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Partial Differential Hamiltonian Systems
Luca Vitagliano

Abstract. We define partial differential (PD in the following), i.e., field theoretic analogues of Hamilto-
nian systems on abstract symplectic manifolds and study their main properties, namely, PD Hamilton
equations, PD Noether theorem, PD Poisson bracket, etc. Unlike the standard multisymplectic ap-
proach to Hamiltonian field theory, in our formalism, the geometric structure (kinematics) and the
dynamical information on the “phase space” appear as just different components of one single geo-
metric object.

1 Introduction

First order Lagrangian mechanics can be naturally generalized to higher order La-
grangian field theory. Moreover, the latter can be presented in a very elegant and
precise algebro-geometric fashion [55]. In particular, it is clear what all the involved
geometric structures (higher order jets, Cartan distribution, C -spectral sequence,
etc., [4, 55]) are. On the other hand it seems to be quite hard to understand what
the most “reasonable, unambiguous, higher order, field theoretic generalization” of
Hamiltonian mechanics on abstract symplectic manifolds is. Actually, there exists a
universally accepted generalization of the standard mechanical picture

(1.1) Lagrangian mechanics on TQ =⇒ Hamiltonian mechanics on T∗Q,

Q being a smooth manifold, to the picture

(1.2) Lagrangian field theory on J1π =⇒ Hamiltonian field theory on Mπ,

with π being a fiber bundle, J1π its first jet space and Mπ its multimomentum space
[26] (see also [34], [49] for a recent review, and [30] for an approach à la Tulczy-
jew). Picture (1.2) includes, in particular, a generalization of the Legendre trans-
form. Along this path a structure analogous to the symplectic structure on T∗Q,
called the multisymplectic structure of Mπ (see, for instance, [28]), has been discov-
ered. A whole literature exists about properties of such structure, which is generically
referred to as multisymplectic geometry of Mπ (see references in [49]). In particular,
efforts were made to find multisymplectic analogues of all properties of T∗Q (includ-
ing, for instance, the Poisson bracket [21,22,24,36,38]). Now, it is natural to wonder
if it is possible to reasonably further generalize in two different directions. The first
one is towards a picture

(1.3) Lagrangian field theory on J∞π =⇒ higher order Hamiltonian field theory,
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Partial Differential Hamiltonian Systems 1165

with J∞π being the∞-th jet space of π, including a higher order generalization of the
Legendre transform. There is no universally accepted answer about picture (1.3) (see,
for instance, [1, 2, 10, 39, 40, 52–54] and references therein). Most often they involve
the choice of some extra structure other than the natural ones on J∞π. Recently,
in [57], we proposed an answer that is free from such ambiguities.

The second direction in which to generalize picture (1.2) can be illustrated as fol-
lows. T∗Q is just a very special example of a (pre)symplectic manifold. Actually,
Hamiltonian mechanics can (and should, in some cases [29]) be formulated on ab-
stract (pre)symplectic manifolds. Similarly, it is natural to wonder if there exists the
concept of abstract multi(pre)symplectic manifolds in such a way that Hamiltonian
field theory could be reasonably formulated on them. In the literature there can be
found some proposals of would-be abstract multi(pre)symplectic manifolds (see, for
instance, [3, 7]). In particular, definitions have been given in such a way to be able to
prove multisymplectic analogues of the celebrated Darboux lemma [20, 43]. The re-
cent definitions by Forger and Gomes [20] appear to be the most satisfactory, in that
they are “minimal” on one side and duly model in an abstract fashion the relevant
geometric properties of Mπ on the other side. In their work, Forger and Gomes
illustrate, in particular, the role played by fiber bundles in the would-be definition
of multi(pre)symplectic structure. The next step forward should be to formulate
Hamiltonian field theory on multisymplectic bundles.

In this paper we present our own proposal about what should be an abstract, first
order, Hamiltonian field theory. We call such a proposal the theory of partial differen-
tial (PD in the following) Hamiltonian systems so to

(1) stress that it is a natural generalization of the theory of Hamiltonian systems on
abstract symplectic manifolds,

(2) distinguish it from the special case of Hamiltonian field theory on Mπ.

A PD Hamiltonian system encompasses both the kinematics (encoded, in pic-
ture (1.2), by the multisymplectic structure in Mπ) and the dynamics (encoded,
in picture (1.2), by the so-called Hamiltonian section [49]) which appear as just dif-
ferent components of one single geometric object. Namely, the main difference be-
tween a PD Hamiltonian system and a multi(pre)symplectic structure (whatever the
reader understands by this) is the dynamical content of the former (as opposed to the
just kinematical one of the latter). Notice that this idea is already present in litera-
ture [37]. However, our formalism differs from the one in [37] in that it is adapted
to the fibered structure of the manifold of “field variables”.

As already mentioned, standard examples of PD Hamiltonian systems come from
Lagrangian field theory. Consider a field theory on a “space-time” M with coordi-
nates x := (. . . , xi , . . . ), defined by a Lagrangian density

L = L(x, u, u ′)dnx

depending on some field variables u := (. . . , uα, . . . ) and their partial derivatives
u ′ := (. . . , uαi , . . . ). The Lagrangian density L determines a Legendre transform1

FL from the space J1 of the (x, u, u ′)’s to the so-called multimomentum space J† with

1See, for instance, [49] for a geometric formulation of the constructions in this paragraph.
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coordinates (x, u, p), p := (. . . , pi
α, . . . ) being the multimomenta. The Legendre

transform FL : J1 → J† is defined as

FL (x, u, u ′) := (x, u, ∂L/∂u ′).

Moreover, L determines in a canonical way the following (n + 1)-form on J1:

ωL := d ∂L
∂uαi
∧ duα ∧ dn−1xi − dE ∧ dnx, E := uαi

∂L
∂uαi
− L.

The form ωL is “constant” along the fibers of FL and, therefore, determines an
(n + 1)-form ω on the submanifold C0 := im FL ⊂ J†. The forms ωL and ω are
standard examples of PD Hamiltonian systems. In a way that will be clear later, they
determine PDEs for sections of the bundles J1 → M and C0 → M. When FL is
invertible,

ω = dpi
α ∧ duα ∧ dn−1xi − dH ∧ dnx, H := E ◦ FL−1

and the above-mentioned PDEs are the Euler–Lagrange and the de Donder–Weyl
equations of the theory, respectively. Using the theory of PD Hamiltonian systems,
one can generalize these considerations to more general field theories, in particular
those depending on higher derivatives of the fields [57].

The paper is divided into eight sections. In Section 2 we collect our notations and
conventions and recall basic differential geometric facts that will be used in the main
part of the paper.

In Section 3 we define what we call affine forms on fiber bundles. The introduction
of affine forms can be motivated as follows. Trajectories in Hamiltonian mechanics
are curves whose first derivative at a point is naturally understood as a tangent vector.
In their turn, tangent vectors can be inserted into a differential form and, in partic-
ular, a symplectic one, and Hamilton equations are written in terms of such an in-
sertion. Trajectories in field theory are sections of a fiber bundle α : P → M, whose
first derivative at a point is naturally understood as a point in J1α. In their turn,
points of J1α can be inserted into an affine form and, in particular, a PD Hamil-
tonian system (see Section 5), and PD Hamilton equations are written in terms of
such an insertion. Recall now that the natural projection J1α → P is an affine bun-
dle whose sections are naturally interpreted as (Ehresmann) connections in α. Thus,
connections and affine geometry play a prominent role in the theory of PD Hamilto-
nian systems. The affine geometry is hidden in standard Hamiltonian mechanics by
an a priori choice of the parametrization of the time axis (see [31, 32], and references
therein, for the role of affine geometry in theoretical mechanics). Similarly, even if
the role of connections in field theory has been often recognized (see, for instance,
[18, 50]), their affine geometry is sometimes hidden in Hamiltonian field theory on
Mπ by the use of multivectors, or even decomposable ones [47, 48] (which is just
a multidimensional analogue of choosing a parameterization of time). Actually, we
show in Subsection 3.3 that affine forms can be understood as standard differential
forms of a special kind. Nevertheless, we prefer to keep the distinction for founda-
tional reasons.
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In Section 4 we discuss standard operations with affine forms. Essentially because
of the interpretation of affine forms as standard differential forms we mentioned
above, some of these operations (for instance, the insertion of a connection into an
affine form [19], or the differential of an affine form) were actually already defined
in the literature, or can be understood as standard operations with forms. We stress
again that we will keep the distinction. Finally, we discuss relevant affine form coho-
mologies proving an affine form version of the Poincaré lemma.

In Section 5 we introduce PD (pre)Hamiltonian systems and discuss their geome-
try and the geometry of the associated PD Hamilton equations with some references
to the singular, constrained case (see [11–13, 15] for an account of the constraint al-
gorithm in first order field theory). For completeness, we also relate PD Hamiltonian
systems to multi(pre)symplectic structures à la Forger [20] and the calculus of vari-
ations. Notice that the theory of PD Hamiltonian systems is somehow in between
(abstract) multisymplectic field theory and polysymplectic field theory.

In Section 6 we introduce PD Noether symmetries and currents of a PD Hamil-
tonian system. In view of the dynamical content of the latter we are able to prove
a Noether theorem (see also [14]). Moreover, there is a natural Lie bracket (named
PD Poisson bracket) among PD Noether currents. As already mentioned, multi-
symplectic analogues of the Poisson bracket have been previously discussed in the
literature [21, 22, 24, 36, 38]. However, we emphasize here the dynamical nature of
the PD Poisson bracket (see also [25, 56]). Namely, such a bracket is just part of
the Peierls bracket [56] among conservation laws of the underlying Lagrangian the-
ory, and we don’t try to extend it to non-conserved currents. Indeed, our opinion is
that the existence of a Poisson bracket among non-conserved functions in Hamilto-
nian mechanics is essentially due to the existence of a preferred Hamiltonian system
on any symplectic manifold N, i.e., the one with 0 Hamiltonian, for which every
function on N is a conservation law. Finally we discuss the (gauge) reduction of a
degenerate (but unconstrained) PD Hamiltonian system.

In Section 7 we propose few examples of PD Hamiltonian systems, including the
computation of their PD Noether symmetries and currents or, in one case, their re-
duction.

We conclude with Section 8 where we briefly discuss the emergence of PD Hamil-
tonian systems in Mathematical Physics and Geometry, providing further motiva-
tions for their introduction.

2 Notations and Conventions

In this section we collect notations and conventions about some general construc-
tions that will be used in the following.

Let N be a manifold. We denote by C∞(N) the R-algebra of smooth, R-valued
functions on N. A vector field X over N will be always understood as a derivation
X : C∞(N) → C∞(N). We denote by D(N) the C∞(N)-module of vector fields
over N, by Λ(M) =

⊕
k Λk(N) the graded R-algebra of differential forms over N,

by d : Λ(N) → Λ(N) the de Rham differential, and by H(N) =
⊕

k Hk(N) the
de Rham cohomology. If F : N1 → N is a smooth map of manifolds, we denote
by F∗ : Λ(N) → Λ(N1) its pull-back. We will everywhere take the wedge product
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of differential forms, ∧, to be understood, i.e., for ω, ω1 ∈ Λ(N), instead of writing
ω∧ω1, we will simply write ωω1. We assume the reader to be familiar with Frölicher–
Nijenhuis calculus on form valued vector fields (insertion iZω of a form valued vector
field Z into a differential form ω, Lie derivative LZω of a differential form ω along a
form valued vector fields Z, Frölicher–Nijenhuis bracket, etc., see, for instance, [44]).

Let $ : W → N be an affine bundle (or, possibly, a vector bundle) and let
F : N1 → N be a smooth map of manifolds. The affine space of smooth sections
of$ will be denoted by Γ($). For x ∈ N, we sometimes put Γ($)|x := $−1(x) and,
for χ ∈ Γ($), we also put χx := χ(x). The affine bundle on N1 induced by $ via F
will be denote by $|F : W |F → N:

W |F //

$|F
��

W

$

��
N1

F
// N.

