – force acting instantan-
eously between two or more material bodies, even if mutually separated in empty
space by distances r much larger than their characteristic sizes D; as such, it bene-
fits from the properties of the forces established by the three Newtonian laws of
dynamics.

Instead, GTR adopts a completely different conceptual framework. According to
it, gravitation is no longer best understood as a force, being, instead, a manifestation
of the curvature, in a very specific sense, of a four-dimensional pseudo-Riemannian

1 From the adjective grăvis, e (‘heavy’) and the noun grăvı̆tas, ātis, (‘weight, heaviness’).
2 From Allgemeine Relativitätstheorie.
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2 Introduction

Lorentzian manifold3 known as spacetime (Oloff, 2023) with respect to the so-
called ‘flat’ version of the spacetime employed by STR. Stated differently, the
Einsteinian picture replaced the Newtonian concept of gravitational force with the
notion of deformation of the chronogeometric4 structure of spacetime (Damour,
2007) due to all forms of energy weighing it; as such, GTR can be defined as a
chronogeometrodynamic theory of gravitation (Torretti, 1991). Indeed, the weight
force on the Earth, which Newton unified with the agent determining the course of
the heavens in the framework of his Universal Gravitation, is just an illusion due to
the fact that we are born, live continuously, and die on the surface of our planet.5

Actually, what we perceive as weight is not due to gravitation, but to the reaction
force, of non-gravitational nature, exerted on our bodies by any physical surface
we rest on; a chair, a floor, a bed. What kills us when we fall from a building is not
gravity, but the non-gravitational reaction force by the ground. Indeed, if we are in
free fall, that is, if we move subjected only to gravity and no6 forces act on us, all
the different parts of our body proceed with the same acceleration,7 and we are not
torn apart as would occur if gravity acted differently on bodies of diverse compos-
ition. Thus, as long as the regime of free fall continues, we are weightless, and the
gravity seems to have been cancelled in our neighbourhood; for us, all things go as
predicted by STR, we would obtain always the value of c in any experiment aimed
at measuring the speed of light, and the worldlines of non-interacting, electrically
neutral material objects appear as just straight in our freely falling experimental
setup. It can be said that we are in a local (in both the spatial and temporal sense)
inertial reference frame. It is one aspect of the so-called Equivalence Principle
(EP).8 In fact, such a removal of gravitation is not exact, being dictated by how

3 According to differential geometry, a differentiable manifold is said to be pseudo-Riemannian (Benn and
Tucker, 1987; Bishop and Goldberg, 1980) if it is endowed with a metric tensor that is everywhere
nondegenerate, thus relaxing the requirement of positive-definiteness characterizing the Riemannian
manifolds. A nd-dimensional Lorentzian manifold is a special case of a pseudo-Riemannian manifold whose
metric signature is (1, nd − 1).

4 From Xρόνος, ‘Chronos’, the personification of Time, not to be confused with Kρόνος, ‘Kronos’, the Titan
father of Zeus, corresponding also to the Roman deity Saturn.

5 From πλανήτης, -ου, ’ο, meaning ‘wanderer’, composed by the verb πλανάω (‘I wander’) and the
masculine agent noun suffix -της.

6 If gravity were a force, here one would have to prefix the adjective ‘other’ to the word ‘forces’.
7 The tale according to which Galilei experimentally proved it by dropping objects of different weights from

the Leaning Tower of Pisa (Drake, 1978) is, in all likelihood, apocryphal (Adler and Coulter, 1978; Segre,
1989; Crease, 2006).

8 So far, one has only talked about bodies whose self-gravity is negligible in holding their constituent parts
together, and whose free fall is not affected by their reciprocal gravitational interaction. Such a weak version
of the EP (Nobili and Anselmi, 2018) has been recently tested to a relative accuracy of ' 10−15 (Touboul
et al., 2022a) in the spaceborne experiment Micro-Satellite à traînée Compensée pour l’Observation du
Principe d’Equivalence (MicroSCOPE) (Touboul et al., 2022b) with two objects made of platinum and
titanium alloys, respectively, kept in free fall around the Earth inside a spacecraft which shielded them from
any potentially disturbing non-gravitational influences. As shown by analyses of the motions of the Earth and
the Moon in the field of the Sun with the Lunar Laser Ranging (LLR) technique (Williams et al., 2012;
Müller et al., 2019; Biskupek et al., 2021) and, more recently, of the binary pulsar-white dwarf PSR
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Introduction 3

