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Abstract

Studies on climate variables and food pathogens are either pathogen- or region-specific,
necessitating a consolidated view on the subject. This study aims to systematically review all
studies on the association of ambient temperature and precipitation on the incidence of
gastroenteritis and bacteraemia from Salmonella, Shigella, Campylobacter, Vibrio, and Listeria
species. PubMed, Ovid MEDLINE, Scopus, and Web of Science databases were searched up to
9March 2023.We screened 3,204 articles for eligibility and included 83 studies in the review and
three in the meta-analysis. Except for one study on Campylobacter, all showed a positive
association between temperature and Salmonella, Shigella, Vibrio sp., and Campylobacter
gastroenteritis. Similarly, most of the included studies showed that precipitation was positively
associated with these conditions. These positive associations were found regardless of the effect
measure chosen. The pooled incidence rate ratio (IRR) for the three studies that included
bacteraemia from Campylobacter and Salmonella sp. was 1.05 (95 per cent confidence interval
(95% CI): 1.03, 1.06) for extreme temperature and 1.09 (95% CI: 0.99, 1.19) for extreme
precipitation. If current climate trends continue, our findings suggest these pathogens would
increase patient morbidity, the need for hospitalization, and prolonged antibiotic courses.

Introduction

Worldwide, 33 million years of healthy lives are lost each year to food-borne illness, which is
underestimated [1]. Studies have shown that warmer climates and heat waves increase the incidence
of Salmonellosis and Campylobacteriosis [2, 3]. However, different climate variables can affect each
food-borne pathogen differently. The association between temperature rise and increased incidence
of infection is more consistent with salmonellosis than with Listeria infection [4]. A meta-analysis
showed the pooled relative risk (RR) for each 1-degree rise in temperature for salmonellosis was 1.05
(95% confidence interval (C):1.04–1.07) [5]. For Vibrio infections, an increase in water (not air)
temperature is associated with an increased incidence of infection [4]. The intensity and rapidity of
exposure to the climate variable also determine the risk of infection.

In addition to the number of infections, it is also important to study the severity of the disease.Are
these infections limited to gastroenteritis, or is there a trend for more invasive infections like
bacteraemia? The impact of bacteraemia compared to gastroenteritis is greater, with increased
morbidity and mortality, hospitalization, and health services costs [6, 7]. With climate change and
more difficult conditions for environmental pathogens, bacteraemiamay reflect increased virulence
from these organisms.A 10-year analysis of passive surveillance data inQueensland,Australia, noted
a rise in the incidence of invasive salmonellosis, particularly in the elderly [8]. Ninety-two per cent of
these invasive infections were diagnosed on blood culture [8]. Salmonella Virchow was the most
common species identified [8]. The contributory factors for the increased invasiveness of these
infections were unclear. It has been projected that compared to the years of life lost to disabilities
(YLD) in 2000, salmonellosis would contribute to a 9–48% increase in YLD by 2030 due to
temperature changes from climate change [9].

The relationship between climate change and food/waterborne disease is complex. There are
temporal and regional variations across the world affected by behavioural changes in populations
that increase the risk of these illnesses. While cholera, enteric fever, and bacillary dysentery
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predominate in the Indian subcontinent and Africa, non-cholera
Vibrio species and non-typhoidal Salmonella and Campylobacter
infections are prevalent in the temperate regions of theworld. There
is heterogeneity in the studies reporting an association between
climate variables and enteric pathogens, with varied methodologies
and modelling strategies.

Existing literature on the impact of climate variables on food-
borne pathogens has been restricted to a particular variable [5] or
pathogen [10]. We formulated the research question to determine
the effect of ambient temperature (including heat waves) and pre-
cipitation (including floods) on the incidence of pathogen-specific
infections – gastroenteritis and bacteraemia.

Methods

Search strategy

This systematic review followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
Searches for published literature in English on the impact of climate
change on infections from Salmonella, Shigella, Campylobacter,
Vibrio, and Listeria infections were conducted. MEDLINE
(Ovid), Scopus, PubMed, and Web of Science electronic databases
were searched without any restrictions on date range.

Inclusion and exclusion criteria

All published articles on the pathogens of interest and one or more
climate variables were eligible for inclusion. No time frame was
applied as the effect of climate variables on bacteria has not been a
recent development. We excluded studies not in English and those
not on selected pathogens or climate variables of interest and review
articles. Conference abstracts and posters were not included.

Data extraction

One author (NM) screened the abstracts, shortlisted the studies for
full-text assessment, and determined inclusion in the review upon
examination of the full text. The final list of eligible studies for
meta-analysis was checked by two authors (NM and OA). The
studies were tabulated by the pathogen of study and data on
publication year, study location, study time period, number of
cases, population number, climate variable exposure, exposure
lag, quantitative estimation of risk, modelling strategy, and key
findings, and reported statistics of adjusted analyses were extracted
into a purpose-built database. The risk estimates that the studies
reported were the correlation coefficient (r), RR, odds ratio (OR),
and incidence rate ratio (IRR).

Quality appraisal

We used the ROBINS-E tool as a guide for assessing the risk of bias
within the included studies [11]. The tool is validated for use in
non-randomized ecological studies. The tool consists of seven
domains: bias confounding, exposure and outcome measurements,
participation selection, post-exposure intervention, missing data,
and reporting bias. Each domain is assessed through signalling
questions to make judgements on the risk of bias in the domain,
the predicted direction of bias, and whether the risk of bias
threatens conclusions regarding the exposure having an effect on
the outcome. If the risk of bias was considered ‘high enough to
change the direction of the outcomes’, the domain was marked as

high risk. If the bias was ‘very low’, the domain was marked as low
risk. Studies were considered high quality if the overall judgement
suggested a low risk of bias in at most one domain. If there were
‘some concerns of bias’ in at least two domains, they were con-
sidered moderate in quality, and if there were three or more
domains with ‘high or very high risk of bias’, they were low in
quality.

Meta-analysis

Studies that had included cases of bacteraemia were shortlisted for
meta-analysis. We used random-effects models with inverse-
variance weighting to pool the IRR estimates for each pathogen
togetherwith their 95% confidence interval (CI). The between-study
heterogeneity was evaluated using I2 statistics as the proportion of
variability in effect estimates that is not attributed to sampling error.
Following Higgins et al. 2019 [12], a threshold of p < 0.1 was used to
indicate statistical significance, and I2 values of 25%, 50%, and 75%
were considered to represent low, moderate, and considerable het-
erogeneity, respectively. The statistical analysis was carried out in R
version 4.2.2 [13] package meta and metaphor [14].

Results

Characteristics of included studies

A total of 3,402 studies were obtained from the databases, and after
sorting duplicates, 3,204 abstracts were screened. Out of the 186 art-
icles shortlisted for full-text reading and eligibility, 83were included in
the qualitative review, and three were chosen for meta-analysis
(Figure 1). Publication years ranged from 2007 to 2019 (the year of
data extraction), with the great majority of included articles (n = 69;
73%) published since 2015 (Figure 1). The grouping of studies by
countries and pathogens is summarized in Table 1.

