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Abstract

(Point, closed subset)-separation axioms and closed subsets separation axioms for topologi-
cal spaces will be uniformly defined. Then it is shown that a subcategory o of TOP is bireflective
in TOP if and only if Ob  consists of all separated spaces for some (point, closed
subset)-separation axiom. A characterization theorem on subcategories of all separated spaces
for closed subsets separation axioms is also given by using the category SEP of all separation
spaces and the embedding functor G: TOP — SEP. As an application we have that a T,-space is
normal if and only if it is embedded in a product space of the unit intervals in SEP.

There are three basic types of separation axioms depending on whether
they involve separation of: 1. pairs of points; II. pairs consisting of a point and
a subset; or I1I. pairs of subsets. Wyler (1973) gave a characterization of those
full subcategories of the category TOP of topological spaces which consist of
all spaces satisfying given axioms of type L

In this paper, we vastly generalize Wyler’s result to one involving the
topological functors of Herrlich (1974). In particular, we obtain characteriza-
tion theorems for separation axioms of types II and III. For type II, we take &
to be the category TOP, and % to be the category CLS of so-called ‘closure
spaces’; for type III, we take £ to be the category TOP, and % to be the
category SEP of ‘separation spaces’ in the sense of Wallace (1941). In each
case there is a distinguished functor G : & — %. It is seen that to give axioms
of the particular type is to give a functor Z:& — ¥ together with a
comparison natural transformation n:G = 3 whose components become
isomorphisms in ENS. A space X is considered to satisfy a given separation
axiom (2, 7n) if nx is an isomorphism. Our main results can be stated as
follows. A subcategory of TOP consists of all spaces satisfying a separation
axiom of type II if and only if it is bireflective in TOP (Theorem 3.1). A
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subcategory of the category R,-TOP of Ry-spaces in the sense of Davis (1961)
consists of all Ry-spaces satisfying a separation axiom of type III if and only if
it is an intersection of a bireflective subcategory and the subcategory Ro-TOP
in the category SEP (Theorem 2.9). Examples for axioms of types 11 and III
and of other types will be given (§4).

The author wishes to express his indebtedness to the referce for making
valuable suggestions on the formation of this paper.

Terminology not explained here is from Herrlich (1974) and Herrlich and
Strecker (1973). Subcategories are assumed to be full and replete (=
isomorphism closed).

1. Separations for topological functors

We shall recall the definition of topological functors defined by Herrlich
(1974).

Let & be a category. A source in & is a pair (X, f;); consisting of an
Z-object X and a family of £-morphisms f.: X — X; indexed by a class I. Let
E be a class of epimorphisms in £ closed under composition with isomorph-
isms and M be a class of sources in & closed under composition with
isomorphisms. & is (E, M)-factorizable if and only if for every source (X, f; ),
in Z there exists e: X — Y in E and (Y, m:); in M such that f, = m, - e for
each i € I. Z has the (E, M)-diagonalization property provided that whenever
f and e are morphisms and (Y, m;), and (Z, f;); are sources in Z such that
e€E (Yym), €M and f -e =m;-f for each i € I, then there exists a
morphism g:Z— Y such that f=g-e¢ and f,=m;-g foreach i€ Z is
called an (E, M)-category if and only if it is (E, M)-factorizable and has the
(E, M)-diagonalization property.

Let & be an (E, M)-category and T: — & be a functor. A source
(A, fi:A— A;) in o is called T-initial if and only if for each source
(B,gi:B— A;) in o and each morphism f:TB — TA in & such that
Tg; = Tf. - f for each i € I there exists a unique morphism f:B — A in o
such that Tf = f and g, = f, - f for each i € I. A source A,f.: A — A;); in o
T-lifts a source (X, g :X— TA;), in & if and only if there exists an
isomorphism h: X —> TA in & with g = Tf,-h for each i €I T is called
(E, M)-topological if and only if for each family (A;); of #£-objects and each
source (X, m; : X — TA,); in M there exists a T-initial source (A, fi: A — A, ),
in & which T-lifts (X, m; ).

The following result is due to Herrlich (1974).

ProposiTiON 1.1 If T is an embedding of a subcategory o4 of £ into Z, then
the following conditions are equivalent:
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(a) T is (E, M)-topological ;

) if (X, mi: X — A,); belongs to M and all A; belong to oA, then (X, m;);
belongs to A ;

(c) o is an E-reflective subcategory of Z.