uniform the gravitational field is on the scale of our body and of the things that
free fall in our vicinity along with us. The more uniform the field is, or the smaller
our neighbourhood is, the more accurate the absence of gravity is. In any case, free
falling non-interacting objects left to themselves will sooner or later move, more
or less rapidly, towards or apart from each other because of the unavoidable non-
uniformity of the gravitational field in which they all fall together. That is not an
illusion, and there is no way of wholly removing such a state of affairs: it is the
true essence of gravitation for Einstein (Taylor and Wheeler, 1992). In Newtonian
language, one would explain the aforementioned pattern in terms of residual, or
differential, gravitational forces, commonly dubbed tidal since they are the ana-
logue of the lunar gravitational pulls which, varying from one end to the other over
the entire extension of the terrestrial globe, raise the tides on it. Instead, in the
language of spacetime, the worldlines of such objects ‘tidally’ driven towards or
apart from each other no longer appear straight, being curved. Since, as remarked
before, this is the key feature of gravity, in the Einsteinian framework it is said that
gravity is a manifestation of the curvature of spacetime and GTR relies upon the
EP. Thus, GTR is, at the same time, a theory of space and time, and of gravitation
as well; furthermore, light and free massive particles move along geodesics of a
curved spacetime, which are the generalization of straight lines taking place when
gravity is absent. Their equation is

d2xσ

dλ2
= −0συι

dxυ

dλ

dxι

dλ
, σ = 0, 1, 2, 3, (1.1)

where λ is some affine9 parameter which, in the case of a massive body, coincides
with its proper time τ, while

0συι :=
1

2
gσκ

(
∂gκυ
∂xι
+
∂gκι
∂xυ
−
∂gυι
∂xκ

)
, σ , υ, ι = 0, 1, 2, 3 (1.2)

are the Christoffel symbols of the second kind (Weinberg, 1972; Bishop and Gold-
berg, 1980; Misner et al., 2017); gσλ is the inverse of the spacetime metric tensor
gσλ. In terms of the temporal coordinate x0 := ct, the equations of motion for a test
particle retrievable from Equation (1.1) for λ→ τ and σ = 1, 2, 3, can be written
as follows (Weinberg, 1972; Brumberg, 1991):

J0337+1715 (Ransom et al., 2014; Shao, 2016) in the field of another distant white dwarf, searching for
violations of the EP in terms of the Nordtvedt effect (Nordtvedt, 1968b,a), the EP holds also in its stronger
version, according to which the mutual gravitational attraction among bodies along with their own
self-gravity is taken into account as well, to the ' 10−4 (Hofmann and Müller, 2018) and ' 10−6

(Archibald et al., 2018; Voisin et al., 2020) levels, respectively. The challenges of testing the EP in different
regimes, including also the quantum realm in which it is not obvious that the former is valid, are reviewed in
Tino et al. (2020).

9 From affı̄nis, e, ‘bordering on, adjacent, contiguous’.
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d2xi

dx02 = −0
i
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dxσ
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dxλ

dx0
+ 00

σλ
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dx0

dxλ

dx0

dxi

dx0
, i = 1, 2, 3. (1.3)

On the other hand, another crucial aspect of the EP consists of the fact that grav-
ity can also be emulated, to a certain extent, by adopting an accelerated reference
frame. Indeed, the motions of material objects referred to the latter are character-
ized by accelerations which depend neither on the mass nor on the composition
of the former ones, which is just the distinctive trait of the gravitational interaction
itself. Such a feature, together with STR, allows one to predict a number of peculiar
phenomena pertaining to the propagation of electromagnetic waves and the motion
of material objects which are unknown to the Newtonian gravitational picture. Suf-
fice it to think about the Coriolis acceleration affecting a moving particle with
respect to a rotating reference frame and the corresponding gravitomagnetic coun-
terpart arising in GTR since the latter has to fulfil the Lorentz symmetry (Jantzen
et al., 1992b; Schmid, 2023).

Since GTR is a relativistic theory of gravitation, and in STR all forms of energy
are equivalent to mass, for Einstein, the source of gravitation, that is, of the space-
time curvature, is made by several more entities than for Newton and his scalar
potential U alone. That is, a material body gravitates not only because it possesses
its own rest energy, but also because it is compressed or dilated, or because it is
distorted by internal stresses, and even if it moves. All that is encoded by the sym-
metric energy-momentum tensor Tσλ, σ , λ = 0, 1, 2, 3 (Provost, 2017; d’Inverno
and Vickers, 2022). Thus, there is no longer just a single gravitational potential
sourced only by the matter density ρ, as in the Newtonian scheme, but now there
are ten generally different quantities playing the role of gravitational potentials: the
independent components of the symmetric spacetime metric tensor. The way the
distribution of matter and energy actually deforms the spacetime ultimately deter-
mining the metric tensor is established by Einstein’s field equations (Fok, 1959;
Synge, 1960; Weinberg, 1972; Hawking and Ellis, 1973; Wald, 1984; Stephani,
1990; Cheng, 2009; Padnanabhan, 2010; Ohanian and Ruffini, 2013; Zee, 2013;
Misner et al., 2017; Carroll, 2019; Thorne and Blandford, 2021; Schutz, 2022;
Kenyon, 2023),