We also denote Γ($)|F := Γ($|F). For any section s ∈ Γ($), there exists a unique
section, which, abusing the notation, we denote by s|F ∈ Γ($|F), such that the dia-
gram

W |F // W

N1

F
//

s|F

OO

N

s

OO

commutes. Elements in Γ($)|F are called sections of $ along F. If F is an embedding
$|F , Γ($)|F and s|F will be referred to as the restriction to N1 of $, Γ($) and s,
respectively. If $1 : W1 → N is another affine bundle and A : Γ($) → Γ($1) is an
affine map then there exists a unique affine map A|F : Γ($)|F → Γ($1)|F such that
A|F(s|F) = A(s)|F for all s ∈ Γ($).

Let α : P → M be a fiber bundle. A vector field X ∈ D(P) is called α-projectable
if and only if there exists X̌ ∈ D(P) such that X ◦ α∗ = α∗ ◦ X̌. The vector field X̌ is
called theα-projection of X. Vector fields that areα-projectable form a Lie subalgebra
in D(P) denoted by DV (P, α) (or simply DV if this does not lead to confusion). An
α-projectable vector field projecting onto the 0 vector field is an α-vertical vector
field. Vector fields that are α-vertical form an ideal in DV denoted by V D(P, α) (or
simply V D). Notice that, if α has connected fiber, then DV is the stabilizer of V D
in D(P), i.e., DV = {X ∈ D(P) | [X,V D] ⊂ V D}.

Let α : P→ M be as above, dim M = n, dim P = m + n. Denote by α1 : J1α→ M
the bundle of 1-jets of local sections of α [4,51], and by α1,0 : J1α→ P the canonical
projection. For any local section σ : U → P of α, U ⊂ M being an open sub-
set, we denote by σ̇ : U → J1α its 1-st jet prolongation. Any system of α-adapted
coordinates (. . . , xi , . . . , ya, . . . ) on P, xi being coordinates on M and ya fiber coor-
dinates on P, gives rise to the system of jet coordinates (. . . , xi , . . . , ua, . . . , ya

i , . . . )
on J1α, i = 1, . . . , n, a = 1, . . . ,m. Recall that α1,0 is an affine bundle and a section
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∇ : P → J1α of it is naturally interpreted as a (Ehresmann) connection in α. We
assume the reader to be familiar with the geometry of connections (see, for instance,
[44]). A connection∇ is locally represented as

∇ : ya
i = ∇a

i ,

∇a
i being local functions on P. The space Γ(α1,0) of all such sections will be also

denoted by C(P, α) (or simply C).
Let α : P → M be as above, α ′ : P ′ → M be another fiber bundle and let G : P →

P ′ be a bundle morphism (over the identity idM : M → M), i.e., a smooth map such
that α ′ ◦ G = α. First of all, recall that there exists a unique bundle morphism
j1G : J1α → J1α ′ such that j1G ◦ σ̇ = (G ◦ σ)˙ for all local sections σ of α. The
bundle morphism j1G is the first jet prolongation of G and the diagram

J1α
j1G

//

α1,0

��

J1α ′

α ′1,0
��

P
G

//

α !!

P ′

α ′}}
M

commutes. Now, a connection ∇ ∈ C(P, α) and a connection ∇ ′ ∈ C(P ′, α ′) are
said G-compatible if and only if∇ ′ ◦ G = j1G ◦ ∇.

Let

· · · −→ Kl−1

δl−1

−−→ Kl

δl

−→ Kl+1

δl+1

−−→ · · ·

be a complex. Put K :=
⊕

l Kl and δ :=
⊕

l δl. We denote the cohomology space of
(K, δ) by H(K, δ) :=

⊕
l Hl(K, δ), where Hl(K, δ) := ker δl/ im δl−1.

Let A be a commutative R-algebra, M,M1 be A-modules and let A be an affine
space modeled over M. We denote by AffA(A,M1) (resp. HomA(M,M1)) the A-
module of affine (resp. A-linear) maps A→ M1 (resp. M → M1). Ifφ ∈ AffA(A,M1),
its linear part φ is an element in HomA(M,M1).

Let m, r be positive integers and let Aa1···ar be elements in a real vector space, for
a1, . . . , ar = 1, . . . ,m. We denote by A[a1···ar] their skew-symmetrization, i.e.,

A[a1···ar] := 1
s!

∑
σ∈Sr

ε(σ)Aaσ(1)···aσ(r) ,

with Sr being the group of permutations of {1, . . . , r} and ε(σ) the sign of σ ∈ Sr.
We denote by ' (resp. ≈) a canonical (resp. non-canonical) isomorphism be-

tween algebraic structures and by ≡ an equivalence of notations. For instance, for
α : P→ M as above, V D ≡ V D(P,M). Finally, we use the Einstein convention for
sums over upper-lower pairs of repeated indices.
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3 Affine Forms on Fiber Bundles

3.1 Special Forms on Fiber Bundles

Let α : P → M be a fiber bundle, A := C∞(P), A0 := C∞(M), x1, . . . , xn be coordi-
nates on M, dim M = n, and let y1, . . . , ym be fiber coordinates on P, dim P = n+m.
In the following we will often consider the monomorphism of algebras α∗ : A0 → A,
whose image is made of functions on P that are constant along the fibers of α. The
space DV (resp. V D) is made of vector fields X locally of the form X = Xi∂i + Y a∂a

(resp. X = Y a∂a), where Xi = Xi(x1, . . . , xn), ∂i := ∂/∂xi , i = 1, . . . , n, ∂a :=
∂/∂ya, a = 1, . . . ,m.

Denote by Λ1(P, α) =
⊕

k Λk
1(P, α) (or simply Λ1 =

⊕
k Λk

1) the differential
(graded) ideal of differential forms on P vanishing when pulled back to fibers of α,
i.e., ω ∈ Λk

1, k ≥ 0 if and only if ω ∈ Λk(P) and i∗α−1(x)(ω) = 0 for all x ∈ M,

iα−1(x) : α−1(x) → P being the embedding of the fiber α−1(x) of α through x ∈ M.
Moreover, denote by Λp(P, a) =

⊕
k Λk

p(P, α) (or simply Λp =
⊕

k Λk
p) the p-th

exterior power of Λ1. For all k and p, Λk
p is made of differential k-forms ω such

that (iY1 ◦ · · · ◦ iYk−p+1 )ω = 0 for every Y1, . . . ,Yk−p+1 ∈ V D or, which is the same,
differential k-forms ω locally of the form

ω =
∑
l≥0

ωi1···i p+la1···ak−p−l dxi1 · · · dxi p+l dya1 · · · dyak−p−l ,

ωi1···i p+la1···ak−p−l being local functions on P, i1, . . . , i p+l = 1, . . . , n, a1, . . . , ak−p−l =
1, . . . ,m.

Denote by V Λ(P, α) =
⊕

k V Λk(P, α) (or simply V Λ =
⊕

k V Λk) the quo-
tient differential algebra Λ(P)/Λ1, with dV : V Λ → V Λ its differential and with
pV : Λ(P) 3 ω 7−→ ωV := ω + Λ1 ∈ V Λ the projection onto the quotient. No-
tice that dV is A0-linear. An element ρV in V Λk is locally of the form

ρV = ρa1···ak dV ya1 · · · dV yak ,

ρa1···ak being local functions on P, and dVρV being locally given by

dVρV = ∂aρa1···ak dV yadV ya1 · · · dV yak = ∂[aρa1···ak]d
V yadV ya1 · · · dV yak .

Clearly, V Λ1 is the dual A-module of V D and V Λ its exterior algebra. In particular,
elements in V Λ may be interpreted as multilinear, skew-symmetric forms on V D.

Denote by Λ(P, α) =
⊕

k Λk(P, α) :=
⊕

k Λk
k ⊂ Λ(P) (or simply Λ =

⊕
k Λk) the

sub-algebra generated by Λ1
1. An element ω ∈ Λk is locally of the form

ω = ωi1···ik dxi1 · · · dxik .

Notice that Λ is naturally isomorphic to A⊗A0 Λ(M) as an A-algebra.
For any p, the quotient (graded) differential module2

Ep,•
0 ≡ Ep,•

0 (P, α) := Λp/Λp+1

2This notation is motivated by the fact that A-modules Ep,•
0 are columns of the first term of the (coho-

mological) Leray–Serre spectral sequence of the fiber bundle α (see [46]).
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is naturally isomorphic to V Λ⊗A Λp (or, which is the same, V Λ⊗A0 Λp(M)) via the
correspondence

(3.1) Ep,q
0 3 ω + Λ

p+q
p+1 7−→ $ ∈ V Λq ⊗A Λp,

well defined by putting

$(Y1, . . . ,Yq) := (iYq ◦ · · · ◦ iY1 )(ω) ∈ Λp,

Y1, . . . ,Yq ∈ V D. In the following we denote by Ep,q
0 the q-th homogeneous piece of

Ep,•
0 , q ∈ Z. According to the above, V Λ⊗A Λ (or, which is the same, V Λ⊗A0 Λ(M))

is the graded object associated with the filtration Λ(P) ⊃ Λ1 ⊃ · · · ⊃ Λp ⊃ · · · .
As we will see in the next subsection, a connection in α allows one to identify such
filtration with its graded object.

Let us now focus on the ideals Λn−1 and Λn. Put dnx := dx1 · · · dxn and dn−1xi :=
i∂i d

nx, so that dx jdn−1xi = δ
j
i dnx, i, j = 1, . . . , n. Then an element ω ∈ Λ

q+n−1
n−1

(resp. ω ∈ Λ
q+n−1
n ) is locally in the form

ω = ωi
a1···aq

dya1 · · · dyaq dn−1xi + ωa1···aq−1 dya1 · · · dyaq−1 dnx

(resp.
ω = ωa1···aq−1 dya1 · · · dyaq−1 dnx),

. . . , ωi
a1...aq

, . . . , ωa1...aq−1 , . . . being local functions on P. In particular Λ
q+n−1
n−1 (resp.

Λ
q+n−1
n ) is the module of sections of an

[
n
( q

m

)
+
(q−1

m

)]
(resp.

(q−1
m

)
)-dimensional

vector bundle over P. Below we will provide an alternative description of Λn−1

and Λn (Theorem 3.1). In our opinion, such description is more suitable for a bet-
ter understanding of the role of Λn−1 and Λn in first order field theories (see, for
instance, [28]).

3.2 Affine Forms

Let ∇ ∈ C ≡ C(P, α). Recall, preliminarily, that C is an affine space modeled over
the A-module Λ1 ⊗A V D, or, which is the same, Λ1(M)⊗A0 V D. The connection∇
allows one to split the tangent bundle TP into its vertical part V P and a horizontal
part H∇P. Denote by H∇D(P, α) ⊂ D(P) (or simply H∇D ⊂ D(P)) the submodule
of∇-horizontal vector fields. An element X ∈ H∇D is locally in the form X = Xi∇i ,
where∇i := ∂i +∇a

i ∂a, i = 1, . . . , n. The splitting

(3.2) D(P) = V D⊕H∇D

determines a splitting of the de Rham differential d : Λ(P)→ Λ(P) into a horizontal
part d∇ : Λ(P) → Λ(P), and a vertical part dV

∇ : Λ(P) → Λ(P), d = d∇ + dV
∇,

where d∇ (resp. dV
∇) is the Lie derivative along the horizontal-form valued vector

field (resp. the form valued vertical vector field) H∇ : A → Λ1(P) (resp. V∇ : A →
Λ1(P)) determined by ∇. H∇ (resp. V∇) is locally given by H∇ = dxi∇i (resp.
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V∇ = (dya − ∇a
i dxi)∂a). Notice that

(
Λ(P), dV

∇, d∇
)

is not a bi-complex unless ∇
is flat. Splitting (3.2) also determines an isomorphism φ∇ : V Λ⊗A Λ→ Λ(P) locally
given by

φ∇(dV ya1 · · · dV yaq ⊗ dxi1 · · · dxiq ) = dV
∇ya1 · · · dV

∇yaq dxi1 · · · dxiq .

In particular, for any q, p, there is an obvious projection p
q,p
∇ : Λ(P)→ V Λq ⊗A Λp.

For any k ≥ 0, put
′Ωk+1 := AffA(C,V Λk ⊗A Λn).