Let & be a subcategory of . Then from this proposition we have a
smallest E-reflective subcategory &/ of & which contains s In fact an
Z-object X belongs to o if and only if there exists a source (X, m:: X — A;);
in M with s/-object A, for each i € L

Let & be an (E, M)-category and S : & — & be a functor. Es denotes the
class of all morphisms f in & with Sf € E and M; the class of all S-initial
sources (A, [} in Jwith (SA, Sf.); € M. Herrlich (1974) shows that if S is
(E, M)-topological, then o is an (Es, Ms)-category. If G : B — o is (Es, Ms)-
topological, then SG is (E, M)-topological.

Prorosition 1.2 Let Z be an (E, M)-category and S A > %, T B —> %,
F: B — o and G : A — B be functors with SF = T and TG = S. Suppose that
T is (E, M)-topological and there is a natural equivalence a : 1 = FG such that
Sa=1:8 > 8. Then S is (E, M)-topological.

ProOOF. Let (A;)r be a family of & -objects and (X, m;: X — SA;); be a
source in M. Since SA; = TGA, and T is (E, M)-topological, there exists a
T-initial source (B, n;: B— GA,); and an isomorphism h : X — TB such that
m, = Tn; - h. Consider a source (FB, a4 - Fn), in 4. Since SFB = TB and
S(aa-Fn)-h=Tn-h=m, (FB,aa - Fn), S-lifts (X, m;),. Suppose that
(G, fi:C— A;), is a source in & and k : SC — SFB is an &-morphism with
Sf. = Tn; - k. By the assumption that (B, n;); is T-initial, we have a 3-
morphism k: GC— B such that Gf. = n, -k and Tk = k. Let k = Fk - ac.
Then ai -Fn -k =f and Sk = k. Thus we have that (FB,a'-Fn), is
S-initial and that § is (E, M)-topological.

A separation system is a family g = (o, B, Z, S, T, F, G, a) consisting of
an (E, M)-category Z, (E, M)-topological functors S: f > Z and T: B —> Z,
functors F: B — o and G: f - B with S = TG and T = SF and a natural
transformation a:1 > FG. A g-separation is a pair (2,n) of a functor
3.: 9 — B and a natural transformation n : G = 3 such that Tn. belongs to
E for each sf-object A. For a g-separation (2, n) an «-object A is called
(3., n)-separated if and only if n. is an isomorphism. A full subcategory of o
consisting of all (2, n)-separated objects is denoted by o .,,. Then we have
the following.

THEOREM 1.3 Let g= (A, B, Z, S, T, F, G, a) be a separation system and
A, be a subcategory of A whose objects X satisfy that ax be isomorphisms. For a
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g-separation (2, m), there exists an Er-reflective subcategory B s ., of B such
that

G(AamNAa)= BN G(AL).
Conversely, if a subcategory A’ of A. satisfies
G(A)=RB' NG(HA)

for an Er-reflective subcategory B’ of B, then there exists a g-separation (Z,m)
such that A' = A sy N A..

Proor. For a g-separation (3, 1), let B .., be a smallest Er-reflective
subcategory of @B which contains G(A (s, N A.). We shall show that
G(AzmNH)D BiayN G(A,). Let B be an object in B s.,,,. Then there
exists a source (B, fi: B— GA,), in Mr with (3, n)-separated &, -objects A,
i€l Let B=GA for an #,-object A. It is sufficient to show that A is
(3, n)-separated. Let g = ai -Ff-as:A—>A. Then TGg = TGasi)
Tf. - TGaa. Since T is faithful (cf. Herrlich (1974) Th. 3.1), Gg =
Ga3l - fi - Gaa. Since Gail and Gaa are isomorphisms and My is closed
under composition with isomorphisms, (B, Gg;): belongs to Mr. By the
naturality of 7, 2g - na = nai - Gg. From the assumption, each 7., is an
isomorphism and hence (B,2g - n4): belongs to My. On the other hand
Nna € Er and we have that n. is an isomorphism, that is, A is (3, n)-
separated.

Conversely, for a given Er-reflective subcategory B’ of %, denote the
embedding functor by E:3B'— B, the reflector by R: % — B’ and the
reflection of a %B-object B by rg: B — RB. Define a functor 2, by 3 = ERG
and a natural transformation n: G = 3 by na = rga for each of-object A.
Then it is easily verified that (3, ) is a g-separation with ' = o 5., N A..