All studies in the qualitative review are tabulated. Twenty stud-
ies for Campylobacter and twenty-six, nineteen, and eighteen stud-
ies for Salmonella, Shigella, and Vibrio species, respectively, were
identified. The maximum lagged week was 52 weeks for Vibrio sp.
and 9, 12, and 4 weeks for Campylobacter, Salmonella, and Shigella
species, respectively. The majority of the articles were scored as
having some concerns for bias in at least two domains and were
categorized as moderate in quality in the overall judgement
(Table S1 in the Supplementary Material).

Ten high-quality studies were identified for Campylobacter, and
11 were of moderate quality. Out of these, three had cases that
included bacteraemia [15–17]. Twelve studies on Salmonellosis
were high quality. Four studies included patients with bacteraemia
[10, 18–20]. With shigellosis, none of the studies specifically dis-
cussed bacteraemia and three studies were of high quality. With
Vibrio sp., four studies were of high quality.

Overview of pathogens and effect of temperature and
precipitation

Campylobacter species
The burden of Campylobacteriosis is high in the Americas and
Europe, predominantly in the temperate regions (Figure 2), with
the United States of America (USA) and United Kingdom
(UK) reporting age-standardized disability-adjusted life year
(DALY) of 7.55 and 9.4, respectively [21]. Studies on Campylobac-
teriosis were predominantly conducted in Europe, North America,
and Oceania (Table 1). Campylobacteriosis had a positive
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association with ambient temperature, whether it was measured as
a weekly maximum, monthly, or daily average and extreme heat
(Table 2 and Figure 3a). This was true not only for gastroenteritis
but also for bacteraemia. The rise in cases was mostly found in a
temperature range between 10 and 25 ° C. Out of the 20 studies,
19 (95%) reported a positive association with temperature. With
precipitation, six out of nine studies described a positive association
(Figure 3a and Table 3).

The studies by Bi et al. [22] in Australia and Carev et al. [23] in
Croatia reported positive correlations. The studies used regression
analyses and controlled for seasonality (using a categorical sea-
sonal variable), lag effects, and long-term trends. Weekly

maximum temperature had a positive impact on gastroenteritis
in Brisbane but not in Adelaide in the Australian study [22]. Nei-
ther these studies nor another study in Denmark [24] found any
association between Campylobacter gastroenteritis and precipi-
tation. A study by Kuhn et al. [11] in Nordic countries that studied
64,034 cases over 15 years included cases of bacteraemia and
reported a r of 0.09.

Two studies reportedOR to show the positive association between
the climate variables and gastroenteritis – an international study [24]
(weekly maximum temperature) and another case-crossover
study on outbreaks in England (daily total rainfall) [25] reported
OR of 1.3 (95% CI: 1.08, 1.55) and 2.88 (95% CI: 0.29, 28.1),
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Figure 1. PRISMA flow chart showing the study selection process.
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respectively. The time-series study by Fleury et al. [26] in two
provinces in Canada reported a 2.2% increase in gastroenteritis in
Alberta and 4.5% in Newfoundland–Labrador, respectively, per
degree rise in weekly mean temperature. A study in Maryland,
USA [16], analysed the association with extreme heat and

precipitation and found an IRR of 1.04 (95% CI: 1.01, 1.08) and
1.03 (95% CI: 1.01, 1.05), respectively. Importantly, this study
included cases of bacteraemia and found that higher La Niña periods
have a greater impact on the incidence of infections compared to El
Niño periods (IRR = 1.09).

Table 1. Grouping of studies by regions of study, pathogens, and main findings with climate variable associations

Region of study
(number)

Time period of
studies Pathogen Infections reported

Association with rise in
ambient temperature

Association with rise in
precipitation

Europe (30), UK (9),
Germany (6), Italy (4),
Sweden (4), Denmark
(2), France (2),
Georgia (1), Finland
(1)

1981–2015 Campylobacter
Salmonella
Vibrio sp.

Gastroenteritis and
bacteraemia

Gastroenteritis
Gastroenteritis,

wound infections

Positive associations
Positive association in all
studies

Positive association with
sea temperature

6 out of 9 studies reported a
positive association

No association in temperate
regions

Australia (24) 1990–2019 Campylobacter
Salmonella

Gastroenteritis
Gastroenteritis

Positive association in
Brisbane not Adelaide

Positive association in all
studies

No association

Asia (21), China (11), Iran
(4), India (1), Jordan
(1), Korea (1), Nepal
(1), Philippines (1),
Taiwan (1)

1984–2018 Salmonella
Shigella
Vibrio sp.

Gastroenteritis
Gastroenteritis
Gastroenteritis

Positive association in all
studies

Positive association in all
studies

Positive association

1990 studies out of 16 reported
positive association

9 out of 10 studies found positive
association with floods

8 out of 9 studies had a positive
association

North and South
America (17), USA
(15), Canada (1),
Brazil (1)

1992–2018 Campylobacter
Salmonella
Shigella
Vibrio

parahaemolyticus

Gastroenteritis and
bacteraemia

Gastroenteritis and
bacteraemia

Gastroenteritis
Gastroenteritis

Positive association
Positive association
Positive association

Positive in one study
Positive association for extreme

precipitation
Positive

Africa (3), Ethiopia (1),
Ghana (1)

2002–2008 Vibrio Gastroenteritis Positive association Positive association

Figure 2. Global distribution of the burden of Campylobacter, cholera, non-typhoid Salmonella, and Shigella. Source: GBD Results tool: Global Burden of Disease Collaborative
Network. Global Burden of Disease Study 2019 (GBD 2019) Results, Seattle, United States: Institute for Health Metrics and Evaluation (IHME), 2020.
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Table 2. Studies on Campylobacter with temperature as the climate variable, stratified by type of temperature measurement

Number Study Region Time period Infection studied Case number
Population
number Analytical method Key findings and reported statistica

Weekly maximum temperature

1 Bi 2008 [22] Brisbane, Australia 1990–2005 Weekly lab–confirmed
gastroenteritis

14,697 1,600,000 Time–series
Poisson
regression

R = 0.01 at lag 6 weeks

2 Bi 2008 [22] Adelaide, Australia 1990–2006 Weekly lab–confirmed
gastroenteritis

20,211 n/a Time–series
Poisson
regression

B = 0.01 at lag 9 weeks

3 Kovats 2005 [24] Czech Republic,
England and Wales,
Scotland, Spain,
Switzerland,
Denmark

1991–2002 Weekly lab–confirmed
infections

75,312 n/a Logistic regression Maximum OR 1.3 after lag 14 weeks
Temperature range (TR) 10–30 °C

Weekly mean temperature

4 Fleury et al.
2006 [26]

Alberta, Canada 1992–2000 Weekly lab–confirmed
infections

1743 2,696,826 Generalized linear
model

RR = 1.025 (1.02, 1.03) at lag 3 weeks
TR 0–20 °C

5 Lake et al. 2009 [35] UK 1989–2006 Weekly lab–confirmed
infections

n/a n/a Regression
analysis

RR = 1.0534 (1.03, 1.08) at lag 0 week.
TR 10–200 C

6 Kuhn 2020 [3] Nordic countries
(2000–2015)

2000–2015 Weekly mean temperature,
heat wave
gastroenteritis and
bacteraemia

64,034 26,000,000 Poisson regression B = 0.09 for temperature and � 0.1 for
heat wave