An element ′ϑ ∈ ′Ωk+1 is locally given by
′ϑ(∇) = ( ′ϑi

a,a1···ak
∇a

i + ′ϑa1···ak )dV ya1 · · · dV yak ⊗ dnx, ∇ ∈ C,

. . . , ′ϑi
a,a1···ak

, . . . , ′ϑa1···ak , . . . local functions on P. The linear part ′ϑ of an element
′ϑ ∈ ′Ωk+1 is an element in the A-module

HomA(Λ1 ⊗A V D,V Λk ⊗A Λn) ' HomA(V D,V Λk ⊗A Λn−1),

where we identified V Λk ⊗ Λn−1 and HomA(Λ1,V Λk ⊗ Λn) via the isomorphism

V Λk ⊗ Λn−1 3 σ ⊗ ρ 7−→ ϕσ⊗ρ ∈ HomA(Λ1,V Λk ⊗ Λn),

σ ∈ V Λk, ρ ∈ Λn−1, defined by putting

ϕσ⊗ρ(η) := (−)kσ ⊗ ηρ ∈ V Λk ⊗ Λn, η ∈ Λ1.

Put Ωk+1 ≡ Ωk+1(P, α) := V Λk+1⊗A Λn−1. Similarly as above, Ωk+1 can be embedded
into HomA(V D,V Λk ⊗A Λn−1) via the correspondence

(3.3) Ωk+1 3 σ ′ ⊗ ρ 7−→ ϕ ′σ ′⊗ρ ∈ HomA(V D,V Λk ⊗A Λn−1),

σ ′ ∈ V Λk, ρ ∈ Λn−1, defined by putting

ϕ ′σ ′⊗ρ(Y ) := iYσ
′ ⊗ ρ ∈ V Λk ⊗A Λn−1, Y ∈ V D.

In the following, embedding (3.3) will be understood.
Put also Ω0 ≡ Ω0(P, α) := Λn−1, Ω0 ≡ Ω0(P, α) := Ω0, and for k ≥ 0,

Ωk+1 ≡ Ωk+1(P, α) := {ϑ ∈ ′Ωk+1 | ϑ ∈ Ωk+1},
Ω ≡ Ω(P, α) :=

⊕
q≥0 Ωq and Ω ≡ Ω(P, α) :=

⊕
q≥0 Ωq. Elements in Ωk will be

called affine k-forms over α, k ≥ 0. It is easy to show that an element ϑ ∈ ′Ωk+1 is an
affine (k + 1)-form if and only if it is locally given by

ϑ(∇) = (ϑi
aa1···ak

∇a
i + ϑa1···ak )dV ya1 · · · dV yak ⊗ dnx, ∇ ∈ C ;

. . . , ϑi
aa1···ak

, . . . , ϑa1···ak , . . . being local functions on P such that ϑi
aa1···ak

= ϑi
[aa1···ak],

for i = 1, . . . , n, a, a1, . . . , ak = 1, . . . ,m.
According to the above, the linear part ϑ ∈ Ωk+1 of ϑ is implicitly defined by the

formula

ϑ(∇ + η ⊗ Y )(Y1, . . . ,Yk)− ϑ(∇)(Y1, . . . ,Yk) = (−)kη · ϑ(Y,Y1, . . . ,Yk) ∈ Λn,

∇ ∈ C , η ∈ Λn−1, Y,Y1, . . . ,Yk ∈ V D, and it is locally given by

(3.4) ϑ =
(−)k

k + 1
ϑi

a1···ak+1
dV ya1 · · · dV yak+1 ⊗ dn−1xi .
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3.3 Affine Forms and Differential Forms

Let Ω0(P, α) =
⊕

q≥0 Ω
q
0(P, α) (or, simply, Ω0 ≡

⊕
q≥0 Ω

q
0) be the kernel of the

projection Ω 3 ϑ 7−→ ϑ ∈ Ω. Clearly, Ω
q
0 is canonically isomorphic to V q−1Λ⊗A Λn

for q > 0 (and in the following such isomorphism will be understood), while Ω0
0 = 0.

Moreover, Ωq (resp. Ω
q
0) is the module of sections of an

[
n
( q

m

)
+
(q−1

m

)]
(resp.

(q−1
m

)
)-

dimensional vector bundle over P.

Theorem 3.1 There are canonical isomorphisms of A-modules

ι0,q : Λq+n−1
n −→ Ω

q
0,

ιq : Λ
q+n−1
n−1 −→ Ωq,

ιq : En−1,q
0 −→ Ωq,

q ≥ 0, such that diagram

(3.5)

0 // Λn

ι0

��

// Λn−1

ι

��

// En−1
0

ι

��

// 0

0 // Ω0
// Ω // Ω // 0

commutes, where ι0 :=
⊕

q ι0,q, ι :=
⊕

q ιq and ι :=
⊕

q ιq.

Proof Let q > 0. First of all, denote by ιq : En−1,q
0 → Ωq the already-mentioned

natural isomorphism (3.1) and notice that for any ω ∈ Λ
q+n−1
n and Y1, . . . ,Yq−1 ∈

V D, (iY1 ◦ · · · ◦ iYq−1 )(ω) ∈ Λn. Therefore, an element ι0,q(ω) ∈ Ω
q
0 is well defined

by putting ι0,q(ω)(Y1, . . . ,Yq−1) := (iY1 ◦ · · · ◦ iYq−1 )(ω) ∈ Λn, Y1, . . . ,Yq−1 ∈ V D.

Moreover, the correspondence Λ
q+n−1
n 3 ω 7−→ ι0,q(ω) ∈ Ω

q
0 is an isomorphism of

A-modules. Indeed, letω ∈ Λ
q+n−1
n and (iY1◦· · ·◦iYq−1 )(ω) = 0 for all Y1, . . . ,Yq−1 ∈

V D, then ω ∈ Λ
q+n−1
n+1 = 0, so that ι0,q is injective. Moreover, Λ

q+n−1
n and Ω

q
0 are

locally free A-modules of the same local dimension. We conclude that

ι0 :=
⊕

q
ι0,q : Λn −→ Ω0

is a canonical isomorphism of A-modules as well, sending Λ
q+n−1
n into Ω

q
0, q ≥ 0.

Finally, if ω ∈ Λ
q+n−1
n is locally given by

ω = ωa1···aq−1 dya1 · · · dyaq−1 dnx,

then ι0(ω) ∈ Ω0 is locally given by ι0(ω) = ωa1···aq−1 dV ya1 · · · dV yaq−1 ⊗ dnx.

Now, for ω ∈ Λ
q+n−1
n−1 and∇ ∈ C put

ιq(ω)(∇) := p
q−1,n
∇ (ω).
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If ω is locally given by

ω = ωi
a1···aq

dya1 · · · dyaq dn−1xi + ωa1···aq−1 dya1 · · · dyaq−1 dnx,

then

ω = ωi
a1···aq

(dV
∇ + d∇)(ya1 ) · · · (dV

∇ + d∇)(yaq )dn−1xi

+ ωa1···aq−1 dV
∇ya1 · · · dV

∇yaq−1 dnx

= ωa1···aq−1 dV
∇ya1 · · · dV

∇yaq−1 dnx + ωi
a1···aq

dV
∇ya1 · · · dV

∇yaq dn−1xi

+
∑

s

(−)p−sωi
a1···aq

∇as
j dV
∇ya1 · · · d̂V

∇yas · · · dV
∇yaq dx jdn−1xi

= ωq,n−1 + [q(−)q−1ωi
aa1···aq−1

∇a
i + ωa1···aq−1 ]dV

∇ya1 · · · dV
∇yaq−1 dnx

where a cap “ ̂ ” denotes omission of the factor below it, and ωq,n−1 ∈ Λ(P) is a
suitable form such that pq−1,n

∇ (ωq,n−1) = 0. Therefore, locally

ιq(ω)(∇) = p
q−1,n
∇ (ω)

= [q(−)q−1ωi
aa1...aq−1

∇a
i + ωa1...aq−1 ]dV ya1 · · · dV yaq−1 ⊗ dnx.

(3.6)

This shows simultaneously that ιq(ω) is affine, that it is in Ωq, and that ιq is injective.
Since Λ

p+n
n−1 and Ωq are locally free A-modules of the same local dimension, then the

correspondence ιq : Λ
q+n−1
n−1 3 ω 7−→ ιq(ω) ∈ Ωq is an isomorphism. Commutativity

of diagram (3.5) immediately follows from local formulas (3.4) and (3.6).

Notice that isomorphism ι generalizes considerably the well-known isomorphism
Λn

n−1 ' AffA(C,Λn) [28].
Finally, let π : E → M be a fiber bundle and let qA be fiber coordinates on E.

Notice that Ω1(E, π) (resp. Ω1(E, π)) is the C∞(E)-module of sections of a vector
bundle µ0π : Mπ → E (resp. τ †0 π : J†π → E). Recall that there is a distinguished
element Θ in Ω1(Mπ, µπ) (resp. Θ ∈ Ω1( J†π, τ †π)), with µπ := π ◦ µ0π (resp.
τ †π := π ◦ τ †0 π), the tautological one [28], which in standard coordinates

. . . , xi , . . . , qA, . . . , pi
A, . . . , p

on Mπ (resp. . . . , xi , . . . , qA, . . . , pi
A, . . . on J†α) is given by

Θ = pi
AdqAdn−1xi − pdnx (resp. Θ = pi

AdV qA ⊗ dn−1xi).

4 Affine Form Calculus

4.1 Natural Operations with Affine Forms

In this section we derive the main formulas of calculus on affine forms. Such formu-
las will be useful in generalizing proofs from the context of Hamiltonian systems to
the context of PD Hamiltonian systems (see Section 6).
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Let α : P → M be as in the previous section. Isomorphism ι (resp. ι0, ι) can be
used to “transfer structures” from Λn−1 (resp. Λn, En−1

0 ) to Ω (resp. Ω0, Ω) and back.
As an instance, notice that Ω has a natural structure of Λ(P)-module given by

λϑ := ι(λω),

λ ∈ Λ(P), ϑ = ι(ω) ∈ Ω, ω ∈ Λn−1. Moreover, Ω is generated by Ω0 as a
Λ(P)-module. Similarly, Λn (resp. En−1

0 ) has a structure of V Λ-module given by

λVω0 := ι−1
0 (λVρV ⊗ ν) (resp. λVω := ι−1

0 (λVρV ⊗ σ)),

λV ∈ V Λ, ω0 = ι−1
0 (ρV ⊗ ν) (resp. ω = ι−1(ρV ⊗ σ)), ρV ∈ V Λ, ν ∈ Λn (resp.

σ ∈ Λn−1), so that ρV ⊗ ν ∈ V Λ⊗A Λn = Ω0 (resp. ρV ⊗ σ ∈ V Λ⊗A Λn−1 = Ω).
Clearly, Λn (resp. En−1

0 ) is generated by Λn (resp. Λn−1) as a V Λ-module. Finally, the
presented structures are compatible in the sense that for ω0 ∈ Λn, ω ∈ Λn−1 and
λ ∈ Λ(P), we have

λVω0 = λω0 and λω = λVω.

As a last instance of how to use isomorphisms in (3.5) to transfer a structure from one
space to the other we define the insertion of a connection ∇ ∈ C into a differential
form ω ∈ Λn as

i∇ω := ι−1
0

(
ϑ(∇)

)
= (ι−1

0 ◦ p
q−1,n
∇ )(ω) ∈ Λn,

ϑ = ι(ω) ∈ Ω. Notice that this insertion of a connection in an element ω ∈ Λn has
been already discussed in [19]. In the following we will always understand isomor-
phisms ι, ι0, ι.

Notice that Ω inherits many operations from Ω. Indeed, let

∇ ∈ C, Z ∈ Λ1 ⊗A V D ⊂ Λ(P)⊗A D(P), Y ∈ V D, X ∈ DV , q ≥ 0.

Then the following hold:

(i) iZ(Ω) ⊂ Ω0 and iZ(Ω0) = 0, so that an operator, which, abusing the notation,
we again denote by iZ : Ω→ Ω0, is well defined via the formula

iZω := iZω ∈ Ω0,

ω ∈ Ω. Moreover, it is easy to show that

iZω = i∇+Zω − i∇ω.

