
Ergod. Th. & Dynam. Sys. (1982), 2, 397-403
Printed in Great Britain

Glancing billiards
JOHN N. MATHER

Institut des Hautes Etudes Scientifiques, 35 Route de Chartres,
91440 Bures-sur-Yvette, France

{Received 6 January 1982)

Abstract. Consider the billiard ball problem in an open, convex, bounded region
of the plane whose boundary is C2 and has at least one point of zero curvature.
Then there are trajectories which come arbitrarily close to being positively tangent
to the boundary and also come arbitrarily close to being negatively tangent to the
boundary.

1. Statement of the result
Let R be an open convex region in the plane, and suppose dR is C2. Consider a
point p&R which moves in a straight line until it hits dR and then bounces off
according to the rule 'angle of incidence equals angle of reflection'. The study of
the resulting trajectories is often called the billiard ball problem.

We will say a trajectory is e-glancing if for at least one bounce the angle of
reflection (with either the positive or negative tangent of dR at the point of reflection)
is <e. If e < IT/2, we can distinguish between a positively e-glancing trajectory and
a negatively e-glancing trajectory according to whether it is the positive or negative
tangent to dR which the direction of reflection is close to.

A trajectory might be positively e-glancing at one bounce and negatively e-
glancing at another bounce. Thus, one can ask whether for every e > 0, there exist
trajectories which are both positively and negatively e -glancing. We will prove a
theorem which shows in some cases the answer is yes.

THEOREM. / / the curvature of dR vanishes at some point, then for every e > 0, there
exist trajectories which are both positively and negatively e-glancing.

2. Formulation as a dynamical system
The proof depends on the formulation of the billiard ball problem in terms of
area-preserving diffeomorphisms of the annulus. We begin by recalling this formu-
lation.

L e t A = A R x [ - l , l]and A° = dR x ( - l , 1). ForxedR a n d « e ( - l , 1), let r(x, u)
be the ray in the plane starting at x which makes the angle d = cos"1 u with the
positive tangent to dR at x. Let /i(x, u) be the point of intersection of r{x, u) with
dR which is not x. Let /2(x, u) = cos 6\, where d\ is the angle which r{x, u) makes
with the positive tangent to dR at/2(jc, u). (See figure 1.) Let
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FIGURE 1

Then f:A°->A° is a C1 diffeomorphism.
The billiard ball problem is equivalent to the study of the trajectories of /.
Let ds denote the differential of the arc length on dR. Then / preserves the area

form ds du. Moreover, it is easily seen that

dfl/du<0 (1)

everywhere. From this, it follows that a theorem of G. D. Birkhoff [2, § 3], [1, § 44]
applies to /.

3. Birkhoff's theorem
Let f:A -*A be a C diffeomorphism which preserves orientation and maps each
topological end of A0 to itself. Suppose f is area preserving and (1) holds everywhere
in A0. Let U be an open subset of A such that dR x {-1} <= U, Un (dR x {1}) = 0 ,
and dR x{-l} is a deformation retract of U. Suppose fU = U. Then the frontier of
U has the form

frontier U = {{x, y(x)): x edR},

where y: d/? -» ( -1 , 1) is a Lipschitz mapping.
The hypothesis that / maps each topological end of A0 to itself is equivalent to

the assertion that for every e > 0 there exists S > 0 such that

/(a/? x (-1,-1+«))<= a/? x ( - i , - i + e)
and

f(dRx(l~S,l))czdR x(l-e, 1).

We have formulated Birkhoff's theorem according to our needs. This formulation
is slightly different from either of Birkhoff's formulations ([2, § 3] and [1, § 44]).
However, Birkhoff's proof still applies to give the result we have stated.

We may reduce to the case discussed in [1, §44] by identifying dR x{-l} to a
point. The image of U under this identification is a simply connected open region
in the plane, and its boundary is a 'curve' as defined by Birkhoff [1, § 42]. Birkhoff
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assumes differentiability hypotheses in [1, § 44] which are stronger than ours, but
the proof goes through without change under our differentiability hypothesis. The
conclusion that 'the curve lies entirely within [the barred angle]' is equivalent to
our conclusion that y is Lipschitz.

4. Application ofBirkhoff's theorem
From now on, we will assume that the conclusion of our theorem is false. In § 5,
we will derive a contradiction. Let

V+ = dRx{l-e, 1].
Let

V= U fn(V

By our assumption that the conclusion of our theorem is false, we obtain that for
e > 0 sufficiently small,

VnV+=0.

From now on, we suppose e is chosen this small. Let B be the connected component
of A\V which contains dR x{+l}. Let U = A\B. Then/W) = U, V <= [/, u n V+ =
0 , and SR x {-1} is a deformation retract of U.

By Birkhoff's theorem, there exists a Lipschitz mapping

y:dR^(-l+e, 1-e)
such that

frontier U = {(x, y(x)): x e dR}.
Since fU = U, we have

/(frontier U) = frontier U,

so there exists a homeomorphism g:8R -*dR such that

f(x,y(x)) = (g(x),y(g(x)).

Moreover, since / is orientation preserving and maps each side of frontier U
into itself, it follows that/[frontier U is orientation preserving, and hence g :dR ->dR
is orientation preserving.