TR �35.3–32.8 °C

7 Patrick et al. 2004
[73]

Denmark 1998–2001 Weekly lab–confirmed
infections

16,305 4,400,000 Linear regression Max. temperature 4 weeks prior had
68% variance

TR 13–20 °C

8 Rosenberg et al.
2018 [74]

Israel 1999–2010 Weekly lab–confirmed
gastroenteritis

29,762 n/a Poisson
generalized
additive

1–deg. rise associated with 16.1%
increase in Campylobacter jejuni and
18.8% increase in Campylobacter coli
TR 15–30 °C

9 Tam et al. 2006 [77] UK 1989–1999 Weekly lab–confirmed
gastroenteritis

623,817 n/a Negative binomial
regression

RR = 1.05 (1.03, 1.06) at lag 6weeks up to
a threshold of 14 deg. TR 0–140 C

10 White et al. 2009
[80]

Philadelphia, USA 1994–2007 Weekly lab–confirmed
gastroenteritis

1,477 1,517,550 Poisson regression IRR = 1.041, warm humid weather
increases risk

11 Yun et al. 2016 [81] Germany 2004–2007 Weekly clinical and lab–
confirmed cases

n/a n/a Regression
analysis

Positive correlation at lag 5 weeks
TR 10–25 °C

(Continued)
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Table 2. (Continued)

Number Study Region Time period Infection studied Case number
Population
number Analytical method Key findings and reported statistica

Monthly mean temperature

12 Kim et al. 2015 [94] South Korea 2003–2012 Monthly temperature and
outbreaks of
gastroenteritis

n/a n/a Pearson
correlation

r = 0.66
Incidence calculated by dividing

pathogen–specific outbreak by total
food–borne outbreaks

13 Carev et al. 2018
[23]

Croatia 2007–2012 Monthly counts of lab–
confirmed infections

2,658 454,798 Linear regression r = 0.58
TR 10–25 °C

14 Vucković et al. 2011
[76]

Croatia 2003–2007 Annual counts of
gastroenteritis

1,242 305,505 Multiple regression B = 0.83 in 2003
TR 10–250 C

15 Sanderson et al.
2018 [75]

UK 2004–2009 Monthly lab–confirmed
infections

n/a n/a Autoregressive
moving average

B = 0.07 at lag 4 weeks

Extreme heat and daily temperature

16 Soneja et al. 2016
[16]

USA 2002–2012 Extreme heat and
gastroenteritis and
bacteraemia

4,804 5,900,000 Multivariate
binomial
regression

IRR =1.04
ETT95

17 Djennad et al. 2019
[72]

UK 2005–2009 Weekly lab–confirmed
gastroenteritis, daily
mean temperature

n/a n/a Generalized time
series

B = 7.32 accounting for 33.3.% of cases
at lag 2 weeks

TR 10–25 °C

18 Milazzo et al. 2017
[78]

Adelaide, Australia 1990–2012 Lab–confirmed infections 35,601 n/a Poisson regression
model

IRR = 0.906 with heat waves, no effect of
temperature in warm season, and no
lag effect

19 Spencer et al. 2012
[79]

New Zealand 2001–2007 Lab–confirmed infections n/a n/a Poisson regression
model

Spatial and temporal risk factors
studied and no temporal risk factors
identified

ar = correlation coefficient, B = beta coefficient, RR = relative risk, OR = odds ratio, IRR = incidence rate ratio, n/a = not available.
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Salmonella species
The majority of typhoid and non-typhoidal salmonella infections
are found in Africa and Asia. Salmonellosis is the most common
cause of bacteraemia in African children [27]. This pathogen also
contributes to significant DALY in developed countries (Figure 2)
[27]. Studies on Salmonellosis were conducted in North America,
Asia, Europe, and Australia. All studies on Salmonella with
increases in monthly, weekly, daily, and extreme temperatures
showed an association with a rise in cases regardless of the outcome
measure used (Tables 4 and 5, Figure 3b). However, precipitation
had different effects in temperate and tropical regions of the world.
Four out of the 16 studies (25%) did not find a positive association
with precipitation. Both climate variables had a positive association
with bacteraemia in the USA (Figure 4).

Four studies measured monthly average temperature and
reported a positive correlation of Salmonella gastroenteritis with
ambient temperature. Cherrie et al. [28] performed a time-series
analysis in England reporting r = 0.37 for temperature. A surveil-
lance study in Ontario, Canada, by Ravel et al. [29] found monthly
cases peaking in the summer months, while there was no associ-
ation with precipitation. Similar seasonality was noted in a study in
Macedonia [30] with a rise of 5.2% incidence per month with
maximum monthly mean temperature. Lastly, Wang et al. [31]
found an r = 0.55 formonthly temperature and r = 0.48 formonthly
precipitation in Guizhou, China. Studies by Akil et al. [2] and Mun
et al. [32] reported a positive correlation with an outbreak of

infections. However, the association was tested with an actual
number of infections in the study period in the former study.

Using RR as an outcomemeasure and weeklymean temperature
for exposure, four studies reported a positive association with
salmonella gastroenteritis. Three of these were time-series analyses.
The first [26] in Alberta, Canada, showed a log RR increase of 1.2%;
the second [33], in Dhaka, Bangladesh, reported an increase of
14.2% with a 1° rise in temperature for typhoid cases; and the third
[34] in Melbourne, Australia, estimated a twofold increase at 33 °C
compared to average weekly temperature. Lastly, Lake et al. [35]
reported a RR of 1.05 for S. typhimurium and S. enteritidis infec-
tions in England. In contrast to the temperate regions of the world,
four studies in Asian countries reported a positive association with
precipitation. Three of these reported a rise in typhoid cases with
increased rainfall and floods [33, 36, 37]. The study by Wang et al.
[38] reported a rise in Salmonella hospitalizations in Hong Kong,
along with a rise in daily precipitation.

For bacteraemia, two studies in the USA that included positive
blood culture cases reported a positive association with extreme
temperature and precipitation events. Firstly, the study byMorgado
et al. [19] reported an IRR of 1.06 (95%CI: 1.04, 1.09). Similarly, the
study by Jiang et al. [18] in Maryland, USA, reported an IRR of
1.041 (95% CI: 1.013, 1.069). Another study using IRR was a time-
series analysis in Singapore [39] that examined weekly temperature
(1 °C rise) and precipitation (10 mm rise) and reported a 4.3%
increase and 0.8% increase in gastroenteritis, respectively.