Finally, for Z = η ⊗ Y1, and ω = ρV ⊗ σ, η ∈ Λ1, Y1 ∈ V D, ρV ∈ V Λq and
σ ∈ Λn−1, we have

iZω = (−)q−1iY1ρ
V ⊗ ησ.
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(ii) iY (Ω) ⊂ Ω (resp. LX(Ω) ⊂ Ω) and iY (Ω0) ⊂ Ω0 (resp. LX(Ω0) ⊂ Ω0) so that
the quotient map, which, abusing the notation, we again denote by iY : Ω→ Ω
(resp. LX : Ω→ Ω), is well defined via the formula

iYω := iYω ∈ Ω (resp. LXω = LXω ∈ Ω).

Finally, for ω = ρV ⊗ σ, ρV ∈ V Λq and σ ∈ Λn−1, we have

iYω = iYρ
V ⊗ σ.

(iii) d∇(Ω) ⊂ Ω0 and d∇(Ω0) = 0 so that an operator, which, abusing the notation,
we again denote by d∇ : Ω → Ω0, is well defined via the formula d∇ω :=
d∇ω ∈ Ω0, ω ∈ Ω.

Remark 4.1 Notice that the insertion i∇ω, being affine in∇, is actually point wise,
i.e., if ∇ ′ ∈ C is such that ∇ ′y = ∇y ∈ C|y = α−1

1,0 (y) for some y ∈ P, then

(i∇ ′ω)y = (i∇ω)y . Therefore, the insertion icωy of an element c ∈ α−1
1,0 (y), y ∈

P, into ωy is well defined. Similar considerations apply to both the above-defined
insertions iZ and iY . Finally, for all y ∈ P, the projection Ω → Ω also determines a
well-defined linear map Ω|y 3 ωy 7−→ ωy ∈ Ω|y whose kernel is Ω0|y .

In the following we will denote by δ : Ω → Ω (resp. δ0 : Ω0 → Ω0) the restricted
de Rham differential, i.e., for ω ∈ Ω (resp. ω0 ∈ Ω0), δω := dω ∈ Ω (resp. δ0ω0 :=
dω0 ∈ Ω0) and with δ : Ω→ Ω the quotient differential. Then, for ω0 = ρV ⊗α∗(ν0)
(resp. ω = ρV ⊗ α∗(σ0)), ρV ∈ V Λ, ν0 ∈ Λn(M) (resp. σ0 ∈ Λn−1(M)), we have

δ0ω0 = dVρV ⊗ α∗(ν0) (resp. δω = dVρV ⊗ α∗(σ0)).

In other words δ0 (resp. δ) is isomorphic to the differential dV⊗id : V Λ⊗A0 Λn(M)→
V Λ⊗A0 Λn(M) (resp. dV ⊗ id : V Λ⊗A0 Λn−1(M)→ V Λ⊗A0 Λn−1(M)).

All the above-mentioned formulas can be proved by straightforward computa-
tions.

Now, let ∇, Y and X be as above. Denote by [[ · , · ]] the Frölicher–Nijenhuis
bracket in Λ(P)⊗A D(P). It is easy to see that [[H∇,X]] ∈ Λ1⊗AV D ⊂ Λ(P)⊗A D(P).

Theorem 4.2 Let ω ∈ Ω, then

(4.1)

[i∇, δ]ω := (i∇ ◦ δ − δ0 ◦ i∇)ω = d∇ω ∈ Ω0,

[i∇, iY ]ω := (i∇ ◦ iY − iY ◦ i∇)ω = 0 ∈ Ω0,

[i∇, LX]ω := (i∇ ◦ LX − LX ◦ i∇)ω = i[[H∇,X]]ω ∈ Ω0.

Proof First we prove that i∇ : Ω→ Ω0 satisfies the “Leibniz rule”

(4.2) i∇(λω) = λ · i∇ω + iH∇λ · ω,
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λ ∈ Λ(P), ω ∈ Ω. For ρ ∈ Λ(P), denote ρ•,p∇ :=
∑

q p
q,p
∇ (ρ), so that ρ =

∑
p ρ
•,p
∇ .

Notice that for ω ∈ Ω and λ ∈ Λ(P), we have ω = ω•,n∇ + ω•,n−1
∇ so that

i∇(λω) = p•,n∇ (λω) = λl,0
∇ω
•,n
∇ + λ•,1∇ ω

•,n−1
∇ = λ · i∇ω + λ•,1∇ · ω

•,n−1
∇ .

Moreover, iH∇λ =
∑

p iH∇λ
•,p
∇ =

∑
p pλ•,p∇ , which in turn implies λ•,p∇ = iH∇λ −∑

p>1 pλ•,p∇ . Therefore

i∇(λω) = λ · i∇ω + λ•,1∇ · ω
•,n−1
∇

= λ · i∇ω + iH∇λ · ω
•,n−1
∇ −

∑
p>1

pλ•,p∇ ω•,n−1
∇

= λ · i∇ω + iH∇λ · ω.

In view of (4.2), the above defined operators [i∇, δ], [i∇, iY ], [i∇, LX] : Ω → Ω0,
satisfy analogous “Leibniz rules”:

[i∇, δ](λω) = d∇λ · ω + (−)lλ · [i∇, δ](ω),

[i∇, iY ](λω) = λ · [i∇, iY ](ω),

[i∇, LX](λω) = i[[H∇,X]]λ · ω + λ · [i∇, LX](ω).

(4.3)

Since Ω is generated by Λn−1 as a Λ(P)-module, in view of (4.3), it is enough to
prove (4.1) for ω ∈ Λn−1. In this case

[i∇, δ]ω = i∇dω = (dω)•,n∇ = d∇ω,

[i∇, iY ]ω = 0,

[i∇, LX]ω = i∇LXω = (LXω)•,n∇ = 0 = i[[H∇,X]]ω.

We now discuss the interaction between affine forms and bundle morphisms. Let
α ′ : P ′ → M be another fiber bundle and let G : P → P ′ be a bundle morphism.
Clearly, G preserves the ideals Λp, p ≥ 0, i.e., G∗

(
Λp(P ′, α ′)

)
⊂ Λp(P, α). In par-

ticular,

G∗
(

Ω(P ′, α ′)
)
⊂ Ω(P, α) and G∗

(
Ω0(P ′, α ′)

)
⊂ Ω0(P, α).

We conclude that the quotient map which, abusing the notation, we again denote by
G∗ : Ω(P ′, α ′) → Ω(P, α), is well defined. Now, consider G-compatible connections
∇ ∈ C(P, α) and∇ ′ ∈ C(P ′, α ′). It is easy to show that

G∗ ◦ i∇ ′ = i∇ ◦ G∗ : Ω(P ′, α ′) −→ Ω0(P, α).
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4.2 Cohomology

Remark 4.3 (See [46]) In the following we denote by F the abstract fiber of α.
Notice that, for any q ≥ 0, V Hq ≡ V Hq(P, α) := Hq(V Λ, dV ) is the A0-module
of sections of a (pro-finite) vector bundle αq : Pq → M over M whose abstract fiber
is Hq(F). Moreover, αq is endowed with a canonical flat connection ∇q (∇q is a
smooth analogue of Gauss–Manin connection in algebraic geometry). Correspond-
ingly, there is a de Rham-like complex

· · · −→ Λp−1 ⊗A0 V Hq dp−1,q
1−−−→ Λp ⊗A0 V Hq dp,q

1−−→ · · · ,

whose cohomology we denote by3

E•,q2 :=
⊕

p
Ep,q

2 , Ep,q
2 := H p

(
Λ(M)⊗A0 V Λq, d•,q1

)
, q ≥ 0.

It can be proved that, if α is trivial or M is simply connected, then there is a (generi-
cally non-canonical), isomorphism

Ep,q
2 ≈ H p(M)⊗Hq(F), p, q ≥ 0.

Finally, notice also that, for any q ≥ 0,

Hq(Ω0, δ0) ' Λn(M)⊗A0 V Hq,

Hq(Ω, δ) ' Λn−1(M)⊗A0 V Hq.

Proposition 4.4 Let α : P → M be a fiber bundle. Then, for any q ≥ 0, there exists a
short exact sequence of vector spaces

0 −→ coker dn,q−1
1 −→ Hq(Ω, δ) −→ ker dn−1,q

1 −→ 0.

In particular, Hq(Ω, δ) ≈ coker dn,q−1
1 ⊕ ker dn−1,q

1 = En,q−1
2 ⊕ ker dn−1,q

1 .

Proof Consider the short exact sequence of complexes

0 −→ Ω0 −→ Ω −→ Ω −→ 0,

and the associated long sequence in cohomology

(4.4) · · · −→ Hq−1(Ω, δ)
∂
−→ Hq(Ω0, δ0) −→ Hq(Ω, δ) −→ Hq(Ω, δ)

∂
−→ · · · .

We already commented in the above remark that for any q, Hq(Ω0, δ0) is identified
with Λn(M) ⊗A0 V Hq and Hq(Ω, δ) is identified with Λn−1(M) ⊗A0 V Hq. Similarly,
it is easy to show that the connecting operator

∂ : Hq−1(Ω, δ) −→ Hq(Ω0, δ0)

3Similarly as above, these notations are motivated by the fact that the differentials d•,q1 (resp. the vector
spaces E•,q

2 ) are the ones in the first term (resp. are rows of the second term) of the (cohomological)
Leray–Serre spectral sequence of the fiber bundle α [46].
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is identified with the de Rham-like differential

dn−1,q
1 : Λn−1(M)⊗A0 V Hq −→ Λn(M)⊗A0 V Hq.

The thesis then follows from exactness of (4.4).

Corollary 4.5 If F is connected, then H0(Ω, δ) ' ker dn−1
M ,

dn−1
M : Λn−1(M) −→ Λn(M)

being the last de Rham differential of M.

Proof If F is connected, then V H0 ' A0 and dn−1,0
1 is identified with dn−1

M .

Corollary 4.6 Let q ≥ 0 and ω ∈ Ωq be δ-closed, i.e., δω = 0. Then,

(1) if q = 0, ω is locally of the form α∗(η) for some η ∈ Λn−1(M),
(2) if q > 0, then ω is locally δ-exact, i.e., ω is locally of the form δθ, θ being a local

element in Ωq−1.

Proof If F is contractible, then V Hq = 0, and therefore Hq(Ω, δ) = 0, for all q > 0.

Let ω ∈ Ω and θ ∈ Ω be such that ω = δθ. Then θ will be called a potential of ω.

5 PD Hamiltonian Systems

5.1 PD Hamiltonian Systems and PD Hamilton Equations

In this section we introduce what we think should be understood as the partial dif-
ferential, i.e., field theoretic analogue of a Hamiltonian (mechanical) system on an
abstract symplectic manifold.

Let α : P → M be as in the previous section and let ω ∈ Ω2(P, α) be such that
δω = 0. Put

kerω := {Y ∈ V D | iYω = 0}, kerω := {Y ∈ V D | iYω = 0},

Kerω := {∇ ∈ C | i∇ω = 0}, Kerω := {Z ∈ V D⊗A Λ1 | iZω = 0}.

Since ω is closed, both kerω and kerω are modules of smooth sections of involutive
α-vertical distributions Dω and Dω on P, where, for y ∈ P,

Dω
y := {ξ ∈ V yP | iξωy = 0}, Dω

y := {ξ ∈ V yP | iξωy = 0}.

Similarly, Kerω is a sub-module in V D⊗A Λ1. As a minimal regularity requirement,
assume that Dω has got constant rank r. Then, it is easy to check that, as a conse-
quence, Kerω is the module of sections of a smooth vector bundle $ : W → P. For
y ∈ P, denote r(y) = dim Dω

y . In general, r(y) will change from point to point
y ∈ P. However, we are proving in brief that r(y) cannot change that much. First of
all, since obviously Dω ⊂ Dω , we have r(y) ≤ r for all y ∈ P. Now, for y ∈ P, denote

Kerωy := {c ∈ α−1
1,0 (y) | icωy = 0}.

Then Kerωy is either empty or an affine space modeled over $−1(y) (see also Theo-
rem 4 of [20]).
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Proposition 5.1 For any y ∈ P, r − r(y) ≤ 1.