Rσλ −
1

2
gσλR = κgTσλ, σ , λ = 0, 1, 2, 3, (1.4)

which represent a set of complicated nonlinear partial differential equations. In
Equation (1.4), Rσλ is the Ricci curvature tensor of the spacetime, defined by con-
tracting two indices of the Riemann tensor (Weinberg, 1972; Bishop and Goldberg,
1980; Parker and Christensen, 1994b; Misner et al., 2017; Schutz, 2022),

Rεσψλ :=
∂0ελσ

∂xψ
−
∂0εψσ

∂xλ
+ 0εψχ0

χ

λσ − 0
ε
λχ0

χ

ψσ , ε, σ ,ψ , λ = 0, 1, 2, 3, (1.5)
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in the following way (Weinberg, 1972; Bishop and Goldberg, 1980; Parker and
Christensen, 1994a; Misner et al., 2017):

Rσλ := Rεσελ, σ , λ = 0, 1, 2, 3. (1.6)

Furthermore,

R := gµνRµν (1.7)

is the trace of the Ricci tensor, and κg is Einstein’s gravitational constant (Adler
et al., 1975). Nonetheless, if the characteristic motions of the system at hand are
quite slow, and the gravitational fields are weak and almost static, the general
relativistic field equations reduce to just the Poisson equation

∇
2U = 4πGρ (1.8)

for the potential U of the Newtonian theory. Such a correspondence fixes the value
of Einstein’s gravitational constant entering Equation (1.4) to10

κg :=
8πG

c4
, (1.9)

where G is Newton’s constant of gravitation. In view of its tensorial nature, if
Rεσψλ, ε, σ ,ψ , λ = 0, 1, 2, 3 vanishes in a given coordinate system, it is zero in all
other coordinates as well; in this case, gravity is effectively absent even if the space-
time appears formally curved in some coordinates; they would refer to a merely
accelerated reference frame. Indeed, the geodesic deviation equation, known also
as Jacobi equation (Chicone and Mashhoon, 2002) in differential geometry, which
expresses the tidal forces, that is, the true manifestation of gravity, within the GTR
framework, is proportional just to the Riemann tensor (Wald, 1984; Ohanian and
Ruffini, 2013; Carroll, 2019).

Of course, GTR is not limited only to providing a different theoretical scheme
to frame and reproduce the same phenomena described by the Newtonian one. The
Einsteinian theory is much richer than Newton’s Universal Gravitation, predicting
a whole set of new phenomena. Indeed, GTR is able to treat motions occurring
in gravitational fields so intense – in the sense that their gravitational potentials
are close to the speed of light squared c2 – that they accelerate bodies to speeds
close to c itself and bend the path of electromagnetic waves in unparalleled ways
undergoing also exceptionally rapid variations in time and from a point in space to
another nearby one. The most spectacular – and expensive, as well as long-lasting –
tests of GTR, recently performed by large international teams after several decades,
undoubtedly come from such strong regimes. Suffice it to think about the gravi-
tational waves (Cervantes-Cota et al., 2016) emitted in the end-of-life stages of
10 With such a choice, each component of Tσλ has the dimensions of energy density, that is, energy per

volume, or, equivalently, pressure.
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binary black holes (BHs) (LIGO Scientific Collaboration and Virgo Collaboration,
2016) and neutron stars (LIGO Scientific Collaboration and Virgo Collaboration,
2017), detected so far by the Laser Interferometer Gravitational-wave Observa-
tory (LIGO) and Virgo facilities, or the shadows of the supermassive black holes
(SMBHs) at the centre of the supergiant elliptical galaxy Messier 87 (M87) (Event
Horizon Telescope Collaboration, 2019) and in Sgr A∗ at the Galactic Centre (GC)
(Event Horizon Telescope Collaboration, 2022) imaged by the Event Horizon Tele-
scope (EHT) collaboration (Doeleman et al., 2009). In such domains, Newton fails
miserably.