Figure 3. Graphs summarizing the estimated effects (r, beta, RR, IRR, and OR) of temperature and precipitation on specific pathogens. (a) Campylobacter, (b) Salmonella,
(c) Shigella, and (d) Vibrio.
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Table 3. Studies on Campylobacter with precipitation as the climate variable, stratified by type of precipitation measurement

Number Study on organism Region Time period Infection studied Case number Population number Analytical method Key findings and reported statistica

Weekly total precipitation

1 Bi 2008 [22] Adelaide, Australia 1990–2006 Weekly lab–confirmed
gastroenteritis

20,211 n/a Time–series
Poisson
regression

B = 0.01 at lag 1 week, r = 0.05

2 Kuhn et al. 2020
[15]

Nordic countries
(2000–2015)

2000–2015 Gastroenteritis and
bacteraemia

64,034 2,600,0000 Poisson regression B = 0.3
Precipitation range (PR) 0–105 mm

3 Patrick et al. 2004
[73]

Denmark 1998–2001 Weekly lab–confirmed
infections

16,305 4,400,000 Linear regression r = 0.06 at lag 4 weeks

4 Djennad et al. 2019
[72]

UK 2005–2009 Weekly lab–confirmed
gastroenteritis

n/a n/a Generalized time
series

B = 9.36 at lag 1 week
PR 0–80 mm

Monthly mean precipitation

5 Carev et al. 2018
[23]

Croatia 2007–2012 Monthly counts of lab–
confirmed infections

2,658 454,798 Linear regression r = 0.04
PR 0–25 mm

6 Sanderson et al.
2018 [75]

UK (2004–2009) 2004–2009 Monthly lab–confirmed
infections

n/a n/a Autoregressive
moving average

B = 0.01 at lag 4 weeks

Daily and extreme precipitation

7 Nichols et al. 2009
[25]

England 1910–1999 Lab–confirmed
outbreaks (2 or more
cases) and daily
rainfall

n/a n/a Conditional logistic
regression

OR 2.88 2 weeks prior to outbreak with
rainfall>40 mm. (Outbreaks vs.
control years were 7 vs. 2)

8 Soneja et al. 2016
[16]

USA 2002–2012 Gastroenteritis and
bacteraemia,
extreme precipitation

4,804 5,900,000 Multivariate
binomial
regression

IRR =1.03 (95% CI: 1.01, 1.05) at 1 day
EPT90

9 Colston et al. 2020
[53]

Peru 2011–2012 Monthly lab–confirmed
cases and floods

1,386 n/a Interrupted time
series

RR = 1.41 (95% CI: 1.01, 1.07)

ar = correlation coefficient, B = beta coefficient, RR = relative risk, OR = odds ratio, IRR = incidence rate ratio, n/a = not available, PR = precipitation range.
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Table 4. Studies on Salmonella sp. with temperature as the climate variable, stratified by type of temperature measurement

Number Study Region Time period Infection studied
Cases
number

Population
number Analytical method Key findings and reported statistica

Monthly mean temperature

1 Kim et al. 2015 South Korea 2003–2012 Monthly outbreaks of
gastroenteritis

n/a n/a Pearson correlation r = 0.75
Incidence calculated by dividing pathogen–
specific outbreaks by total food–borne
outbreaks

2 Akil et al. 2014 [2] USA 2002–2011 Monthly outbreaks, analysis
reported with cases

n/a n/a Regression analysis and
neural network
modelling

r = 0.76
10 F rise in temperature led to 4 new cases.
TR 35–95 °F.

3 Mun 2020 [32] USA 2009–2016 Monthly lab–confirmed
outbreaks compared with
outbreaks in restaurants

n/a n/a Linear regression
analysis

B = 0.01 with lag 4 weeks

4 Britton et al. 2010
[82]

NZ 1965–2006 Monthly lab–confirmed
cases

n/a n/a Negative binomial
regression

IRR = 1.15 (95% CI: 1.07, 1.24),15% rise in cases
per degree rise in monthly average temp

5 Cherrie et al. 2018
[28]

England 1989–2014 Monthly lab–confirmed
cases

n/a n/a ARMA r = 0.37, Salmonella enteritidis and Salmonella
typhimurium strongest correlation at 4weeks

6 Ravel et al. 2010 [9] Ontario, Canada 2005–2008 Monthly lab–confirmed
cases

216 500,000 Poisson regression r = 0.04

7 Grjibovski et al.
2013 [83]

Arkhangelsk,
Russia

1992–2008 Monthly lab–confirmed
cases

4,585 348,000 Negative binomial
regression

B = 2.04 at lag 4 weeks, 2.04% rise per degree
rise in temperature

TR �20–20 °C

8 Kendrovski et al.
2011 [30]

Macedonia 1998–2008 Monthly lab–confirmed
cases

3,890 2,052,722 Pearson correlation r = 0.51 at 4–week lag
TR 4–24 °C

9 Wang et al. 2012
[31]

Guizhou, China 1984–2007 Monthly lab–confirmed
cases

n/a n/a Spearman rank
correlation and
wavelet analysis

r = 0.55 at 4–week lag
TR 1.8–25.8 °C

10 Zhang et al. 2010
[86]

Townsville,A
ustralia

1990–2005 Monthly lab–confirmed
cases

1,170 186,000 Spearman correlation B = 0.04 with max temperature (TR 24–34 ° C)
B = 0.06 withmin temp. (0–25 ° C) at lag 4 weeks

Weekly mean temperature

11 Aik et al. 2018 [39] Singapore 2005–2015 Weekly lab–confirmed
infections

11,324 5,500,000 Multivariable regression
analysis

IRR = 1.06 (95% CI: 1.02, 1.11) 6.3% increase per
degree after 3 weeks. TR 25.3–30.1

12 Lake et al. 2009 [35] UK 1981–2006 Weekly lab–confirmed
gastroenteritis

Regression analysis RR = 1.05 (95% CI: 1.03, 1.08)

13 Dewan et al. 2013
[33]

Bangladesh 2005–2009 Weekly lab–confirmed cases n/a n/a Spatial and time series RR = 1.8 (95% CI: 1.2, 2.8) at 4 weeks, 14.2% rise
with 1–degree rise in temp. TR 20–300 C

14 Fleury et al.
2006 [26]

Alberta, Canada 1992–2000 Weekly lab–confirmed cases 6,282 2,696,826 Generalized linear and
additive model

Max RR = 1.02 (95% CI: 1.01, 1.02) at lag 2 weeks.
Positive association with temperature in
Alberta but not Newfoundland TR 15–400 C

(Continued)
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Table 4. (Continued)

Number Study Region Time period Infection studied
Cases
number

Population
number Analytical method Key findings and reported statistica

15 Robinson et al.
2022 [34]

Melbourne,
Australia

2000–2019 Weekly lab–confirmed cases 29,421 5,000,000 Quasi–Poisson
generalized linear
model

RR = 1.1 (95% CI: 1.05, 1.2) at lag 4 weeks
TR 15–350 C

16 Zhang et al. 2008
[85]

Adelaide, Australia 1990–2004 Weekly lab–confirmed cases 4,740 1,100,000 Spearman correlation B = 0.04 at lag 1 week, increase in cases up to
4 weeks

17 Zhang et al. 2010
[86]

Brisbane, Australia 1990–2005 Weekly lab–confirmed cases 5,294 1,600,000 Spearman correlation B = 0.09 with max temp. (15–350 C) and B = 0.06
with min temperature (5–250 C) at lag
2 weeks

18 Nili et al. 2021 [21] Iran 2008–2018 Stool, blood weekly lab–
confirmed cases

569 1,952,435 Negative binomial
generalized linear
model

IRR = 1.04 (95% CI: 1.02, 1.06)