Proof Let y ∈ P and suppose r(y) < r. If ξ ∈ Dω
y then (see Remark 4.1) iξωy =

iξωy = 0, so that iξωy ∈ Ω1
0|y = Λn|y . Then consider the map γy : Dω

y 3 ξ 7−→
γy(ξ) := iξωy ∈ Λn|y . Since r(y) < r, γy is surjective and the sequence of vector

spaces 0 −→ Dω
y → Dω

y

γy

−→ Λn|y → 0 is exact. Since Λn|y is 1-dimensional, it
follows that r − r(y) = 1.

The following proposition characterizes the case r(y) = r.

Proposition 5.2 Let ω be as above. Then r(y) = r if and only if Kerωy 6= ∅.

Proof The result is nothing more than an application of the Rouché–Capelli theo-
rem. We here propose a dual proof. Let ξ ∈ V yP be given by ξ = ξa∂a|y . Then
ξ ∈ Dω

y if and only if

(5.1) ωi
ab(y)ξa = 0, a = 1, . . . ,m, i = 1, . . . , n.

Similarly, ξ ∈ Dω
y if and only if they are satisfied both (5.1) and

(5.2) ωa(y)ξa = 0.

Therefore, Dω
y = Dω

y if and only if equation (5.2) linearly depends on equations (5.1),

i.e., if and only if there are real numbers hb
i , b = 1, . . . ,m, i = 1, . . . , n, such that

ωa(y) = ωi
ab(y)hb

i , a = 1, . . . ,m.

Now, let c ∈ α−1
1,0 (y) be given by ya

i (c) = − 1
2 ha

i . Then icωy is given by

icωy =
(
−2ωi

ba(y)ya
i (c) + ωa(y)

)
dyadnx|y

= −
(
ωi

ab(y)hb
i − ωa(y)

)
dyadnx|y

= 0.

Definition 5.3 A PD prehamiltonian system on the fiber bundle α : P → M is a δ-
closed element ω ∈ Ω2(P, α). A PD Hamiltonian system on α is a PD prehamiltonian
system ω such that kerω = 0 (and, therefore, kerω = 0 as well).

Let θ ∈ Ω1 be locally given by θ = θi
adyadn−1xi−Hdnx, . . . , θi

a, . . . ,H being local
functions on P. Then δθ is locally given by

δθ = ∂[aθ
i
b]dyadybdn−1xi − (∂aH + ∂iθ

i
a)dyadnx.

Similarly, let ω ∈ Ω2 and Y ∈ V D be locally given by ω = ωi
abdyadybdn−1xi +

ωadyadnx and Y = Y a∂a, respectively. Then δω, iYω and iYω are locally given by

δω = ∂[aω
i
bc]dyadybdycdn−1xi + (∂iω

i
ab + ∂[aωb])dyadybdnx,

iYω = 2ωi
abY adybdn−1xi + ωaY adnx,

iYω = 2ωi
abY adV yb ⊗ dn−1xi ,
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so that ω is a PD prehamiltonian system if and only if

(5.3) ∂[aω
i
bc] = 0, ∂iω

i
ab + ∂[aωb] = 0,

or, which is the same (see Corollary 4.6),

(5.4) ωi
ab = ∂[aθ

i
b], ωa = −∂aH − ∂iθ

i
a,

for some . . . , θi
a, . . . ,H local functions on P. Moreover, ω is a PD Hamiltonian sys-

tem if and only if

(5.5) ωi
abY a = 0 =⇒ Y a = 0.

In its turn (5.5) implies ωa = ωi
ab f b

i for some . . . , f b
i , . . . local functions on P (see

the proof of Proposition 5.2).
Let ω be a PD prehamiltonian system on α, and let σ : U → P be a local section

of α, U ⊂ M being an open subset. The first jet prolongation σ̇ : U → J1α of σ
may be interpreted as a “connection in α along σ”, i.e., a section of the restricted
bundle α1,0|σ : J1α|σ → M. Moreover, elements in Ω|σ may be interpreted as affine
maps from C|σ to Ω0|σ ' V Λ|σ ⊗A0 Λn(M) whose linear part is in Ω|σ ' V Λ|σ ⊗A0

Λn−1(M). Namely, an element ♦ ∈ C|σ can “be inserted” into an element ρ|σ ∈ Ω|σ ,
ρ ∈ Ω, giving an element i♦ρ|σ ∈ Ω0|σ . Thus, we can search for local sections σ of α
such that

(5.6) iσ̇ω|σ = 0.

Definition 5.4 Equations (5.6) are called the PD Hamilton equations (of the PD
prehamiltonian system ω).

If ω is locally given by ω = ωi
abdyadybdn−1xi + ωadyadnx, then the associated

PD Hamilton equations are locally given by

(5.7) 2ωi
ab∂i ya − ωb = 0.

Conversely, a system of PDEs in the form (5.7) is a PD Hamilton equation for some
PD prehamiltonian (resp. PD Hamiltonian) system if and only if coefficients ωi

ab, ωb

satisfy (5.3) (or, which is the same, (5.4)) (resp. (5.3) and (5.5)). Notice that, in view
of (5.7), a general PD prehamiltonian system ω encodes “kinematical information”,
which can be identified with ω, and “dynamical information”, which can be identified
with the specific choice of ω in the class of those PD Hamiltonian systems with linear
part ω (see the comment at the end of Section 3.3, Remark 5.10 and Example 5.11).

Searching for solutions of PD Hamilton equations of a PD prehamiltonian sys-
tem ω, we could proceed in two steps:

(i) search for a connection∇ ∈ Kerω,
(ii) search for n-dimensional integral submanifolds of the horizontal distribu-

tion H∇P.
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However, a solution to the first step of the above-mentioned procedure exists if
and only if kerω = kerω, which is not always the case. Therefore, in general, we
are led to weaken (i) and search for connections ∇ ′ in a subbundle P ′ ⊂ P such
that i∇ ′ω|P ′ = 0. As shown in the next proposition, there is always an “algorithmic”
way to find a maximal subbundle ᾰ : P̆ → M of α such that the affine equation
i∇̆ω|P̆ = 0, ∇̆ ∈ C(P̆, ᾰ) admits at least one solution. We will refer to the above-
mentioned “algorithm” as the PD constraint algorithm (see also [11–13, 15, 29]).

Proposition 5.5 Let ω be as above and Kerω = ∅ (i.e., Dω
y 6= Dω

y for some y ∈ P).
Under suitable regularity conditions on ω (to be specified in the proof), there exists a
(maximal) subbundle P̆ ⊂ P such that i∇̆ω|P̆ = 0 for some ∇̆ ∈ C(P̆, ᾰ).

Proof For s = 1, 2, . . . , define recursively

P(s) := {y ∈ P(s−1) | Kerωy ∩ (α(s−1))
−1
1 (y) 6= ∅} ⊂ P,

α(s) := α|P(s) : Ps −→ M,

where P(0) := P, α(0) := α (in particular P1 = {y ∈ P | r(y) = r}). We assume
that α(s) : P(s) → M is a smooth (closed) subbundle for all s (regularity conditions).
Then, for dimensional reasons, there exists s such that P(s) = P(s) for all s ≥ s. Put
P̆ := P(s).

The subbundle ᾰ := α|P̆ : P̆ → M will be called the constraint subbundle. Notice
that P̆ can be empty (for instance when r(y) = r − 1 for all y ∈ P) and, in this case,
PD Hamilton equations do not possess solutions.

Corollary 5.6 Let ω be a PD prehamiltonian system on α and let σ be a solution of
the PD Hamilton equations. Then imσ ⊂ P̆.

Proof By induction on s, imσ ⊂ P(s) for all s = 1, 2, . . . .

The converse of the above corollary is, a priori, only true for n = 1. Namely, we
may wonder if for any y ∈ P̆ there is a solution σ of PD Hamilton equations such
that y ∈ imσ. We know that there is a connection ∇̆ in P̆ which is “a solution of
PD Hamilton equations up to first order”, i.e., i∇̆ω̆|P̆ = 0. n-dimensional integral
manifolds of the horizontal distribution H∇̆P̆ determined on P̆ by ∇̆ are clearly im-
ages of solutions of PD Hamilton equations. If n = 1, ∇̆ is trivially flat and Frobenius
theorem guarantees that for any y ∈ P̆ there is a solution “through y”. The same is a
priori untrue for n > 2. Integrability conditions on H∇̆P̆ will be discussed elsewhere.

5.2 PD Hamiltonian Systems and Multisymplectic Geometry à la Forger

Forger and Gomes have recently proposed a definition of multipresymplectic struc-
ture on a fiber bundle [20]. Their work aims to define such a structure so that

(1) the differential dΘ of the tautological n-form Θ on the affine adjoint bundle of
the first jet bundle (see the end of Section 3.3) is multisymplectic;

(2) every multipresymplectic structure is locally isomorphic to the pull-back of Θ
along a fibration (Darboux lemma).
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Since, in our opinion,

• [20] is the best motivated and established work about fundamentals of multisym-
plectic geometry,

• abstract fiber bundles play in [20] a similar role as in this paper,

we analyze in this subsection the relationship between PD prehamiltonian systems
and multipresymplectic structures à la Forger, referring to [20] for the main defini-
tion. Here we just mention two of the main results of [20] (which can eventually
be understood as definitions of polypresymplectic structure and multipresymplectic
structure on a fiber bundle, respectively).

Theorem 5.7 (Forger and Gomes I) Let α : P → M be a fiber bundle, xi be local co-
ordinates on M, i = 1, . . . , n = dim M, and ω ∈ Ω2. The form ω is a polypresymplectic
structure on α if and only if around every point of P, there are local fiber coordinates qA,
pi

A, z1 . . . , zs, for A = 1, . . . ,m, i = 1, . . . , n (so that dim P = n + m + mn + s) such
that ω is locally given by

ω = dV pi
AdV qA ⊗ dn−1xi .

Theorem 5.8 (Forger and Gomes II) Let α : P→ M be a fiber bundle, xi be local co-
ordinates on M, i = 1, . . . , n = dim M, and ω ∈ Ω2. The form ω is a multipresymplec-
tic structure on α if and only if around every point of P, there are local fiber coordinates
qA, pi

A, p, z1 . . . , zr, for A = 1, . . . ,m, i = 1, . . . , n (so that dim P = (n+1)(m+1)+r)
such that ω is locally given by

ω = dpi
AdqAdn−1xi − dpdnx.

Proposition 5.9 Let ω be a PD prehamiltonian system on α. The following two con-
ditions are equivalent:

(i) ω is a polypresymplectic structure and r(y) = r − 1 for all y ∈ P;
(ii) ω is a multipresymplectic structure.

Proof Recall that, in view of Proposition 4.4, ω is locally δ-exact. Suppose ω is
polypresymplectic and r(y) = r − 1 for all y ∈ P. Then r > 0 and, in view of
Theorem 5.7, (around every point in P) there are α-adapted local coordinates

xi , qA, pi
A, z

0, z1, . . . , zr−1,

such that, locally, ω = dV pi
AdV qA ⊗ dn−1xi (in particular, kerω is locally spanned by

the ∂/∂zα). Therefore, ω = δθ0, where θ0 := pi
AdV qA ⊗ dn−1xi is a local element

of Ω1. A general (local) potential of ω is then θ ′ ∈ Ω1 such that θ ′ = θ0 + dVν, ν
being a local element in Ω0 = Λn−1. The (local) potential θ := θ ′ − δν is locally in
the form θ = pi

AdqAdn−1xi − pdnx, where p is a local function on P. Therefore ω is
locally given by

ω = dpi
AdqAdn−1xi − dpdnx.

The module kerω is locally spanned by those local elements Y α ∂
∂zα in kerω such that

Y α ∂h
∂zα = 0. Since kerω 6= kerω, then ∂p

∂zα dzα 6= 0. Let, for instance, be ∂p
∂z0 6= 0.
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Then xi , qA, pi
A, p, z1, . . . , zr−1 is a new local coordinate system on P. In view of

Theorem 5.8, ω is then multipresymplectic.
On the other hand, let ω be multipresymplectic. Then ω is polypresymplectic.