The first approximation of GTR to the next order to the purely Newtonian one,
in which new terms in the equations of motion appear, is named post-Newtonian
(pN); see, for example, Damour (1987), Asada and Futamase (1997), Blanchet
(2003), Blanchet (2006), Futamase and Itoh (2007), Will (2018), and references
therein. It is a computational scheme for solving the GTR field equations relying
upon the assumptions that the characteristic speeds of the bodies under consider-
ation are smaller than c and that the gravitational fields inside and around them
are weak. Nonetheless, as pointed out by Will (2011b), such a framework turned
out to be notably effective in describing also certain strong field and fast motion
systems such as compact binaries made of at least one dense neutron star and inspi-
ralling pairs of BHs emitting gravitational waves; the reasons for that are largely
unknown (Will, 2011b). Thus, putting the pN approximation to the test in as many
different scenarios and at the highest order of approximation as possible is of para-
mount importance to gain ever increasing confidence in it and extrapolating the
validity of its effects to their counterparts in stronger regimes. In principle, such
pN tests have the benefit that, if, on the one hand, the expected signals of inter-
est have smaller magnitude with respect to the corresponding ones in the strong
field regime, on the other hand, the knowledge of the competing features of motion
of classical origin is relatively better, and the impact of their mismodelling can
be more accurately assessed with respect to less accessible astrophysical scen-
arios whose environments are, generally, less reliably known. Furthermore, the
measurement techniques routinely used, or under development, for tracking solar
system’s artificial or natural bodies like, for example, LLR, Satellite Laser Ran-
ging (SLR) (Coulot et al., 2011), and Planetary Laser Ranging (PLR) (Dirkx et al.,
2019) are becoming more and more accurate, allowing, in principle, one to detect
increasingly smaller features of motion. As if that weren’t enough, the techno-
logical efforts needed to measure such tiny effects could be useful one day in other,
unsuspected fields. Last but not least, a somewhat opportunistic approach may be
more easily followed by exploiting existing or planned missions directed to dif-
ferent goals, with a remarkable gain of time and money. In its technical realm of
validity, the pN approximation has been, or is currently being, tested only to the
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first post-Newtonian (1pN) order,11 since its 2pN effects are deemed too small to
be currently measurable. Moreover, the tests done or currently underway largely
refer to the mass monopole and, to a much lesser extent, the spin dipole moments
of the source, namely its mass M and angular momentum J . In particular, the peri-
helion12 precessions of Mercury (Shapiro et al., 1972; Shapiro, 1990), of other
inner planets of the solar system (Anderson et al., 1978, 1993), and of the aster-
oid Icarus (Shapiro et al., 1968, 1971) were measured long ago. More recently,
Earth’s geodetic satellites13 (Pearlman et al., 2019), tracked with the SLR tech-
nique, were used (Lucchesi and Peron, 2010, 2014). Finally, the perinigricon14 shift
of the S star S2 in the field of the SMBH in Sgr A∗ was recently measured as well
(GRAVITY Collaboration et al., 2020). Furthermore, the periastron15 advance of
a two-body system of comparable masses MA and MB was measured with differ-
ent binary radiopulsars (Weisberg and Taylor, 1984; Stairs, 2003; Champion et al.,
2004; Weisberg and Taylor, 2005; Kramer et al., 2006). As far as the 1pN orbital16

effects induced by the angular momentum J of the primary, known collectively as
the Lense–Thirring (LT) effect (Lense and Thirring, 1918; Mashhoon et al., 1984),
are concerned, tests have been underway with SLR geodetic satellites since 1996
(Ciufolini et al., 1996). Some aspects of them, like their realistic accuracy, are cur-
rently being debated; see, for example, Renzetti (2013b) and references therein. So
far, the only uncontroversial test of another 1pN feature due to the Earth’s angular
momentum is the one performed with the Gravity Probe B (Everitt, 1974) (GP-B)
mission which measured the Pugh–Schiff precessions (Pugh, 1959; Schiff, 1960)
of four spaceborne gyroscopes to a ' 19% accuracy (Everitt et al., 2011, 2015),
despite the fact that for many decades it was assumed that the final accuracy would
be around 1% (Everitt, 1974; Everitt et al., 2001). Actually, to the 1pN level, other
dynamical effects arise induced by mass and spin multipole moments of higher
order (Soffel and Han, 2019).

In this book, extensive use is made of the Keplerian orbital elements (Brouwer
and Clemence, 1961; Soffel, 1989; Brumberg, 1991; Klioner and Kopeikin, 1994;
Bertotti et al., 2003; Roy, 2005; Kopeikin et al., 2011; Poisson and Will, 2014;
Soffel and Han, 2019). They are the semimajor axis a, the eccentricity e, the inclin-
ation I , the longitude of the ascending node�, the argument of pericentre17 ω, and

11 It can be formulated to yield field equations for just two potentials (Soffel and Brumberg, 1991).
12 From περί (+ accusative), meaning ‘around, near, about, from’, and ’′Hλιος, -ου, ’ο, ‘H ´̄elios’, the god of the