CoROLLARY 1.4 Let & be an (E, M)-category, S: 4 — %, T:B—> Z,
F:B — o and G : A — B be functors with SF = T and TG = S. Suppose that
T is (E, M)-topological and A is Er-reflective.in B with the embedding functor
G and the reflector F. Then g = (A, B, &, S, T, F, G, 1) is a separation system
and a subcategory of A consists of all (2, n)-separated objects for a g-
separation (%, n) if and only if it is Es-reflective in A.

For a separation system g, two g-separations (Z, n:) and (3, n;) are
called equivalent if and only if there is a natural equivalence v :3, = 3, such
that vy, = n,. If (21, n1) and (2., n,) are equivalent, 5, ,» = A (5,4, But the
converse does not hold (cf. § 4 below).
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2. Separations of pairs of subsets in TOP

Let X be a set and 6x be a binary relation in the power set P(X) of X. A
system (X, 8x) satisfying the following axioms is called an s-space (separation
space).

(s1) If AéxB, then BSxA.

(s2) Adx(B U C) if and only if AéxB or AdxC.

(s3) {x}6x{x} for any x € X.

(s4) P6xX,
where ¢ denotes the empty set and 8x means ‘not 8x’.

For s-spaces (X, 8x) and (Y, 8y) 2 mapping f: X — Y is called continu-
ous with respect to 8x and 8, provided that if AdxB for A, B C X, fAd,fB.
Thus we have a category SEP consisting of all s-spaces and all continuous
mappings.

s-spaces were defined and investigated by Wallace (1941) and many
variations of the concept were considered, for example, by Csaszar (1960),
Hammer (1963) and Pervin (1963). The following properties are known or can
easily be obtained.

ProrosiTiON 2.1 (1) A morphism f:(X,8x)—(Y,8y) in SEP is a
monomorphism in SEP if and only if the mapping f: X — Y is one-to-one.

(2) f is an epimorphism in SEP if and only if it is ‘onto’.

(3) fis an extremal monomorphism if and only if it is a monomorphism
and for any A, B C X, fAd+fB implies AbxB.

(4) fis an extremal epimorphism if and only if it is an epimorphism and for
any C,D CY, C8yD implies f~'Céxf™'D.

(5) Let (X, 8,) be an s-space for each element A of a set A and
X = PieaX, be the coproduct in ENS with the injection i,: X, — X. Define a
relation 8x as follows: Ad8xB if and only if there exists an element A such that
i;'A 8, iy'B. Then (X, 8x) is an s-space which is the coproduct in SEP of
(X\, 6,), A EA.

(6) Let (X,, 8,) be ans-space and X = I1,c4 X, be the product in ENS with
the projection p,: X — X,. Define a relation 8x as follows: AdxB if and only if
for any finite coverings A = U A,, B = U B,, there exist numbers iy, j, such that
DAGAB, for any A € A. Then (X, 8x) is an s-space which is the product in
SEP of (X, 8:), A EA.

Next we recall the definition of closure spaces (cf. Kannan (1972)). A set
X with a mapping ux: P(X)— P(X) is called a closure space if the following
conditions are satisfied. (c1) uxA D A. (c2) ux(A U B)= uxA U uxB. (c3)
ux¢ = ¢. For closure spaces (X, ux) and (Y, uy) a mapping f: X — Y is called
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continuous with respect to ux and uy if fuxA CuyfA for any A C X. Thus we
have a category CLS consisting of all closure spaces and all continuous
mappings.

The category TOP of all topological spaces and all continuous mappings
is considered as a full subcategory of CLS and moreover it is bireflective in
CLS (cf. Kannan (1972)). We shall denote the reflector and the embedding
functor by C:CLS— TOP and D :TOP— CLS respectively.

ProrosiTION 2.2 The forgetful functors Ts: SEP — ENS, T.:CLS— ENS
and T;: TOP— ENS are (E, M)-topological with the class E of all isomorph -
isms in ENS and the class M of all sources in ENS. Each class Er,, Er. or Er,
consists of all bimorphisms in each category and each class My, Mr_ or Mr,
consists of all sources ((X, *x), f: (X, *x)— (X, *:))r for which there exists a
subset K of I such that the induced morphism f: (X, *x)— (Y, *y) = [ (X *
satisfies one of the following conditions respectively

(My,) for any A, B CX, fA8,fB implies A8xB,

(My) for any A, B C X, uxA = f'uyfA,

(Mr;) = Mr).