Moreover, (around every point in P) there are α-adapted local coordinates

(5.8) xi , qA, pi
A, p, z1, . . . , zr

such that, locally, ω = dpi
AdqAdn−1xi − dpdnx and ω = dV pi

AdV qA ⊗ dn−1xi . This
shows that for all y ∈ P,

Dω
y =

〈
. . . ,

∂

∂zα

∣∣∣
y
, . . .

〉
6= Dω

y =
〈
. . . ,

∂

∂zα

∣∣∣
y
, . . . ,

∂

∂p

∣∣∣
y

〉
.

Remark 5.10 Let ω be a PD prehamiltonian system. First of all, notice that, if ω is
a multipresymplectic structure then, in view of Proposition 5.9, PD Hamilton equa-
tions of ω do not possess solutions. In this sense, multipresymplectic structures do
not contain any dynamical information.

Now, the proof of Proposition 5.9 also shows that ifω is a polypresymplectic struc-
ture and kerω = kerω, then ω is locally in the form

ω = dpi
AdqAdn−1xi − dHdnx

where ∂H
∂zα = 0, α = 1, 2, . . . , i.e., H is constant along the leaves of the distribution

Dω = Dω .

Example 5.11 Let ω ∈ Ω2 be a multisymplectic structure on α. In this case kerω =
0, while Dω is a 1-dimensional (involutive) distribution. Leaves of Dω are submani-
folds in the fibers of α. Denote by P the set of leaves of Dω . There is an obvious pro-
jection α : P → M. Suppose that α : P → M is a smooth fiber bundle and p : P → P
a smooth submersion (which is always true locally). There is a distinguished class
of (local) PD Hamiltonian systems on α. Indeed, let U ⊂ P be an open subbundle
and let H : U → P be a local section of p. Then ω ′ := H ∗(ω) ∈ Ω2(U , α) is a
PD Hamiltonian system. In particular, if we choose coordinates on P as in (5.8) (here
r = 0), then xi , qA, pi

A are coordinates on P, H is given by

H ∗(p) = H,

H being a local function on P, and ω ′ is locally given by

ω ′ = dpi
AdqAdn−1xi − dHdnx,

in particular θ ′ := pi
AdqAdn−1xi−Hdnx is a local potential of ω ′. Finally, PD Hamil-

ton equations of ω ′ read

qA
i =

∂H

∂pi
A

,

pi
A,i = − ∂H

∂qA
,

which are de Donder–Weyl equations (see, for instance, [26]).
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5.3 PD Hamiltonian Systems and Variational Calculus

We show in this subsection that PD Hamilton equations are locally variational. First
of all, an element θ ∈ Ω1 may be understood as a (fiber-wise affine) horizontal n-
form over J1α, i.e., as an element L θ ∈ Λn( J1α, α1) via

L θ
c := icθy , c ∈ J1α, y = α1,0(c) ∈ P.

In its turn L θ is a 1-st order Lagrangian density in the fiber bundle α determining
an action functional which we denote by Sθ =

∫
L θ. If θ is locally given by θ =

θi
adyadn−1xi −Hdnx, with θi

a, H being local functions on P, then L θ is locally given
by L θ = Lθdnx, where Lθ is the local function on J1α given by

Lθ = (θi
b yb

i −H).

In particular, if θ = δν for some ν ∈ Ω0 = Λn−1 locally given by ν = ν idn−1xi , then

(5.9) Lθ = (∂i + ya
i ∂a)ν i ,

i.e., Lθ is a total divergence.

Proposition 5.12 Let ω ∈ Ω2 be a δ-exact PD prehamiltonian system. Then the
PD Hamilton equations ofω coincide with Euler–Lagrange equations associated with the
action Sθ :=

∫
L θ, where θ ∈ Ω1 is the opposite of any potential of ω, i.e., −δθ = ω.

Moreover, if H1(Ω, δ) = 0 then Sθ is independent of the choice of θ and does only depend
on ω.

Proof The first part of the proposition can be proved in local coordinates. Indeed,
we compute variational derivatives of Lθ,

δ

δyb
Lθ := ∂bLθ − (∂i + ya

i ∂a)
∂

∂yb
i

Lθ

= ya
i (∂bθ

i
a − ∂aθ

i
b)− ∂aH − ∂iθ

i
a

= −2ωi
ab ya

i + ωb,

where we used (5.4). To prove the second part of the proposition, use (5.9) to con-
clude that, for ν ∈ Ω0, δLδν/δya = 0.

Remark 5.13 Condition H1(Ω, δ) = 0 depends on the topology of the fiber bun-
dle α. It is satisfied, for instance, if Hn(M) = 0 and H1(F) = 0, F being, as above,
the abstract fiber of α. Indeed, if H1(F) = 0 then H1(Ω, δ) = 0 so that, the first part
of the exact sequence (4.4) reads

0 −→ H0(Ω, δ) −→ Λn−1(M)
dn−1

M−−→ Λn(M) −→ H1(Ω, δ) −→ 0

and H1(Ω, δ) ' Hn(M) = 0.
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6 PD Noether Symmetries and Currents

6.1 PD Noether Theorem and PD Poisson Bracket

The multisymplectic analogues of Hamiltonian vector fields and Poisson bracket in
symplectic geometry have been extensively investigated [21, 22, 24, 25, 36, 38]. We
here propose the natural definitions for general PD Hamiltonian systems. Notice
that, even if they look formally identical to (or possibly less general than) the ones
proposed in [21, 22, 24, 38], our definitions actually have a dynamical content, not
only a kinematical one (see Remark 5.10), so that, for instance, we can prove a PD
version of the (Hamiltonian) Noether theorem. That is why, e.g., we prefer to speak
about PD Noether symmetries rather than Hamiltonian (multi)vector fields [23].

Let ω be a PD prehamiltonian system on the bundle α : P → M. In the following
we assume α to have connected fiber.

Definition 6.1 Let Y ∈ V D and f ∈ Ω0. If iYω = δ f , then Y and f are said to
be a PD Noether symmetry and a PD Noether current of ω (relative to each other),
respectively.

Denote by S (ω) and C (ω) the sets of PD Noether symmetries and PD Noether
currents of ω, respectively. A PD Noether symmetry Y (relative to a PD Noether
current f ) is a symmetry of ω in the sense that

LYω = iY δω + δiYω = δδ f = 0.

The next proposition clarifies in what sense a PD Noether current is a conserved
current for ω.

Proposition 6.2 (PD Noether theorem) Let Y ∈ S (ω) and f ∈ C (ω) be a PD
Noether symmetry and a PD Noether current of ω relative to each other. Then σ∗( f ) ∈
Λn−1(M) is a closed form for every solution σ of PD Hamilton equations.

Proof First of all, let % ∈ Ω1 and let τ be a (local) section of α. It is easy to show (for
instance, using local coordinates) that τ∗(%) = i τ̇%|τ ∈ Λn(M). Then

dσ∗( f ) = σ∗(d f ) = σ∗(δ f ) = iσ̇δ f |σ
= iσ̇iYω|σ = iY |σ iσ̇ω|σ = 0.

We are now in the position to introduce a Lie bracket among PD Noether currents.

Proposition 6.3 Let Y1,Y2 ∈ S (ω) be PD Noether symmetries relative to the PD
Noether currents f1, f2 ∈ C (ω), respectively. Then [Y1,Y2] ∈ S (ω) and f := LY1 f2 ∈
C (ω), and they are relative to each other. Moreover, f is independent of the choice of Y1

among the PD Noether symmetries relative to the PD Noether current f1.

Proof Compute

δLY1 f2 = LY1δ f2 = LY1 iY2ω

= i[Y1,Y2]ω + iY2 LY1ω = i[Y1,Y2]ω.
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Now, let V ∈ kerω. Then LV f2 = iV δ f2 = iV iY2ω = 0. This proves the second part
of the proposition.

Let Y1,Y2, f1, f2 be as in the above proposition.

Proposition 6.4 The R-bilinear map

C (ω)× C (ω) 3 ( f1, f2) 7−→ { f1, f2} := LY1 f2 ∈ H(ω),

Y1 being a PD Noether symmetry relative to f1, is a Lie bracket.

Proof Let Y2 ∈ S (ω) be a PD Noether symmetry relative to f2 ∈ C (ω). Skew-
symmetry of {·, ·} immediately follows from

{ f1, f2} = LY1 f2 = iY1δ f2 + δiY1 f2 = iY1 iY2ω.

Now we check the Leibniz rule. Let Y3 ∈ S (ω) and f3 ∈ C (ω) be another pair of
PD Noether symmetry, PD Noether current relative to each other. Then{

f1, { f2, f3}
}

= LY1{ f2, f3} = LY1 LY2 f3

= L[Y1,Y2] f3 + LY2 LY1 f3 =
{
{ f1, f2}, f3

}
+
{

f2, { f1, f3}
}
.

PD Noether symmetries and PD Noether currents of a PD Hamiltonian system
constitute very small Lie subalgebras of the Lie algebras of higher symmetries and
conservation laws of PD Hamilton equations, for which fully satisfactory definitions
have been given and many infinite-jet based computational techniques have been de-
veloped [4]. Nevertheless, it is worthwhile to give Definition 6.1 and to carefully
analyze it, independently of infinite jets, in view of the possibility of developing a
“(multi)symplectic theory” of higher symmetries and conservation laws (see, for in-
stance, [56]). In Section 7 we propose some specific examples.

Finally, notice that, in general, neither is a PD Noether current uniquely deter-
mined by the relative PD Noether symmetry nor vice versa (unless kerω = 0). How-
ever, “non-trivial PD Noether symmetries” are in one-to-one correspondence with
“non-trivial PD Noether currents” in the following sense. Clearly, kerω ⊂ S (ω)
and H0(Ω, δ) ⊂ C (ω). We will call elements in kerω gauge PD Noether symmetries
(see below) and elements in H0(Ω, δ) (i.e., closed (n − 1)-forms on M, see Corol-
lary 4.5) trivial PD Noether currents.

Remark 6.5 It is easy to see that kerω and H0(Ω, δ) are ideals in the Lie alge-
bras S (ω) and C (ω), respectively. Let S (ω) := S (ω)/ kerω and let C (ω) :=
C (ω)/H0(Ω, δ) be the quotient Lie algebras. Then the map

S (ω) 3 Y + kerω 7−→ f + H0(Ω, δ) ∈ C (ω),

where Y ∈ S (ω) and f ∈ C (ω) are relative to each other, is a well-defined isomor-
phism of Lie algebras. It is natural to call elements in S (ω) and C (ω) non-trivial PD
Noether symmetries and non-trivial PD Noether currents, respectively. Indeed, ele-
ments in kerω are trivial symmetries in that they are infinitesimal gauge transforma-
tions (see next subsection), and elements in H0(Ω, δ) are trivial conserved currents
in that they are conserved currents for every PD prehamiltonian system ω, indepen-
dently of ω.
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6.2 Gauge Reduction of PD Hamiltonian Systems

From a physical point of view, elements in kerω are infinitesimal gauge transfor-
mations and therefore should be factored out via a reduction of the system. In this
section we assume kerω = kerω or, what is the same, Kerω 6= ∅. As a further regu-
larity condition we assume that the leaves of Dω = Dω form a smooth fiber bundle P̃
over M, whose projection we denote by α̃ : P̃ → M, in such a way that the canonical
projection p : P→ P̃ is a smooth bundle. The last condition is always fulfilled at least
locally. Notice, also, that, by construction, p has connected fibers.

Theorem 6.6 There exists a unique PD Hamiltonian system ω̃ in α̃ such that

(i) ω = p∗(ω̃),
(ii) ker ω̃ = ker ω̃ = 0, and
(iii) a local section σ of α is a solution of the PD Hamilton equation of ω if and only if

p ◦ σ (which is a local section of α̃) is a solution of PD Hamilton equations of ω̃.