Sun.
13 From sătellĕs, ı̆tis, meaning ‘attendant upon a distinguished person’, ‘lifeguard’. For a discussion of the word

satellite, its origin and its use in astronomy, see Sparavigna (2016).
14 From περί (+ accusative), meaning ‘around, near, about, from’, and nı̆ger, gra, grum (‘black’).
15 From περί (+ accusative), meaning ‘around, near, about, from’, and ’′αστρον, -ου, τό (‘celestial body, star’).
16 From orbis, is, ‘a ring, circle, re-entering way, circular path, hoop, orbit’.
17 From περί (+ accusative), meaning ‘around, near, about, from’, and κέντρον, -ου, τό, meaning, among

other things, ‘stationary point of a pair of compasses’, ‘centre (of a circle)’.
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the mean anomaly at epoch18 η. Such a choice, which, by no means, should be
deemed obligatory since other orbital parameterizations also exist (Bond and Janin,
1981; Gurfil, 2004; Efroimsky, 2005; Kopeikin et al., 2011; Gurfil and Efroimsky,
2022; Pogossian, 2022), is motivated by their immediately intuitive meaning which
greatly helps in visualizing the effects described with them. Furthermore, they are
easy to use in order to suitably design space-based experiments and preliminarily
assessing the impact of other competing dynamical effects of classical origin.

However, nowadays, actual tests of dynamical features of motion are usually
performed differently. Large datasets are reduced in the following way. Highly
detailed mathematical models of (a) the dynamics of the moving bodies, including
pN effects XpN to a certain degree of completeness (b) the propagation of the elec-
tromagnetic waves between the Earth’s stations and the (re)transmitting/reflecting
artificial or natural bodies of interest (c) the measurement devices, all contain-
ing several key parameters p characterizing the physical and orbital features of
the system’s components at hand (masses, initial positions and velocities, bias of
transponders, etc.), are fitted to huge amounts of data. The latter consist of meas-
urements of the directly observable quantities19 O. In such grand fits (Nordtvedt,
2000), p are estimated in a least-square way20 along with their errors and recipro-
cal correlations, all stored in the covariance matrix. Finally, time series of post-fit
residuals21 are produced by subtracting the measured values of the observables O
from their analytical counterparts calculated with the previously estimated values
of p. In order to realistically assess the accuracy of the parameter(s) of interest,
different data sets and background reference models can be used, and the result-
ing values p are confronted with each other. In principle, such post-fit residuals
should account for, among other things, all the mismodelled – or even unmod-
elled – dynamics. Thus, if they are statistically compatible with zero, there is the
temptation to straightforwardly compare them to their analytically predicted coun-
terparts in order to infer upper bounds on XpN if the latter is not included in the
dynamical models fit to the observations. Furthermore, should the post-fit resid-
uals be considered different from zero at a statistically significant level, one would
be likely tempted to claim a measurement of the unmodelled effect XpN of interest.
This is a widely adopted practice in the literature. Actually, great care is needed

18 There is not a symbol commonly adopted for it in the literature. Suffice it to say that, for example, η is used
by Milani et al. (1987), while in the notation by Brumberg (1991) the mean anomaly at epoch is l0.

Furthermore, Kopeikin et al. (2011) denote it as M0, while Bertotti et al. (2003) adopt ε
′
.

19 The Keplerian orbital elements do not belong to them, being computed from observations through some
intermediate steps.

20 Recently, the Bayesian approach also has been gaining ground (Mariani et al., 2023).
21 It is possible to produce time-dependent ‘residuals’ of the Keplerian orbital elements (Lucchesi and Balmino,

2006; Lucchesi, 2007) only when the spacecraft motion proceeds steady and seamlessly, without interruptive
orbital manoeuvres needed for, for example, pointing an antenna towards the Earth.
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in proceeding as just outlined, especially when the expected size of the pN sig-
nal one is interested in is not much larger than the measurement errors22 (Fienga
and Minazzoli, 2024). Indeed, if XpN is not modelled, its possible signature may
be more or less absorbed in some of – or all – the parameters p estimated in the
fit, like, for example, the initial conditions. Thus, it would be partially or totally
removed from the post-fit residuals. In this case, one would infer artificially too
tight constraints on (some of the parameters of) XpN, when, instead, the real impact
of the latter on the system’s dynamics actually is larger. Furthermore, if the post-
fit residuals produced without modelling XpN are significantly different from zero,
it may be that their resulting anomalous pattern is not due to XpN at all, as one
would hope, being, instead, caused by some fortunate mutual partial cancellation
of completely different effects leaving a signature which, by chance, has just the
characteristics of XpN one is looking for. Then, the correct way to proceed consists
of explicitly modelling the pN feature of motion XpN one wants to test and sim-
ultaneously estimating the parameter(s) pXpN characterizing it23 along with all the
other ones. Then, one can compare the post-fit residuals produced in this way with,
say, those generated without modelling XpN at all to see if significant differences,
larger than the measurement error level, can be spotted. Finally, the errors of pXpN

along with their correlations with the other simultaneously estimated parameters
in the covariance matrix obtained just by modelling XpN are to be inspected. See
Section K.3 for a discussion of a case in which this standard approach is, for some
reasons, disregarded.