The proof is easy and so omitted.
A topological space (X, ux) is called an R,-topological space if it satisfies
the following axiom.

(Ro) If x € ux{y}, x,y € X, then y € ux{x}.

The full subcategory R,-TOP of TOP consisting of all Re-topological spaces is
bireflective in TOP (cf. § 4 below). The forgetful functor Tr: R,-TOP — ENS
is also (E, M)-topological with E;, = Er; N R,-TOP and My, = My, N Ry
TOP.

We shall denote the classes Er,, Er., Er, and Er, by the same letter E,
and the classes My, M., My, and My, by M,.

Let (X, 6x) be an s-space. A function ux:P(X)— P(X) defined by
uiA ={x € X|{x}8xA}, A CX determines a closure space (X, u%). Let
f:(X, 6x)— (Y, 8y) be a morphism in SEP and let (X, ux), (Y, uy) be closure
spaces obtained from (X, 6x), (Y, 6y) by the above method. Then the mapping
f:X—Y is continuous with respect to ux and wuy. Thus by putting
F'(X, 8x) = (X, ux) and F'(f) = f, we obtain a functor F’:SEP — CLS. Define
a functor F:SEP— TOP by F = CF".

Let (X, u x) be a closure space. Define a relation 8x as follows: AéxB if
and only if wuxANuxB#. Then (X,8x) is an s-space. Let
f:(X, ux)— (Y, uy) be a morphism in CLS and let (X, 8x), (Y, 8y) be s-spaces
obtained from (X, ux), (Y, u+y). Then the mapping f: X — Y is continuous
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with respect to 6x and 8y. Thus by putting Gi(X, ux) = (X, 8x) and Gi(f) = f,
we obtain a functor G{:CLS->SEP. Define a functor G,: TOP— SEP by
G, =GiD.

ProrosiTioN 2.3 G, preserves monomorphisms and epimorphisms. If fis a
closed embedding in TOP, then G\(f) is an extremal monomorphism.

ReMark. The example in §4 below shows that G, need not preserve
extremal monomorphisms and products.

Proor. It is obvious that G, preserves monomorphisms and epimorph-
isms. Suppose that f: (X, ux)— (Y, uy) is a closed embedding. Then G,(f) =
f:(X, 8x)— (Y, 6y) is a monomorphism. Let fAS,fB, A, B CX. Then uyfA N
uvfB# . Since f is a closed embedding, fuxA N fuxB# & and hence
uxA NuxB# . This implies that A8xB and that f is an extremal
monomorphism in SEP.

Let (X, ux) be a topological space, (X, 8x) = G«(X, ux) and (X, vx)=
F(X, 8x). Then the identity mapping 1x:X — X induces a morphism
(a)x: (X, ux)— (X, vx) and we have a natural transformation a,: 1 > FG,.

ProrosiTiON 2.4 If a topological space (X, ux) satisfies the axiom (R,)
then (ai)x is an isomorphism in TOP.

ProoF. Let (X, vx) = F'Gi(X, ux). Then uxA CvxA forany A CX. Let
x E viA. Then {x}8xA and hence there exists an element y € ux{x} N uxA.
By the axiom (Ro), x € ux{y} CuxuxA = uxA. Hence uxA = viA and this
implies that vy = v4x = ux.

ProprosITION 2.5 (1) Let (X, u\), A EA and (X, ux) be Ry-topological
spaces such that G,(X, ux)=IlieaGi(X,, w). Then (X, ux) =1 er(X,, up).

(2) Let (X ux) and (Y, uy) be Ro-topological spaces with an extremal
monomorphism f:G(X, ux)—> G(Y,uy) in SEP. Then the mapping
[:X — Y induces an extremal monomorphism f:(X, ux)— (Y, uy) in TOP.

This follows immediately from Proposition 2.4,

It is noted that an s-space (X, 6x) belongs to G,(R,-TOP) if and only if
the following are satisfied:

(1) if {x}8x{x € X|{x}6xA}, A CX, then {x}5xA,

(2) AdxB, A, B CX if and only if there exists an element x € X such that
{x}6xA and {x}6xB.

We shall give another functor G,: TOP— SEP. Let (X, u x) be a closure
space. Define a relation 8x as follows: AéxB if and only if (uxA N B)U
(ANuxB)#J. Then (X, 8x) is an s-space and, by putting G4 X, ux)=
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(X, 8x ), we have a functor G;:CLS — SEP. Define a functor G,: TOP — SEP
by G,= G:D.