Daily, annual and extreme temperature

19 Wang et al. 2018
[38]

Hong Kong 2002–2011 Daily admissions, daily mean
temperature

4,828 7,340,000 DLNM and GAM RR =6.13 (95% CI: 3.52, 10.67)
TR 15–300 C

20 Milazzo et al. 2016
[40]

Adelaide, Australia 1990–2012 Daily lab–confirmed cases,
daily maximum
temperature

7,845 n/a Time–series Poisson
regression

IRR 1.034 in summer months in Adelaide at lag
2 weeks, risk varied with serotypes

TR 10–400 C

21 Simpson et al. 2019
[84]

NSW, Australia 2001–2015 Annual lab–confirmed cases,
mean annual temperature

514 n/a CAR RR = 1.31 (95% CI: 1.01, 1.68), more with S.
wangata compared to typhimurium

22 Jiang et al. 2015
[18]

Maryland, USA 2000–2012 Extreme temperature, blood,
stool

9,529 5,980,000 Negative binomial GEE IRR = 1.04 (95% CI: 1.01, 1.07)
ETT95

23 Morgado et al. 2021
[19]

Connecticut, USA 2004–2014 Extreme temperature, blood,
stool

32,951 n/a Negative binomial GEE IRR =1.06 (95% CI: 1.04, 1.09)
ETT95

24 Iyer et al. 2021 [36] Gujarat, India 1995–2017 Monthly lab–confirmed
enteric fever cases,
extreme
temperature > 95th

percentile

29,236 10,400,000 Negative binomial
generalized linear
model

RR = 1.01 (95% CI: 0.98, 1.04)
TR 15–350 C

Note: TR: 0–35 °C.
ar = correlation coefficient, B = beta coefficient, RR = relative risk, OR = odds ratio, IRR = incidence rate ratio, n/a = not available, DLNM = distributed lag non-linear model, GAM = generalized additive model, CAR = conditional autoregressive model,
GEE = generalized estimating equation.
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Table 5. Studies on Salmonella sp. with precipitation as the climate variable, stratified by type of precipitation measurement

Number Study Region Time period Infection studied
Cases
number

Population
number Analytical method Key findings and reported statistica

Weekly total precipitation

1 Aik et al. 2018
[39]

Singapore 2005–2015 Weekly lab–confirmed infections 11,324 5,500,000 Multivariable regression analysis IRR = 1.01 (95% CI: 1.02, 1.02) at lag 2 weeks
PR 0–440 mm

2 Dewan et al. 2013
[33]

Bangladesh 2005–2009 Weekly lab–confirmed cases Spatial and time series RR = 1.5 (95% CI: 1.2, 2.2) at 3 weeks
PR 50–200 mm

3 Liu et al. 2018
[37]

Hunan, China 2005–2012 Weekly lab–confirmed cases 1,682 n/a DLNM RR = 1.46 (95% CI: 1.10, 1.92) after lag 1 week
PR 0–200 mm

4 Robinson et al.
2022 [34]

Melbourne,
Australia

2000–2019 Weekly lab–confirmed cases 29,421 5,000,000 Quasi–Poisson generalized linear
model

No association
PR 0–40 mm

5 Zhang et al. 2010
[86]

Brisbane,
Australia

1990–2005 Weekly lab–confirmed cases 5,294 1,600,000 Spearman correlation B = 0.002 with lag 2 weeks

Monthly total precipitation

6 Zhang et al. 2010
[86]

Townsville,
Australia

Monthly lab–confirmed cases 1,170 186,000 Poisson regression B = 0.0006 at lag 12 weeks

7 Akil et al. 2014 [2] USA 2002–2011 Monthly outbreaks n/a n/a Regression analysis and neural
network modelling

No correlation

8 Mun 2020 [32] 2009–2016 USA Monthly lab–confirmed outbreaks
compared with outbreaks in
restaurants

n/a n/a Linear regression analysis B = �0.02 with lag 4 weeks

9 Ravel et al. 2010
[29]

Ontario, Canada 2005–2008 Monthly lab–confirmed cases 216 500,000 Poisson regression No association

10 Grjibovski et al.
2013 [83]

Arkhangelsk,
Russia

1992–2008 Monthly lab–confirmed cases 4,585 348,000 Negative binomial regression Uncertain association
PR 0–150 mm

11 Wang et al. 2012
[31]

Guizhou, China 1984–2007 Monthly lab–confirmed cases n/a n/a Spearman rank correlation and
wavelet analysis

r = 0.48 at 4–week lag
PR 5–437 mm

Extreme and daily precipitation

12 Jiang et al. 2015
[18]

Maryland, USA 2000–2012 Blood, stool, extreme precipitation 9,529 5,980,000 Negative binomial GEE IRR = 1.06 (95% CI: 1.04, 1.08)
EPT90

13 Morgado et al.
2021 [19]

Connecticut, USA 2004–2014 Blood, stool, extreme precipitation 32,951 n/a Negative binomial GEE IRR = 1.22 (95% CI: 1.10, 1.35)
EPT95

14 Iyer et al. 2021
[36]

Gujarat, India 1995–2017 Monthly lab–confirmed enteric
fever cases, extreme
precipitation

29,236 10,400,000 Negative binomial generalized
linear model

RR = 1.01 (95% CI: 0.97, 1.05)
PR 250–450 mm

15 Wang et al. 2018
[38]

Hong Kong 2002–2011 Daily admissions, daily
precipitation

4,828 7,340,000 DLNM and GAM RR =1.34 (95% CI: 0.98, 1.84)
PR 0–100 mm

16 Zhang et al. 2008
[85]

Adelaide,
Australia

1990–2004 Weekly lab–confirmed cases, daily
rainfall

4,740 1,100,000 Spearman correlation r = �0.02 (95% CI: �0.04, �0.003)

ar = correlation coefficient, B = beta coefficient, RR = relative risk, OR = odds ratio, IRR = incidence rate ratio, n/a = not available, DLNM = distributed lag non-linear model, GEE = generalized estimating equation, GAM = generalized additive model,
PR = precipitation range.
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Lastly, Milazzo et al. [40] found an increased risk of Salmonella
cases varies with serotypes in Adelaide, and Britton et al. reported
an IRR of 1.15 (95% CI: 1.07, 1.24) in New Zealand with a rise in
monthly average temperature.

Shigella species
Studies on Shigellosis [41–48] were predominantly from China,
and all nine studies on temperature showed a positive association
(Figure 3c). Nine of ten studies (90%) on extreme precipitation
events like floods showed a positive association (Tables 6 and 7).
(Figure 3c). Most studies found a rise in the incidence of gastro-
enteritis between 10 and 30 ° C temperature range. All the included
studies had gastroenteritis as the predominant clinical manifest-
ation, and no studies specified bacteraemia as an outcome.

Three studies reported a correlation (r). Lee et al. [44] reported
r = 0.65 for monthly average temperature and r = 0.17 for monthly
precipitation in their study in Kon Tum Province, Vietnam. Two
other studies [49, 50] found a rise in gastroenteritis cases in China
after a lag of 2 weeks. Other Chinese studies [41, 43, 45, 47, 51, 52]
reported an RR rise in Shigellosis with a rise in daily temperature. Li
et al. [45] noted that each degree rise led to an increase of 1.6%, and
children aged 0–5 years were largely affected.Wang et al. [51] noted
that ambient temperature was the most important factor regardless
of the climate zone studied. Also, temperate cities in China were
more affected than subtropical cities. Further, studies in China [49,
53–55] revealed a positive association between Shigellosis cases and
floods, with an increased incidence for up to three weeks. The risk
was increased with short-term and severe floods and reduced with
flood duration.