A clarification is in order when one talks about tests of pN gravity. Let B be
the theoretical prediction of a certain pN effect, namely an analytical formula usu-
ally containing, among other things, one or more parameter(s) characterizing the
physical properties of the environment in which the former takes place; they could
be, for example, the masses and some other relevant physical quantities (angular
momenta, multipole moments) of, say, a two-body system. Let it be assumed that
there is an agreement, within the experimental errors, between B and a correspond-
ing measured or observed quantity. Then, one can correctly speak of a genuine test
of the effect under consideration only if the parameters entering B are known inde-
pendently from that very same effect; for example, they could have been previously
determined by exploiting different, even non-dynamical, features. Conversely, if
the theory at hand is widely accepted in the common knowledge at the time, B

22 The scope of data reductions is to finally produce post-fit residuals as small as the measurement errors.
23 A widely adopted set of parameters usually estimated in pN gravity tests are those belonging to the so-called

parametrized post-Newtonian (PPN) formalism (Will, 2018), among which βPPN and γPPN, both equal to 1
in GTR, are those that attract the greatest interest. The PPN scheme can be applied to all metric gravitational
theories, namely, those relying upon the EP. The speed of light c remains constant in it, and the metric tensor
gσλ is always assumed symmetric.
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and the corresponding measured value can be used just to measure or constrain the
parameter(s) entering the former.

The same considerations hold also for the plethora of long-range, or infra-
red, modified models of gravity (Brax et al., 2004; Nojiri and Odintsov, 2007;
De Felice and Tsujikawa, 2010; Maartens and Koyama, 2010; Capozziello and
de Laurentis, 2011; Skordis, 2011; Clifton et al., 2012; Ferraro, 2012; de Rham,
2014; Capozziello et al., 2015; Ruggiero and Radicella, 2015; Cai et al., 2016;
Joyce et al., 2016; Maggiore, 2017; Mashhoon, 2017; Kobayashi, 2019; Roshan
and Mashhoon, 2022) that have been continually churned out mainly since the
accelerated cosmic expansion was discovered in 1998 (Riess et al., 1998; Perl-
mutter et al., 1999; Riess, 2000; Astier and Pain, 2012; Schmidt, 2012) and, more
recently, since the issue of the Hubble tension gained prominence (Cervantes-Cota
et al., 2023; Hu and Wang, 2023; Vagnozzi, 2023; Capozziello et al., 2024). Also
the puzzle of nonbaryonic dark matter at galactic scales (Merrifield, 2005; Garrett
and Duda, 2011; Bullock and Boylan-Kolchin, 2017; Wechsler and Tinker, 2018;
de Martino et al., 2020) prompted the birth of several alternative theoretical frame-
works among which the most prominent one is, perhaps, the MOdified Newtonian
Dynamics (MOND) paradigm (Milgrom, 1983a,b,c; Sanders and McGaugh, 2002;
Bekenstein, 2009; Famaey and McGaugh, 2012; Milgrom, 2014; Bugg, 2015;
McGaugh, 2015; Banik and Zhao, 2022). For epistemological discussions about
the MOND/dark matter debate, see Duerr and Wolf (2023). Another model put
forth to cope with, among other things, the dark matter issue is the Scalar Ten-
sor Vector Gravity (STVG), or MOdified Gravity (MOG) (Brownstein and Moffat,
2006a,b; Moffat, 2006; Moffat and Toth, 2009; Harikumar, 2022). For a compari-
son between MOND and MOG and other less known theories trying the explain the
same phenomenology, see Pascoli (2024), and references therein. Recently, also
the Modified General Relativity (MGR) paradigm popped up (Nash, 2019; Das
and Sur, 2022; Nash, 2023). A further theoretical scenario arising in the frame-
work of the long-lasting attempts to find a consistent quantum theory of gravity is
the effective field theory called24 Standard Model Extension (SME) (Kostelecký,
2004; Kostelecký and Potting, 2005, 2009). Among other things, it encompasses
local Lorentz violations in the gravity sector which may manifest themselves to a
pN level with several phenomena including also orbital effects (Bailey and Kost-
elecký, 2006). For a recent review of modern tests of Lorentz invariance, see, for
example, Mattingly (2005), and references therein. Another theoretical scheme
encompassing violations of the Lorentz symmetry is the Einstein–Æther theory,
a generally covariant theory of gravity coupled to a dynamical, unit timelike vec-
tor field that breaks the aforementioned symmetry (Jacobson and Mattingly, 2004;

24 Here, the reference is to the Standard Model of elementary particles and fields (Gouttenoire, 2023).
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Eling et al., 2006; Jacobson, 2008). Reliably testing such proposed modifications of
the currently known laws of gravitation in local systems with, for example, orbital
motions is of paramount importance in order to gain knowledge on them independ-
ently of the very same effects for which they were introduced which, otherwise,
would remain their sole, ad hoc justification.