Proof Let ∇̃ ∈ C(P̃, α̃). There exists a (non-unique) connection ∇ ∈ C(P, α) such
that ∇ and ∇̃ are p-compatible. To prove this, choose a connection � in p and
lift the planes of ∇̃ to P by means of �. It is easy to show that the so-obtained
distribution on P defines a connection∇ in α with the required property. Similarly,
every vector field X̃ ∈ V D(P̃, α̃) can be lifted to a (non-unique) p-projectable vector
field X ∈ V D(P, α) such that X̃ is its projection. Then X ∈ DV (P, p). Consider
η := ω(∇)(X) ∈ Ω0(P, α). We will prove that LY η = 0 for any Y ∈ V D(P, p).
Indeed, let Y ∈ V D(P, p). Then [Y,X] ∈ V D(P, p). Similarly

[[Y,H∇]] ∈ Λ1(P, α)⊗V D(P, p) ⊂ Λ1(P, α)⊗V D(P, α).

Now, V D(P, p) = kerω by construction, and therefore

LY η = LY iX i∇ω = [LY , iX]i∇ω + iXLY i∇ω

= i[Y,X]i∇ω + iX i∇LYω + iX[LY , i∇]ω

= i∇i[Y,X]ω + iX i[[Y,H∇]]ω = 0.

Since fibers of p are connected we conclude that η = p∗(η̃) for a unique η̃ ∈ Ω0(P̃, α̃).
Put

ω̃(∇̃)(X̃) := η̃,

so that ω̃ is a well-defined element in Ω2(P̃, α̃). Indeed, let ∇ ′ ∈ C(P, α) be also
p-compatible with ∇̃ and let X ′ ∈ V D(P, α) be another p-projectable vector field
projecting onto X̃. Then ∇ ′ − ∇ ∈ Λ1(P, α) ⊗ V D(P, p) and X ′ − X ∈ V D(P, p).
Therefore,

ω(∇ ′)(X ′) = iX ′ i∇ ′ω = iX ′ i∇ω + iX ′ i∇ ′−∇ω

= iX i∇ω + iX ′−X i∇ω = iX i∇ω + i∇iX ′−Xω = ω(∇)(X).

Moreover, ω = p∗(ω̃) by construction.
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Let us compute ker ω̃. Thus, let X̃ ∈ V D(P̃, α̃) be such that iX̃ω̃ = 0 and let
X ∈ V D(P, α) be as above. Then iXω = p∗(iX̃ω̃) = 0. This shows that X ∈ V D(P, p)

and then X̃ = 0.
Finally, let σ be a local section of α, σ̃ := p ◦ σ, X̃ ∈ V D(P̃, α̃) and let X be as

above. Compute

(iσ̃· ω̃|σ̃)(X̃|σ̃) = iσ̃·(iX̃ω̃)|σ̃ = σ̃∗(iX̃ω̃) = (σ∗ ◦ p∗)(iX̃ω̃)

= σ∗(iXω) = iσ̇(iXω)|σ = (iσ̇ω|σ)(X|σ).

This shows that iσ̇ω|σ = 0 if and only if iσ̃· ω̃|σ̃ = 0.

Proposition 6.7 There are natural isomorphisms of Lie algebras

S (ω) ' S (ω̃), C (ω) ' C (ω̃).

Proof First of all let f ∈ C (ω) and X ∈ S (ω) be relative to each other. Then

f = p∗( f̃ ) for some f̃ ∈ Ω0(P̃, α̃) and X is p-projectable. Indeed, for all Y ∈ kerω,

LY f = iY δ f + δiY f = iY iXω = i[Y,X]ω = 0.

Moreover,

p∗(δ f̃ ) = δp∗( f̃ ) = δ f = iXω = p∗(iX̃ω̃),

where X̃ denotes the p-projection of X, and, therefore, δ f̃ = iX̃ω̃, i.e., f̃ ∈ C (ω̃) and

X̃ ∈ S (ω̃) is a PD Noether symmetry relative to it. Thus, maps

S (ω) 3 X + kerω 7−→ X̃ ∈ S (ω̃),(6.1)

C (ω) 3 f 7−→ f̃ ∈ C (ω̃)(6.2)

are well defined. Conversely, let X̃1 ∈ S (ω̃), f̃1 ∈ C (ω̃) be relative to each other,
X1 ∈ V D(P, α) be any p-projectable vector field, X̃1 ∈ V D(P̃, α̃) be its projection,

and let f1 := p∗( f̃1) ∈ Ω0(P, α). Then X1 ∈ S (ω) and f1 ∈ C (ω) is a PD Noether
current relative to it. Indeed,

iX1ω = p∗(iX̃1
ω̃) = p∗(δ f̃1) = δp∗( f̃1) = δ f1.

We conclude that (6.1) and (6.2) are inverted by

S (ω̃) 3 X̃1 7−→ X1 + kerω ∈ S (ω),

C (ω̃) 3 f̃1 7−→ f1 ∈ C (ω),

respectively.

https://doi.org/10.4153/CJM-2012-055-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-055-0


1190 L. Vitagliano

7 Examples

7.1 Non-Degenerate Examples

Let α : R2n+1 3 (x1, . . . , xn, u, u1, . . . , un) 7−→ (x1, . . . , xn) ∈ Rn, n > 1. Consider
T,V ∈ C∞(R2n+1) of the form T = T(u1, . . . , un) and V = V (u), respectively. The
form

ω :=
∂2T

∂ui∂u j
dui(dudn−1x j − u jd

nx)−V ′dudnx,

is a PD prehamiltonian system on α (here and in what follows a prime “ ′ ” denotes
differentiation with respect to u). The associated PD Hamilton equations read

∂2T

∂ui∂u j
∂ jui + V ′ = 0, ∂iu = ui ,

and are in turn equivalent to

(7.1)
∂2T

∂ui∂u j
∂2

i ju + V ′ = 0, ∂iu = ui ,

∂2
i j := ∂i∂ j , i, j = 1, . . . , n. Moreover, if

det
( ∂2T

∂ui∂u j

)
6= 0,

then ω is a PD Hamiltonian system. We will only consider this case in the following.

Thus, put T i j := ∂2T
∂ui∂u j

, i, j = 1, . . . , n, and let (Ti j) be the inverse matrix of (T i j).

As examples, we note the following:

(1) For T = 1
2 g i juiu j ,

(g i j) =


−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,

(resp., g i j = δi j , i, j = 1, . . . , n), (7.1) reduces to the wave equation (resp.,
the Poisson equation) with a u-dependent potential V (including the f -Gordon
equation as a particular example, if n = 2 and f = −V ′).

(2) For n = 2, T =
√

1 + g i juiu j , g i j = δi j , i, j = 1, 2, and V = 0, (7.1) reduces
to the equation for minimal surfaces in R3 transversal to the projection R3 3
(x1, x2, u) 7−→ (x1, x2) ∈ R2.

Let us search for PD Noether symmetries and currents of ω. Let Y = U ∂
∂u +

Ui
∂
∂ui ∈ VD and let f = f idn−1xi ∈ Ω0. Then

iYω = T i j(Uidu−U dui)dn−1x j − (T i juiU j + V ′U )dnx,

δ f = ∂i f idnx +
∂

∂u
f idudn−1xi +

∂

∂uk
f idukdn−1xi .
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Recall that Y and f are a PD Noether symmetry and a PD Noether current relative to
each other, respectively, if and only if iYω = δ f , i.e.,

∂i f i + T i juiU j + V ′U = 0,(7.2)

∂

∂u
f i − T i jU j = 0,(7.3)

∂

∂u j
f i + T i jU = 0.(7.4)

It follows from (7.4) that ∂
∂u j

f i = ∂
∂ui

f j , i, j = 1, . . . , n, and then

∂2

∂uk∂u j
f i =

∂2

∂uk∂ui
f j , i, j, k = 1, . . . , n.

Now,

∂2

∂uk∂u j
f i =

∂

∂uk

∂

∂u j
f i = − ∂

∂uk
(T i jU )

= − ∂3T

∂uk∂ui∂u j
U − T i j ∂

∂uk
U .

Similarly,

∂2

∂uk∂ui
f j =

∂

∂ui

∂

∂uk
f j = − ∂3T

∂ui∂u j∂uk
U − T jk ∂

∂ui
U .

Therefore,

T i j ∂

∂uk
U − T jk ∂

∂ui
U = 0

Contracting with Ti j we find (n− 1) ∂
∂ui

U = 0 and, therefore,

U = U (x1, . . . , xn, u),

so that (7.4) can be rewritten as

∂

∂u j

(
f i +

∂T

∂ui
U
)

= 0.

We conclude that

(7.5) f i = − ∂T

∂ui
U + Ai

for some Ai = Ai(x1, . . . , xn, u), i = 1, . . . , n. Notice that (7.3) can be used to
determine the U j ’s from the f i ’s via

U j = T ji
∂

∂u
f i .
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It remains to solve (7.2) which, in view of (7.5), reduces to

(7.6)
(
∂i + ui

∂

∂u

)
Ai − ∂T

∂ui

(
∂i + ui

∂

∂u

)
U + V ′U = 0.

We cannot continue solving (7.6) without further specifying T. In the following we
will only consider two special cases.

Case 1 T = 1
2 g i juiu j , (g i j) is a constant, nondegenerate, symmetric matrix with

inverse (gi j): In this case (7.6) reads

(7.7) ∂iA
i + V ′U +

( ∂

∂u
Ai − g i j∂ jU

)
ui −

(
g i j ∂

∂u
U
)

uiu j = 0.

The left-hand side of (7.7) is polynomial in u1, . . . , un. Thus, all the corresponding
coefficients must vanish, i.e.,

∂

∂u
U = 0,(7.8)

∂

∂u
Ai − g i j∂ jU = 0,(7.9)

∂iA
i + V ′U = 0.(7.10)

From (7.8), U = U (x1, . . . , xn) and then from (7.9), ∂2

∂u2 Ai = 0, i = 1, . . . , n, which
in turn implies, using (7.9) again,

Ai = (g i j∂ jU )u + Bi

for some Bi = Bi(x1, . . . , xn). Finally, (7.10) implies

(g i j∂2
i jU )u + ∂iB

i + V ′U = 0,

and differentiating once more with respect to u,

g i j∂2
i jU + V ′ ′U = 0.

Since U doesn’t depend on u, we have the following cases:

(a) If V ′ ′ ′ 6= 0, then U = 0 so that

f i =
1

2
∂ jB

ji , U j = 0

for some Bi j = −B ji = Bi j(x1, . . . , xn), i.e.,

Y = 0 and f = dβ,

β = B jidn−2x ji , where dn−2x ji := i∂ j d
n−1xi , i, j = 1, . . . , n. Therefore, ω does

not possess PD Noether symmetries nor nontrivial PD Noether currents.
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(b) If V ′ ′ ′ = 0, then V = 1
2µu2 for some constant µ and

g i j∂2
i jU + µU = 0, f i = g i j(u∂ jU − u jU ) +

1

2
∂ jB

ji , U j = ∂ jU ,

for some Bi j = −B ji = Bi j(x1, . . . , xn). Thus,

Y = U
∂

∂u
+ ∂ jU

∂

∂u j
and f = g i j(u∂ jU − u jU )dn−1xi + dβ,

β = B jidn−2x ji , where U is any solution of the PD Hamilton equation

(7.11) g i j∂2
i ju + µu = 0.

Let us compute the PD Poisson bracket. Consider two solutions of (7.11), say
U1,U2, the corresponding PD Noether symmetries Y1,Y2 and associated PD
Noether currents f1, f2. Then

{ f1, f2} = LY1 f2 = g i j(U1∂ jU2 −U2∂ jU1)dn−1xi ,

which, as can be easily checked, is a trivial conservation law.

Case 2 n = 2, T =
√

1 + δi juiu j and V = 0: In this case, (7.6) reads

(7.12) τ 1/2
(
∂i + ui

∂

∂u

)
Ai = δi ju j

(
∂i + ui

∂

∂u

)
U ,

where τ = 1 + δi juiu j . Squaring both sides of (7.12) we get

τ
[(

∂i + ui
∂

∂u

)
Ai
] 2
−
[
δi ju j

(
∂i + ui

∂

∂u

)
U
] 2

= 0,

whose left-hand side is polynomial in u1, u2. Collecting homogeneous terms we get[( ∂

∂u
U
) 2
δi j −

( ∂

∂u
Ai
)( ∂

∂u
A j
)]

δkluiu jukul

+ 2δi j
[
δkl
( ∂

∂u
U
)

(∂lU )−
( ∂

∂u
Ak
)

(∂lA
l)
]

uiu juk

−
[
δi j(∂kAk)2 +

( ∂

∂u
Ai
)( ∂

∂u
A j
)
− δikδ jl(∂kU )(∂lU )

]
uiu j

+ 2(∂ jA
j)2
( ∂

∂u
Ai
)

ui + (∂iA
i)2 = 0.