Vibrio species – cholera and non-cholera strains
Cholera is a major public health burden in Africa and Asia
(Figure 2), and a majority of the studies on cholera were conducted
in these continents. All nine studies on temperature and seven out
of eight studies on precipitation showed a positive association with
gastroenteritis (Figure 3d). The temperature range of rise in cases

was 15–40 ° C. The study by Ruiz-Moreno et al. [56] extensively
investigated the rainfall–cholera relationship in Madras and
explained the dual peak in annual cases by the differential effects
of rainfall in endemic and epidemic areas. Generally, a complex
relationship between rainfall and ambient temperature and cholera
varies across regions (Table 8 and Table 9). The study by Ali et al. in
matrix laboratory (MATLAB), Bangladesh, found that for an
increase in sea surface temperature by 1 °C, there was a 25%
increase in cholera incidence in the current month and a 6%
increase in incidence with per degree Celsius rise in ambient
temperature [57]. Two other studies reported a correlation of
0.204 for daily temperature [58] and 0.42 for monthly precipitation
[59]. Only two studies reported the relationship between Vibrio
infections and precipitation using RR as the measure of effect: one
for cholera [60] and the other for non-Vibrio cholera infections
[61]. The cholera study reported a RR of 1.05 (1.04, 1.06) at lag
6weeks, and the study onVibrio Vulnificus infections reported a RR
of 5.06 (95% CI: 2.41, 10.64) at lag 2 weeks.

Non-cholera strains are predominantly associated with wound
infections and septicaemia. These infections rise with sea surface
temperature (Table 6). A case–control analysis for
V. parahaemolyticus infections in Washington, USA, reported an
OR of 2.16 (95% CI: 1.15, 4.05) with yearly temperature [62], while
a modelling study in Haiti showed an OR of 1.46 (95% CI: 1.32,
1.16) for daily precipitation [63]. An observational German study
by Brehm et al. [64] noted an association between heat waves and
increased Vibrio cases. Of 63 cases, 38 with wound infections and
one with septicaemia were found in cases who had recreational
exposure to the Baltic Sea or consumed shrimp from the sea after
heatwave events.

Listeria species
Only one study by Chersich et al. [65] addressed the possibility of
climate factors and Listeriosis. This discussed an outbreak of inva-
sive Listeriosis in South Africa that resulted in 180 deaths. The
source was traced to a food production facility that processed

Figure 4. Pooled studies including bacteraemia climate estimated risk IRR. Pooled IRR indicating the health impacts associated with one unit increase in exceedance days for
extreme temperature threshold 95th percentile (ETT95) and extreme precipitation threshold 90th percentile (EPT90), with 95% CIs.
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Table 6. Studies on Shigella sp. with temperature as the climate variable, stratified by type of temperature measurement

Number Study Region Time period Infection studied Cases number
Population
number Analytical method Key findings and reported statisticsa

Daily mean temperature

1 Ai et al. 2022 [41] China 2010–2018 Daily lab–confirmed cases and
maximum temperature

n/a n/a Distributed lag
non–linear
model

RR = 1.15 (95% CI: 1.04, 1.28) Hot nights
more associated than hot days. Short lag
period of up to 7 days in China.

TR 19.7–280 C

2 Cheng et al. 2017
[43]

Hefei, China 2006–2012 Daily lab–confirmed
gastroenteritis

n/a n/a Distributed lag
non–linear
model

RR = 1.03 (95% CI: 1.02, 1.05) at lag 1 week.
Acute effects due to short incubation
period. Effect sizes varied in different
provinces in China.

TR 10–340 C

3 Li et al. 2016 [45] Hefei, China 2006–2012 Daily lab–confirmed
gastroenteritis

6,511 76,100,000 Poisson
generalized
linear regression

RR = 1.01 (95% CI: 1.00, 1.01) at lag 6 days
TR 15–300 C

4 Liu et al. 2020
[52]

China 2014–2016 Daily clinical and lab–
confirmed gastroenteritis

396,134 n/a DLNM RR = 1.02 (95% CI: 1.01, 1.02) at lag 2 weeks.
TR 15–300 C

5 Wang y et al.
2021 [46]

Jilin, China 2008–2018 Daily clinical and lab–
confirmed gastroenteritis

26,971 26,907,300 DLNM RR = 1.88 (95% CI: 1.51, 2.34). Positive
association for temperature up to 26
degrees. Reinforced by humidity and
precipitation

6 Wen et al. 2016
[47]

Hefei, China 2006–2012 Daily clinical and lab–
confirmed gastroenteritis

5,544 7,611,000 DLNM RR = 1.08 (95% CI: 1.03, 1.13) diurnal
temperature range above 8 degrees
increased childhood dysentery cases

Monthly mean temperature

7 Zhang et al. 2007
[48]

Jinan, China
(temperate)

Baoan
(subtropical)

1987–2000 Monthly lab–confirmed
gastroenteritis and
maximum temperature

60,905 4,300,000 SARIMA B = 0.11. Lag 4 weeks. Both monthly max
(15–350 C) andminmean temperature (8–
25 ° C) related to rise in cases. 1–deg. rise
leads to 12% rise in cases in Jinan

B = 0.16 in Baoan

8 Lee et al. 2017
[44]

Vietnam 1999–2013 Monthly gastroenteritis 596,343 90,700,000 Negative binomial
regression

r = 0.65, IRR = 1.06 (95% CI: 1.04, 1.09)

9 Aminharati et al.
2018 [42]

Yazd, Iran 2012–2015 Total lab–confirmed cases 68 1,138,533 Poisson regression IRR = 1.25 (1.08, 1.45)

ar = correlation coefficient, B = beta coefficient, RR = relative risk, OR = odds ratio, IRR = incidence rate ratio, n/a = not available, TR = temperature ranges.
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Table 7. Studies on Shigella sp. with precipitation as the climate variable, stratified by type of precipitation measurement

Number Study Region
Time
period Infection studied

Cases
number

Population
number Analytical method

Key findings and reported
statisticsa

Floods

1 Gao et al.
2016 [87]

Anhui, China 2007 Clinical and lab–confirmed cases 1,148 61,200,000 Poisson regression OR = 1.04 (95% CI: 0.97, 1.12)

2 Liu et al. 2016
[55]

Huaihua,
China

2005–2011 Weekly lab–confirmed cases 3,709 4,740,000 DLNM RR = 1.32 (95% CI: 1.12, 1.56) with
lag 1 week

3 Xu et al. 2017
[49]

Dalian,
China

2004–2010 Weekly lab–confirmed cases 18,976 6,690,000 Generalized additive mixed model r = 0.182 at lag 2 weeks
RR = 1.17 (95% CI: 1.03, 1.33)