This book, in the wake of the meritoriously celebrated texts by25 Soffel (1989),
Brumberg (1991), and Soffel and Han (2019), treats the effect of pN and alternative
gravity on different quantities (Keplerian orbital elements, astrometric angles RA
and decl., radial velocity of spectroscopic binaries, variation of the times of arrival
in binary pulsars, characteristic timescales and sky-projected spin-orbit angles in
transiting exoplanets,26 two-body range and range rate) within a unified and uni-
form calculational scheme for arbitrary orbital geometries and generic orientations
of the spin axes of the sources of the gravitational field in space. It mainly adopts
the language of celestial mechanics, being aimed at the widest possible audience
of readers typically working on celestial mechanics, astronomy, and astrodynamics
in astronomical observatories, laser-ranging stations, and data centres. Spatially
isotropic or harmonic coordinates27 are adopted (Soffel and Brumberg, 1991).
Furthermore, the coordinate time t is used to calculate temporal intervals; they
coincide with those obtained by an observer comoving with the orbiting particle in
terms of its proper time28 τ up to corrections of the order of O

(
1/c4

)
.

The book is organized as follows.
The general scheme needed to calculate the desired post-Keplerian29 (pK) orbital

effects is outlined in Chapter 2. In it, after an overview of the Keplerian picture
for a restricted two-body system in Section 2.1, the pK variations of the osculat-
ing Keplerian orbital elements are treated in Section 2.2; the first-order shifts in
the perturbing acceleration are worked out in Section 2.2.1, while the second-order
ones are dealt with in Section 2.2.2. The mixed effects arising when two pK acceler-
ations enter simultaneously the equations of motion are the subject of Section 2.2.3.
The methods for calculating the pK corrections to various characteristic orbital

25 To a different level, see also O’Leary (2021).
26 From ’εκ- (’εξ- before a vowel), meaning, among other things, ‘out of, forth from; outside of, beyond’, and the

adjectival form ’′εξω (‘outer, external’, or ‘foreign’). With reference to our solar system, an exoplanet is,
then, a planet outside of it.

27 As explained by Brumberg (2010), in order to effectively cope with the problem of the coordinate-dependent
quantities in relativistic celestial mechanics and astrometry, in 1991 the International Astronomical Union
(IAU) recommended to adopt one specific type of coordinates once and forever: the harmonic coordinates,
determined by four specific non-tensorial differential relations to be added to the tensorial field equations of
GTR (Fok, 1959; Weinberg, 1972; Brumberg and Kopeikin, 1989b; Damour et al., 1991).

28 The coordinate and the proper times coincide, up to corrections of higher order in 1/c, when the orbiter is
quite distant from the source of the gravitational field.

29 Here, by post-Keplerian (pK) I mean dynamical features arising from any acceleration, Newtonian or not,
different from the simple Newtonian inverse-square one. Then, in this sense of the term pK, the classical
acceleration due to, say, the primary’s oblateness is pK.
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temporal intervals are presented in Section 2.3: they are the anomalistic (Sec-
tion 2.3.1), draconitic (Section 2.3.2) and sidereal (Section 2.3.3) periods, which all
coincide with each other in the Keplerian case. Section 2.4 illustrates how to cal-
culate the pK shifts of a generic observable quantity for which an analytical model
can be given; the cases treated are (a) the radial velocity of a spectroscopic binary
in Section 2.4.1, (b) some characteristic timescales in transiting exoplanets in Sec-
tion 2.4.2, (c) the rate of change of the sky-projected spin-orbit angle for such kinds
of exoplanets, dealt with in Section 2.4.3, (d) the variation of the times of arrival
(TOAs) of binary pulsars in Section 2.4.4, and (e) the astrometric angles RA and
dec. in Section 2.4.5. Finally, the pK shifts of the two-body range and range-rate
are calculated in Section 2.5.

Chapter 3 is devoted to the calculation of various 1pN gravitoelectric features of
motion for a test particle (Section 3.1) and a binary system of bodies with com-
parable masses (Section 3.2): the Keplerian orbital elements in Section 3.1.1 (test
particle) and Section 3.2.1 (binary system), the anomalistic (Section 3.1.2 for a test
particle and Section 3.2.2 for a binary system), draconitic (Section 3.1.3 for a test
particle and Section 3.2.3 for a binary system), and sidereal (Section 3.1.4 for a
test particle and Section 3.2.4 for a binary system) orbital periods, RA and dec.
(Section 3.1.5), the two-body range and range rate (Section 3.1.6), the radial vel-
ocity (Section 3.2.5), the characteristic timescales of transiting exoplanets (Section
3.2.6), and the TOAs of binary pulsars (Section 3.2.7).