5. Proof of the theorem
Let Xo be a point on dR where the curvative vanishes. Let yo£ dR. Let

xn=gn{xo), yn = g"(yo)-
From the fact that g is orientation preserving, it follows that y0 and y! are monotone
increasing functions of y_i. In this section we will show, from the fact that yi is a
monotone increasing function of y_i and the fact that the curvative of dR vanishes
at xo, that y0 is locally a monotone decreasing function of y_i, for y _! in a sufficiently
small neighbourhood of x-\. This contradiction will prove our theorem.

For two points v, wedR, let h(v,w) denote the Euclidean distance between
them. A simple geometric argument shows that

d2h/dvdw>0, ioTV,w<=dR,v*w. (2)
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Here, the second partial derivative is defined in terms of the parameterization of
dR by arc length. For,

dh, s— {v, w) = cosd,
dv

where 0 is the angle between the vector v - w and the positive tangent to dR at v
(see figure 2). It is obvious that 96/dw <0, so we obtain (2).

FIGURE 2. —(v, w) = cos 8.
dv

From the rule 'angle of incidence = angle of reflection', we get

d ,. ,

From the fact that the curvative of dR vanishes at x0, we get

(3)

(4)
OXo

Hence, for y sufficiently close to JC_I and y' sufficiently close to x\, we get that
there is a unique 17 = 17 (y, y') near xo such that

(6)

From the rule 'angle of incidence = angle of reflection', it follows that

when y_i is sufficiently near to JCI.
From (5), we get

d-q d2h l(d2h.

dy 3

dV d2h /(d2h,_
/ \ ( y

l(d2h. , d2h. ,A

l \dri dr\ 1

dV d2h /(
7-7= ~TT7-/ \3y dy drt/ \3y 3TJ/ \3i7 9T,^
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From (2) and (4), we then get

dv
dy'

<0. (7)

Since yi is an increasing function of y^i, it then follows from (6) and (7) that y0 is
a decreasing function of y_i, for y_! in a sufficiently small neighbourhood of x~\.
This contradiction proves the theorem. •

6. A generalization
The argument we have given concerning billiards can be generalized to certain C1

diffeomorphisms f:A-*A of the annulus A=S 1 x [0 , 1]. These are the area-
preserving diffeomorphisms which preserve orientation, map each boundary com-
ponent into itself and satisfy the following condition.

DEFINITION. Letf:A-*A be aC1 diffeomorphism of the annulus which is orientation
preserving and maps each boundary component into itself. We will say f satisfies a
monotone twist condition if {I) holds, where s denotes the angular coordinate on S1,
u denotes the standard coordinate on the unit interval [0,1], and f\{s, u) denotes the
s-coordinate off{s, u).

When / satisfies these conditions and preserves the area form ds du, it is possible
to introduce further conditions which guarantee the non-existence of invariant
circles. These conditions are based on the observation that / can be defined by a
generating function. To be precise, let A = U x [0,1] denote the universal covering
space of A and let f:A -> A be a lift of /. Let f : U -» U be given by

Let

Then there is a C2 function h on B such that

(si,ui)=f(s,u)
is uniquely defined by

u=—{s,si) « i = -—-(s, si). (8)
ds dSi

Of course, such generating functions are well known in classical mechanics, and
this form of the generating function was explicitly defined, e.g., in [5]. The fact
that (si, «i)=/(s,«) can be defined by (8) is equivalent to the hypotheses we
imposed above on /.

Birkhoff's theorem still applies to this more general situation. So, suppose
y: S1 -»(0,1) is a Lipschitz function whose graph is invariant under /. Let g : S1 -» S1

be the homeomorphism such that

f(x,y(x)) = (g{x),y(g(x))).

In view of the fact that / is C1 and y is Lipschitz, it follows that g is Lipschitz. Let
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From (8), we get

— (h(s-us) + h(
dS

Differentiating formally with respect to s, we get

s-u s) + hn(s, si)). (9)
as as

Since 5_i and Si may only be Lipschitz functions of s, the derivatives ds-i/ds and
dsi/ds may not exist everywhere, but they exist almost everywhere, and Birkhoff's
theorem gives positive lower and upper bounds for them. Thus, (9) is a necessary
condition on the circle. Since h\2>0 everywhere, and (ds-i/ds), (dsi/ds)>0
everywhere, we must have

for all s e S1, if the circle exists.
In the case of the billiard ball problem, we showed that when s is the point on

the boundary where the curvature is 0, then

fi22(s, s) + hu(s, s')>0

for any 5, 5', and so obtained a contradiction.

7. Related literature
According to Lazutkin [4], if dR is C555 and its curvature never vanishes, then
there exist caustics for the billiard ball problem, and consequently there cannot
exist trajectories which are both positively and negatively e- glancing. A general
discussion of the billiard ball problem in a convex region is contained in [7, pp.
86-89]. Bunimovich [3] proved that billiards in a stadium satisfy the Bernoulli
property. Of course, our hypothesis does not imply his hypothesis, so our result
does not follow from his. But for the systems he considers, his result is much
stronger than ours. His result raised the question which led to our result.

More generally, we would like to find necessary and sufficient conditions for the
existence of invariant circles, as discussed in § 6. There, we discussed conditions
which are easily proved to be necessary. Newman and Percival [6] have discovered
numerically what appear to be necessary conditions. These are probably related
to ours, but much more work is necessary to make the relation clear.
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