4 Liu et al. 2017
[50]

Baise, China 2004–2012 Monthly lab–confirmed cases 9,255 3,780,000 Mixed generalized additive model r = 0.34 at lag 4 week
RR = 1.40 (95% CI: 1.16, 1.69)
r = 0.58 at lag 2 weeks
RR = 1.78 (95% CI: 1.61, 1.77)

5 Liu et al. 2017
[54]

Guangxi,
China

2004–2010 Monthly lab–confirmed cases 78,794 46,026,600 Poisson regression with generalized
additive model

r = 0.34, lag 4 weeks
r = 0.58, lag 2 weeks

6 Colston 2020
[53]

2011–2012 Peru Total lab–confirmed cases 606 n/a Modified Poisson regression RR = 2.86 (95% CI: 1.81, 4.52)

Monthly and weekly total precipitation

7 Hines
et al. 2018
[88]

Oregon, USA 2015–2016 Total lab–confirmed cases, total
precipitation in a week

105 4,000,000 Poisson regression RR = 1.18 (95% CI: 1.06, 1.33) at
lag 1 week

8 Lee et al. 2017
[44]

Vietnam 1999–2013 Monthly gastroenteritis 596,343 90,700,000 Negative binomial regression r = 0.17
IRR = 1.04 (95% CI: 1.01, 1.07)

9 Aminharati
et al. 2018
[42]

Yazd, Iran 2012–2015 Total lab–confirmed cases 68 1,138,533 Poisson regression Not associated

10 Na et al. 2016
[61]

South Korea 2001–2009 Clinical and lab–confirmed cases n/a n/a Multivariate log–linear model RR = 3.1 (95% CI: 1.21, 7.92) at lag
2 weeks

Cumulative precipitation of
209 mm

ar = correlation coefficient, B = beta coefficient, RR = relative risk, OR = odds ratio, IRR = incidence rate ratio, n/a = not available.
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Table 8. Studies on Vibrio sp. with temperature as the climate variable, stratified by type of temperature measurement

Number Study Region Time period Infection studied Cases number
Population
number Analytical method Key findings and reported statisticsa

Monthly mean temperature

1 Kim et al. 2015 South Korea 2003–2012 Monthly mean
temperature and
outbreaks of V.
parahaemolyticus

n/a n/a Correlation
analysis

r = 0.69
Incidence calculated by dividing
pathogen–specific outbreak by
total food–borne outbreaks

2 Ali et al. 2013 [57] Bangladesh 1988–2001 Monthly lab–confirmed
gastroenteritis and
cholera

4,157 210,000 SARIMA B = 0.41, r = 0.04 at lag 4 weeks.
Minimum temperature increases of
one degree Celsius in the current
month led to 6% increase in cases

3 Baker et al. 2013
[89]

Baltic countries 1982–2010 Monthly sea temperature
and all Vibrio infections

280 n/a ARIMA RR = 1.93 at lag 52 weeks. Highest
mortality with Vibrio vulnificus
infections

4 Reyburn et al. 2011
[93]

Zanzibar 2002–2008 Monthly lab–confirmed
cholera cases

3,245 1,100,000 SARIMA B = 2.21 at lag 16 weeks. Temperature
and rainfall interacted significantly
at 1 month lag. 1–degree rise in
temp led to twofold rise in cases at
4 months. TR 0–220 C

Daily and weekly temperature

5 Hsiao et al. 2016
[91]

Taiwan 2000–2011 Monthly lab–confirmed V.
parahaemolyticus

3,870 outbreaks n/a ARIMA r = 1. Average temperature, ocean
temperature, and salinity had a
significant impact but not rainfall.
TR 15–300 C

6 Islam et al. 2009
[92]

MATLAB,
Bangladesh

cholera n/a n/a Regression and
principal
component
analysis

Synergistic effect of temperature and
sunshine hrs TR 18–300 C

7 Asadgol et al. 2019
[58]

Qom, Iran 1998–2016 Daily lab–confirmed
cholera cases

1,243 1,000,000 Artificial neural
network
modelling and
gamma test

r = 0.20 at lag 4 weeks. Warm and dry
environments increased the
incidence TR 18–400 C

8 Davis et al. 2021
[62]

Washington 2013–2018 Annual lab–confirmed V.
parahaemolyticus cases

112 n/a Multivariate
logistic
regression

OR = 2.16 (95% CI: 1.15, 4.05)
Regional variations in the
association. Also studied oyster
tissue temperature

9 Fernandez
et al. 2009 [60]

Lusaka, Zambia 2003–2006 Weekly lab–confirmed
cholera (Ogawa)

13,069 1,284,642 Poisson
autoregressive

RR = 1.05 (95% CI: 1.04, 1.06) at lag
6 weeks. 1–deg. rise in temp
explained 5.2% rise in cholera
cases. Favours the growth of algae
and copepods. TR 21–260 C

ar = correlation coefficient, B = beta coefficient, RR = relative risk, OR = odds ratio, IRR = incidence rate ratio, n/a = not available, TR = temperature ranges.
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Table 9. Studies on Vibrio sp. with precipitation as the climate variable, stratified by type of precipitation measurement

Number Study Region Time period Infection studied Cases number
Population
number Analytical method Key findings and reported statisticsa

Monthly total rainfall

1 de Magny et al.
2008 [90]

Kolkata, India 1998–2006 Monthly lab–confirmed
cases

n/a n/a Wavelet analyses r = 0.06
Surface runoff into rivers floods water supply

increases algal bloom promoting Vibrio

2 Reyburn et al.
2011 [93]

Zanzibar 2002–2008 Monthly lab–confirmed
cholera cases

3,245 1,100,000 SARIMA B = 0.01 at lag 8 weeks. Temperature and
rainfall interacted significantly at 1 month
lag. PR 3–705 mm

3 Na et al. 2016
[61]

South Korea 2001–2009 Clinical and lab–confirmed
cases

n/a n/a Multivariate log–linear
model

RR = 5.06 (95% CI: 2.41, 10.64) at lag 2 weeks
Cumulative precipitation of 209 mm

Daily and weekly precipitation and floods

4 Eisenberg et al.
2013 [63]

Haiti 2010–2011 Lab–confirmed cases 4,662 n/a DLNM OR = 1.46 (95% CI: 1.32, 1.61) at lag 1 week PR
0–216 mm

5 Hsiao et al.
2016 [91]

Taiwan 2000–2011 Monthly lab–confirmed V.
parahaemolyticus, daily
maximum rainfall

3,870 outbreaks ARIMA R = 0. 56. Average temp, ocean temp, and
salinity had a significant impact but not
rainfall

6 Asadgol et al.
2019 [58]

Qom, Iran 1998–2016 Daily lab–confirmed
cholera cases

1,243 1,000,000 Artificial neural network
modelling and gamma
test

r = �0.23 at lag 4 weeks.
PR 9–35 mm

7 Fernandez
et al. 2009
[60]

Lusaka,
Zambia

2003–2006 Weekly lab–confirmed
cholera (Ogawa), weekly
total precipitation

13,069 1,284,642 Poisson autoregressive RR = 1.02 (95% CI: 1.01, 1.04) at lag 3 weeks.
PR 0–307 mm

8 Cash et al. 2014
[59]

Matlab,
Bangladesh

1983–2010 Monthly lab–confirmed
cases, floods

n/a n/a Pearson correlation r = 0.42

ar = correlation coefficient, B = beta coefficient, RR = relative risk, OR = odds ratio, IRR = incidence rate ratio, n/a = not available, PR = precipitation range.
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‘ready-to-eat’meat products. The risks identified were the impacts
of temperature augmenting replication cycles of the bacterium, hot
climate leading to breakdown in the food cooling chain, and the
increased use of contaminated surface water.