The 2pN gravitoelectric orbital precessions of a binary system are calculated in
Chapter 4.

The 1pN LT acceleration, sourced by the source’s spin dipole moment(s) and
dubbed also as ‘gravitomagnetic’, is treated in Chapter 5 along with several features
of motion induced by it: the Keplerian orbital elements (Section 5.1), the anomalis-
tic (Section 5.2), draconitic (Section 5.3), and sidereal (Section 5.4) orbital periods,
the gravitomagnetic clock effect (Section 5.5), the radial velocity (Section 5.6), the
characteristic timescales of transiting exoplanets (Section 5.7), the sky-projected
spin-orbit angle (Section 5.8), the TOAs of binary pulsars (Section 5.9), RA and
dec. (Section 5.10), and the two-body range and range rate (Section 5.11).

Other 1pN gravitomagnetic orbital precessions, due to the spin octupole moment
of the central body, are dealt with in Chapter 6.

Several Newtonian features of motion due to the quadrupole mass moment(s)
of the source are the subject of Chapter 7: the Keplerian orbital elements (Section
7.1), the anomalistic (Section 7.2), draconitic (Section 7.3), and sidereal (Section
7.4) orbital periods, the radial velocity (Section 7.5), the characteristic timescales
of transiting exoplanets (Section 7.6), the sky-projected spin-orbit angle (Section
7.7), the TOAs of binary pulsars (Section 7.8), RA and dec. (Section 7.9), and the
two-body range and range rate (Section 7.10).
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The 1pN orbital precessions of the order of O
(
J2/c2

)
are calculated for a test

particle in Chapter 8.
Newtonian and pN tidal orbital precessions of a test particle orbiting a primary

induced by a distant third body are calculated in Chapter 9. In particular, in Section
9.1, the impact of the pN precessions of the axes of the reference frame comoving
with the two-body system in geodesic motion in the spacetime of the third body is
omitted, being, instead, treated in Section 9.2.

The orbital precessions induced by some categories of popular modified models
of gravity are treated in Chapter 10: they are due to power-law (Section 10.1),
Yukawa-like (Section 10.2), 1/r (Section 10.3), empirical once-per-revolution
(Section 10.4), constant (Section 10.5), and tidal-like (Section 10.6) extra-
accelerations. The effects of some dark matter distributions are the subject of
Section 10.7. Models encompassing violations of the Lorentz symmetry in the
gravitational sector are treated as well (Section 10.8).

Appendix A collects a list of acronyms and abbreviations.
Notations and definitions are listed in Appendix B.
In Appendix C, it is shown how to calculate pK Lagrangians, to be used as

disturbing functions in the Lagrange equations for the variations of the Keplerian
orbital elements, from the spacetime metric tensor.

Appendix D presents some useful coefficients accounting for the various spin-
orbit configurations.

Appendix E contains the coefficients entering the LT instantaneous shifts of the
orbital elements.

The coefficients of the instantaneous orbital shifts due to the Newtonian J2

acceleration are listed in Appendix F.
Appendix G collects the coefficients of the total net mixed orbital shifts of the

order of O
(
J2/c2

)
.

Appendix H displays the explicit expressions of the coefficients of the orbital
precessions of tidal origin.

The coefficients of the averaged disturbing functions of the power-law and
exponential dark matter density profiles along with those of the resulting orbital
precessions can be found in Appendix I.

In Appendix J, numerical values for the relevant physical parameters of some
major bodies of the solar system (the Sun, the Earth, and Jupiter) are provided
along with those of the double pulsar.

Appendix K contains the numerical values of the several pK orbital effects calcu-
lated for various natural and artificial bodies in the solar system and outside it: the
Sun’s planets (Section K.1), the spacecraft Juno30 around Jupiter (Section K.2), the

30 From Iūnō, ōnis, Roman deity, wife of Jupiter.
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Earth’s Laser GEOdynamics Satellite (LAGEOS) (Section K.3), the double pulsar
PSR J0737–3039 (Section K.4), the triple pulsars (Section K.5), and the star S4716
in the GC (Section K.6).

Appendix L reviews some space-based missions aimed at testing several pN
orbital effects recently proposed by the author: Highly Elliptical Relativity Orbiter
(HERO) (Section L.1), In-Orbit Relativity Iuppiter Observatory, or IOvis Rela-
tivity In-Orbit Observatory (IORIO) (Section L.2), Elliptical Uranian Relativity
Orbiter (EURO) (Section L.3), LEnse–Thirring Sun–Geo Orbiter (LETSGO) (Sec-
tion L.4), and ELXIS (Section L.5). Further missions proposed by other authors are
presented in Section L.6.
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