ProrosiTioN 2.6 G, preserves monomorphisms, epimorphisms, extremal
monomorphisms and M.

Proor. Let f:(X, ux)—(Y,uy) belong to M, in TOP, (X, éx)=
GAX, ux), (Y,8y)=GyY,uy) and let fAS8fB, A,BCX Then
(uvfA N fBYU (fA NuyfB)# & and hence (F'uxfANB)U
(A N f'uyfB)# . Since f belongs to M, in TOP, we have that (uxA N B) U
(A NuxB) # &, that is, A8xB and this implies that f belongs to M, in SEP.

For a topological space (X, ux), let (X, 6x)= G:(X, ux) and (X, vx)=
F(X, 6x). Then the identity mapping 1x:X->X induces a morphism
(a2)x: (X, ux)— (X, vx) in TOP and we have a natural transformation a,:1 =
FG..

ProrosiTiON 2.7 If a topological space (X, ux) satisfies the axiom (R,)
then (a:)x is an isomorphism in TOP.

This is similar to Proposition 2.4. We can also obtain the fact that G,
reflects products and extremal monomorphisms. An s-space (X, 8x) belongs
to G:(R,-TOP) if and only if the following are satisfied:

(1) if {x}8x{x € X[{x}6xA}, A CX, then {x}3xA,

(2) A8xB, A, B C X if and only if there exists a point a € A with {a}6xB
or a point b € B with {b}5xA.

ProrosITION 2.8 There exists a natural transformation k : G: = G, such
that each kx: G X, ux)— G\(X, ux) is a bimorphism in SEP.

In fact, kx is induced by the identity mapping 1x: X — X.

Let (X, d) be a metric space and (X, ux) an associated topological space.
Define an s-space (X, 8x) as follows: AéxB if and only if d(A, B)=0. Then
we have that Gi(X, ux) = (X, 8x), while G:(X, ux) is usually different from
Gi(X, ux).

Now we shall define two kinds of separations of pairs of subsets in TOP.
Proposition 2.2 implies that g, = (TOP, SEP, ENS, Tg, T, F, G, ;) is a separa-
tion system for i =1,2. Let (2, n) be a g;-separation and denote Z(X, ux) by
(X', ox). Then we can obtain an operator o which associates a topological
space (X, ux) to a binary relation gx on P(X) as follows: AaxB if and only if
nxAcinxB. o satisfies the conditions (s1), (s2), (s4) mentioned at the
beginning of this section and

(531) If uxA n uxB# @, then AO'xB

https://doi.org/10.1017/51446788700016347 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700016347

484 Ryosuke Nakagawa [9)

(s5) For any continuous mapping f:(X, ux)— (Y, uy), if AoxB then
fAovfB.

It is obvious that there is a one-to-one correspondence between equival-
ence classes of g,-separations (2, 1) and operators o satisfying the above five
conditions. Hence an operator o satisfying the above conditions is called a
g.-separation.

Similarly there is a one-to-one correspondence between equivalence
classes of g,-separations and operators 7 satisfying the conditions (s1), (s2),
(s4), (sS) and

(s3") If (uxA N B)U (A NuxB)#J, then A7«B.

Such an operator 7 is also called a g,-separation.
As an application of Theorem 1.3 we have the following.

THEOREM 2.9 The following statements on a subcategory A of R,-TOP
are equivalent for i = 1,2, respectively.

(a) If (X, ux)€ Ob Ry-TOP and (X,, u.) € Ob A for each A € A and if
there is a morphism f: G,(X, ux)— I1,eaGi(X,, u,) belonging to M, in SEP,
then (X, u,)€ Ob A.

(b) There exists a bireflective subcategory B of SEP such that G.(4)=
B N G;(R,-TOP).

(c) There exists a g:-separation o such that Ob o consists of all o-
separated Ro-topological spaces.

From Proposition 2.6 we have
CoroLLARY 2.10 Let 7 be a g, separation. If f:(X,ux)— (Y, uy) is a

morphism in Ry-TOP belonging to M, and if (Y, uy) is 7-separated, then
(X, ux) is T-separated.

A g;-separation o can be considered as a g,-separation which will be
denoted by &. The following is obvious.