Pooled estimates for bacteraemia
Four studies reported IRR for cases that included bacteraemia
with ambient temperature and precipitation as climate variables
[16, 18–20]. Our meta-analysis combined three of these studies as
they included extreme heat and precipitation as exposure variables
(Figure 4). These studies used extreme temperature threshold 95%
percentile (ETT95) and extreme precipitation threshold (EPT90) and
showed a pooled IRR of 1.05 (95% CI: 1.03, 1.06) associated with a
unit increase in ETT95 exceedance days and 1.09 (95%CI: 0.99, 1.19)
associated with a unit increase in EPT90 exceedance days (Figure 4).

Discussion

In this systematic review and meta-analysis, we conducted a com-
prehensive synthesis of the impact of ambient temperature and
precipitation on five food-borne pathogens based on published data
between 2001 and 2021. In Europe, Australia, and North America,
where Campylobacteriosis is predominant, a positive association
was found with a rise in ambient temperature. Similarly, Salmon-
ellosis incidence rose worldwide with temperature, with all studies
showing a positive association. In contrast, the association with
precipitation for both pathogens was less evident in temperate
regions of the world. Shigellosis and Vibrio infections, more pre-
dominant in Africa and Asia, had a positive association with both
temperature and excess precipitation. The positive association
between these climate variables and illness was also consistent
among studies where bacteraemia cases were included.

The findings of our review andmeta-analysis are consistent with
prior reviews on ambient temperature rise and infections from
Campylobacter, Salmonella, and Shigella species [66, 67]. The
majority of the studies for Campylobacter and Salmonella were
either of high or moderate quality, which increased the reliability of
the outcome measures, particularly for the two pathogens. This is
the first review to demonstrate a positive association for studies
including bacteraemia fromCampylobacter and Salmonella species
as an outcome.

The variable effect of climate variables on bacterial food patho-
gens in different regions of the world needs an understanding of not
only the pathogen’s multiplication risks but also the modes of
transmission and human behavioural factors. Campylobacter stud-
ies mostly found a lag period of 4–5 weeks, suggesting food con-
tamination as the likely reason for the rise in incidence. The increase
in cases in summer, particularly in Europe, seems to be related to the
changes in behaviour among the people, for example, having more
barbecues, outdoor parties, and contact with infected animals. The
rise in temperature also increases the risk of infection in broiler
flocks, and any errors in the cold chain of food transport can
increase the risk in humans [4]. With projected rises in ambient
temperature, Campylobacter infection seasonality will be longer and
not restricted just to summer months. This could translate to an
increase of infections by 200% in the Nordic countries by the end of
the century [3]. Although Campylobacter sp. replicates in humid
conditions, a positive association with precipitation has not been
consistently found. Possible explanations are, firstly, a paucity of
studies and, secondly, heterogeneity in using the time of exposure of
precipitation. A significant impact may not be found when daily

total precipitation is averaged out to weekly estimates. Studies using
excessive precipitation in a day showed a significant association [16,
25]. Although the studies on Campylobacter bacteraemia do not
mention the incidence of bacteraemia separately, the proportion of
bacteraemia would also be expected to rise with current climate
trends.

Salmonella replication is enhanced with the rise in temperature,
which explains the cyclical rise in cases in late summer in temperate
regions of the world. The variation in temperature in equatorial
regions is less pronounced, which could explain the lesser impact of
temperature in these areas [10]. However, seasonal monsoons in
these regions lead to a rise in enteric fever every year, as flooding is a
risk for transmission of enteric fever [10]. This can explain the
positive association with lagged effects in Asian countries. In con-
trast, only excessive daily precipitation positively affected temper-
ate regions of the world. The review by Saad [10] includes
16 datasets with Salmonella bacteraemia and showed a positive
association with temperature and rainfall. An increase in ambient
temperature over the coming years would significantly impact the
incidence of salmonellosis worldwide, particularly in the non-
equatorial regions, which would also translate to an increase in
hospitalizations.

Bacillary dysentery cases from Shigella species also rise with
temperature as the bacterium replicates more and food-borne
transmission rises. The difference compared to the other bacterial
food pathogens is the short lag period, as the incubation period is
short. With precipitation, the most consistent association is with
floods. This is more obvious in low socio-economic areas in China,
where poor access to clean drinking water during floods increases
the risk of transmission [51]. Given that most cases are diagnosed
with stool specimens, our review found no studies specific to
bacteraemia. Only three studies were of high quality, as most other
studies had biases with confounding and exposure.

Ambient temperature promotes Vibrio species growth, and
increases in algal blooms contribute as well [68]. For non-cholera
species, water temperature and salinity are the two most important
risk factors for growth. With the warming of the oceans, coastal
regions will face increased sepsis cases from these species [69]. Heat
waves have helped spread Vibrio sp. to higher latitudes, and a mini-
review predicted that infections might quadruple in the coming
years [70]. Cholera cases in Africa and India have a complex
relationship with climate variables. In the dry season, the rise in
cases is chiefly due to increased ambient temperature. During the
monsoon, the dilutional effect of rainfall on water salinity leads to a
reduction in the number of cases. After a lag period, due to
increased contact with contaminated water, there is another peak
of cases [56]. A study by Koelle et al. [71] inMATLAB, Bangladesh,
demonstrated an association of outbreaks with monsoons and a lag
period as long as eight months. The authors also noted that if herd
immunity is high after a recent outbreak, climate variables had a
limited impact on cholera transmission. Four studies were of high
quality, while the rest had confounding and selection biases. In the
future, the prediction is that Vibrio infections will rise and expand
geographically with current climate trends [69]. This would include
cases of bacteraemia and lead to high mortality.

We acknowledge the following limitations in this review and
meta-analysis. First, some studies conducted in non-English lan-
guages were excluded. Second, the absence of data on the propor-
tion of cases of bacteraemia in the studies prevented an accurate
prediction of the genuine impact of climate on this severe outcome.
Thirdly, only one author did the screening, and onlyMEDLINEwas
updated in March 2023 to capture any missing recent studies. The
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maximum number of publications was obtained from the data-
bases, and the potential for missed publications, although possible,
is low. Many studies reported outcomes for multiple pathogens but
reported outcome measures separately, reducing the chance of any
reporting bias. Lastly, although we developed our study protocol a
priori (available on request from the corresponding author upon
request), time constraints prevented us from registration or publi-
cation before this was completed. Despite these acknowledged
limitations, the findings in this study are important and valid.

In summary, this is the first review that provides a comprehen-
sive overview of the complex interactions between the intensity and
timing of climate variable exposure and the incidence of pathogen-
specific infections. Studies that included cases of Campylobacter
and Salmonella bacteraemia reported a rise in incidence with
ambient temperature and precipitation. Further research is needed
to study the impact of a surge in food pathogen bacteraemia with
current trends in climate change.
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