(7.13)

All coefficients on the left-hand side of (7.13) must vanish. It follows that

∂

∂u
U = ∂1U = ∂2U = 0,

∂

∂u
A1 =

∂

∂u
A2 = 0, ∂1A1 + ∂2A2 = 0,

i.e., U is a constant while A1 = ∂2B, A2 = −∂1B for some B = B(x1, x2). Thus,

Y = U
∂

∂u
, f = Uτ−1/2(u2dx1 − u1dx2) + dB.

It is obvious that the PD Poisson bracket is also trivial in this case.
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7.2 A Degenerate, Constrained Example

The example in this subsection is taken from [33]. Let

α : R3m+2 × R+ 3 (q1, . . . , qm, s1, . . . , sm, t1 . . . , tm, s, t ; e) 7−→ (s, t) ∈ R2.

The form

ω := −dtαdqαds + dsαdqαdt − δαβ(etαdtβ − sαdsβ)dsdt − εdedsdt,

where ε := 1
2 (δαβtαtβ − 1), is a PD prehamiltonian system on α. The associated PD

Hamilton equations read

∂

∂t
tα +

∂

∂s
sα = 0,

∂

∂t
qα = eδαβtβ ,

∂

∂s
qα = −δαβsβ ,

ε = 0,

α = 1, . . . ,m, which are in turn equivalent to

e−1 ∂
2

∂t2
qα − ∂2

∂s2
qα = e−2

( ∂

∂t
qα
)( ∂

∂t
e
)
,

e2 = δαβ
( ∂
∂t

qα
)( ∂

∂t
qβ
)
,

tα = e−1δαβ
∂

∂t
qβ , sα = δαβ

∂

∂s
qβ .

Notice that Dω is generated by ∂
∂e , while

Dω
y =

{
0 for ε(y) 6= 0,〈
∂
∂e

∣∣
y

〉
for ε(y) = 0,

y ∈ P

we conclude that P(1) is the hypersurface defined by δαβtαtβ = 1. It is easy to see that,
actually, P̆ = P(1).

Let us search for PD Noether symmetries and currents of ω. Let Y = Qα ∂
∂qα +

Sα
∂
∂sα

+ Tα
∂
∂tα

+ E ∂
∂e ∈ V D and let f = αds + βdt ∈ Ω0. Then iYω = δ f if and only

if

(7.14)

∂

∂s
β − ∂

∂t
α = δβγ(sβSγ − etβTγ)− εE,

∂

∂qα
α = −Tα,

∂

∂qα
β = Sα,

∂

∂tα
α =

∂

∂sα
β = Qα

∂

∂sα
α =

∂

∂tα
β = 0,

∂

∂e
α =

∂

∂e
β = 0,
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α = 1, . . . ,m. Equations (7.14) can be easily solved and give quite large S (ω) and
C (ω). Namely,

α = Cαtα + A β = Cαsα + B,

and

Qα = Cα, Tα = −∂Cβ

∂qα
tβ −

∂A

∂qα
, Sα =

∂Cβ

∂qα
sβ +

∂B

∂qα
,

εE =
∂Cα

∂s
sα −

∂Cα

∂t
tα +

∂B

∂s
− ∂A

∂t

− δαβ
[

sα
( ∂Cγ

∂qβ
sγ +

∂B

∂qβ

)
+ etα

( ∂Cγ

∂qβ
tγ +

∂A

∂qβ

)]
where A,B, . . . ,Cα, . . . ,Dαβ , . . . , Eα, . . . are arbitrary functions of the only s, t, qβ .

Compute the PD Poisson bracket. Let f1, f2 be PD Noether currents determined by
functions A1,B1, . . . ,Cα

1 , . . . and A2,B2, . . . ,Cα
2 , . . . respectively. A straightforward

computation shows that

{ f1, f2} = (Cαtα + A)ds + (Cαsα + B)dt

with

A = Cβ
1

∂

∂qβ
A2 −Cβ

2

∂

∂qβ
A1,

B = Cβ
1

∂

∂qβ
B2 −Cβ

2

∂

∂qβ
B1,

Cα = Cβ
1

∂

∂qβ
Cα

2 −Cβ
2

∂

∂qβ
Cα

1 ,

α = 1, . . . ,m.

7.3 A Degenerate, Unconstrained Example

Finally, we present an example of reduction. Consider the cotangent bundle

π : T∗M 3 Aidxi |(x1,...,xn) 7−→ (x1, . . . , xn) ∈M

and let

α := π1 : (x1, . . . , xn, . . . ,Ai , . . . ,Ai, j , . . . ) 3 J1π 7−→ (x1, . . . , xn) ∈M,

with M being the n-dimensional Minkowski space. As such, M is endowed with the
metric g := gi jdxi · dx j where

(gi j) =


−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
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In the following we will raise and lower indexes using g. Let

ω := 2dA[ j,i]
( 1

2
Ai, jd

nx − dAid
n−1x j

)
.

Then ω is a PD prehamiltonian system on π whose PD Hamilton equation reads

∂kA[i,k] = 0,

∂[ jAi] = A[i, j],

i, j = 1, . . . , n, which are equivalent to Maxwell equations for the vector potential

(∂k∂
k)Ai − ∂i∂kAk = 0,

A[i, j] = ∂[ jAi].

Notice that

kerω = kerω =
〈
. . . ,

∂

∂Ai, j
+

∂

∂A j,i
, . . .

〉
.

Therefore ω is “degenerate and unconstrained”. Moreover, leaves of Dω = Dω are
given by A[i, j] = const. We conclude that J1π “reduces” via

p : J1π → T∗M×M ∧2 T∗M ' Rn(n+3)/2

(x1, . . . , xn, . . . ,Ai , . . . ,Ai, j , . . . ) 7−→ (x1, . . . , xn, . . . ,Ai , . . . , Fi j , . . . )

where Fi j = F[i j], p∗(Fi j) := 2A[ j,i] and ω = p∗(ω̃), with

ω̃ := dFi j
( 1

4
F jid

nx − dAid
n−1x j

)
is a PD Hamiltonian system on

α̃ : Rn(n+3)/2 3 (x1, . . . , xn, . . . ,Ai , . . . , Fi j , . . . ) 7−→ (x1, . . . , xn) ∈ Rn,

whose PD Hamilton equations read

∂kFik = 0,

∂[ jAi] = 2F ji ,

which are Maxwell equations for the field strength.
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8 PD Hamiltonian Systems in Mathematical Physics and Geometry

A system of PDEs is multisymplectic if it is in the form

(8.1) K i
ab∂i ya = ∂bH,

with K i
ab = −K i

ba(y1, . . . , ym) and H = H(y1, . . . , ym) given functions and κi :=
K i

abdyadyb a symplectic form for all i = 1, . . . , n. Multisymplectic systems of PDEs
where first introduced in [5] to study the interaction and stability of non-linear
waves. More generally, a multi-symplectic formulation of a PDE proved to be a
useful tool in the stability analysis. Multisymplectic integrators have been also intro-
duced [6], generalizing the symplectic methods so popular in numerical Hamiltonian
dynamics.

Notice that multisymplectic PDEs (8.1) are actually PD Hamilton equations of the
PD Hamiltonian system

(8.2) ω =
1

2
κidn−1xi + dHdnx.

PD Hamiltonian systems of the form (8.2) are of a special kind. Indeed, they are
autonomous in two respects. Neither their kinematics (encoded by the symplectic
forms κi) nor their dynamics (encoded by the “Hamiltonian function” H) depend
on space-time coordinates. While the latter condition can be always achieved by
adding auxiliary coordinates, without loss of generality, the former is a special feature
of multisymplectic PDEs among general PD Hamilton equations. We conclude that
PD Hamiltonian systems provide an intrinsic (coordinate independent) geometric
formalization of the theory of multisymplectic PDEs.

Many equations of fluid dynamics (and, more generally, of continuum mechan-
ics), including the Euler equation as an instance, are multisymplectic PDEs, and,
therefore, PD Hamilton equations (possibly after a suitable change of coordinates) [8,
42]. Notice that fluid dynamics on a general Riemannian manifold may not possess a
multisymplectic formulation, while still possessing a PD Hamiltonian one, since, in
this case, the “kinematics” depends on the metric and, therefore, on the space-time.

Systems of hydrodynamic type, with their Dubrovin–Novikov Poisson structures
[16, 17], are also multisymplectic (see, for instance, [45]), and, therefore, PD Hamil-
tonian. For the latter systems, the relation between the multisymplectic structure and
the Poisson structure has been discussed at least in the integrable, 1-dimensional case
of the KdV equation (see [27] for details).

As already mentioned, a Lagrangian field theory in the bundle π : E → M, with
Lagrangian density L locally given by L = Ldnx, L = L(x1, . . . , xn, uαi ), where the
uαi ’s denotes “space-time derivatives” of the field variables uα’s, determines canoni-
cally a PD Hamiltonian system ωL in the bundle J1π → M, locally given by

ωL = d
∂L

∂uαi
duαdn−1xi − dEdnx, E := uαi

∂L

∂uαi
− L.

In many cases the PD Hamilton equations ofωL are equivalent to the Euler–Lagrange
equations (even in presence of gauge symmetries). The (functional) space of solu-
tions of the Euler–Lagrange equations carries a canonical (pre)symplectic structure ω
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[9, 58] whose degeneracy distribution is made of gauge symmetries [41]. Therefore,
the (classical) gauge reduction of a field theory basically amounts to the symplec-
tic reduction of ω. This remark is at the very basis of the BV formalism for the
quantization of gauge theories [35]. Interesting examples may be found at the fron-
tier between theoretical physics and geometry. For instance, the reduction of the
space of flat connections in a principal bundle over a Riemannian 3-manifold to
the moduli space of (gauge equivalent) flat connections amounts to the symplec-
tic reduction of the presymplectic structure of the Chern–Simons theory. Simi-
larly, the Atiyah–Hitchin manifold is a moduli space of (gauge equivalent) magnetic
monopoles. As such it inherits the symplectic structure from the presymplectic struc-
ture of the Yang–Mills–Higgs theory. This is precisely the symplectic sector of the
Atiyah–Hitchin hyper-Kähler structure. Now ω can be understood as a cohomology
class of a suitable complex and ωL as a cocycle representing it [56]. For complete-
ness, we present the (reduced) PD Hamiltonian system corresponding to the Yang–
Mills–Higgs theory.

Let M be the n-dimensional Minkowski space with coordinates xi and let g be a
Lie algebra with a basis σa. Consider the following (vector) bundles:

(1) M× g→M, with linear bundle coordinates φa;
(2) a copy of T∗M⊗ g→M, with bundle coordinates ψa

i ;
(3) a second copy of T∗M⊗ g→M, with bundle coordinates Aa

i ;
(4) ∧2T∗M⊗ g→M, with bundle coordinates Fa

i j , i < j.
(5) The fibered product α : P→ M of the above.

In α there is the following natural PD Hamiltonian system

ωY MH = kab

[
dFai j

(
dAb

j +
1

2
[Al,A j]

bdxl
)

+ dψai(φb + [Al, φ]bdxl)
]

dn−1xi − Ldnx,

where

L = kab

( 1

4
Fai jFb

i j +
1

2
ψaiψb

i

)
,

and (kab) is the Killing form of g. The PD Hamilton equations of ωY MH are

∂iψ
ai + [Ai , ψ]a = 0, ∂iφ

a + [Ai , φ]a = ψa
i ,

∂iF
ai j + [Ai , F

i j]a = 0, ∂iA
a
j − ∂ jA

a
i + [Ai ,A j]

a = Fa
i j ,

which are basically the Yang–Mills–Higgs equations.
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J.-M. Souriau), Colloq. Internat. C. N. R. S. 237(1975), 347.
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