ProposiTION 2.11 If a topological space (X, ux) is &-separated, it is
o-separated.

For a g.-separation = and a topological space (X, ux), define a relation 7«
on P(X) as follows: for A, B C X, A7xB if and only if uxA 7xuxB. Then 7 is a
gi-separation. Let (©,¢) and (0, ) be the pairs of functors and natural
transformations associated with 7 and , respectively. Then there exists a
natural transformation u :® = O such that /k = ul: G, > 0.

ProrosiTioN 2.12 If f:(X, ux)— (Y, uy) belongs to M, in R,-TOP and
(Y, uy) is 7-separated for a g.-separation 7, then (X, ux) is 7-separated. Hence
T-separated spaces are hereditarily 7-separated.
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Proor. By Corollary 2.10, (X, ux) is 7-separated. It is obvious that
T-separated spaces are T-separated.

We shall consider the following condition on g,-separations 7.
(H) If f:(X ux)—>(Y,uy) is an open embedding in TOP, then
fATvfB, A, B C X implies ArxB.

ProrosiTioN 2.13 Suppose that a g.-separation 7 satisfies the condition
(H). Then an Ry-topological space (X, ux) is 7-separated if and only if it is
hereditarily 7-separated.

Proor. Let (X, ux) be hereditarily 7-separated. For A, B CX with
(uxANBYU(ANuxB)=, let Y=X—-ux(ANB) and f:(Y,uy)—
(X, ux) be the embedding. Then uyf'A Nuyf'B=f"ux(ANB)=4.
Since (Y, uy) is ¥-separated, f 'A+,f 'B and hence f'AFyf 'B. Since f is an
open embedding and 7 satisfies (H), we have that A7xB. This implies that
(X, ux) is 7-separated.

RemARK. Examples in §4 show that Proposition 2.13 does not hold
without the condition (H) on 7.

For a g,-separation o, (&)’-separatedness coincides with o-
separatedness. For a g>-separation 7, however, (7)"-separatedness is different
from r-separatedness. In fact it will be shown in §4 that there exist
g>-separations 7,7’ with r-separatedness # 7’-separatedness and +-
separatedness = 7'-separatedness.

3. Separations of pairs consisting of a point and a subset in TOP

In this section we shall consider the separation system f= (TOP, CLS,
ENS, Ty, Te, C, D, 1). For a t-separation (A,A) and a topological space
(X, ux), let A(X, ux)= (X", 1%) and let IxA = A lxAxA for A CX. Then the
following are satisfied:

(11) uxA CIxA for A CX.
(12) k(A UB)=IxA UIxB for A, BCX.

(14) For any morphism f:(X, ux)— (Y, uy) in TOP and for any A CX,
flxA CLfA.

There is a one-to-one correspondence between equivalence classes of
t-separations (A, A) and operators ! which associate with any topological
space (X, ux) a mapping Iy : P(X)— P(X) satisfying the above conditions
(I1) ~ (14). Such an operator [ is also called a f-separation.

For t-separations we can apply Corollary 1.4 and obtain the following.
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THEOREM 3.1 A subcategory o of TOP is bireflective in TOP if and only
if there exists a I-separation | such that Ob oA consists of all I-separated
topological spaces.

Let TOP, be the full subcategory of TOP consisting of all To-spaces. It is
known that TOP, is extremal epi-reflective in TOP. The class M, in TOP is
used to characterize T,-spaces.

ProproSITION 3.2 A topological space (X, ux) satisfies the separation
axiom Ty if and only if any morphism f:(X, ux)— (Y, uy) belonging to M, is
an embedding.

Proor. Let (X, ux) be not a Ty-space. Then there are two distinct points
x, y € X such that every open set containing one of x, y contains them both.
By identifying x and y we can obtain a quotient space (Y, uy ). Then it is shown
that the quotient mapping f: (X, ux)— (Y, uy) belongs to M,. The converse is
obvious.

THEOREM 3.3 A subcategory s of TOP, is epireflective in TOP if and
only if there exists a ¥-separation | such that Ob A consists of all I-separated
To-spaces.

ProoF. Suppose that o is epireflective in TOP and denote the reflector
by R:TOP— & and the reflection of (X, ux) by rx:(X, ux)— R(X, ux).
Define an operator | by IxA = rXlusxrxA for A CX. Then we have a
f-separation I It is obvious that any object in & is [-separated. Let (X, ux) be
an l-separated T,-space. Then uxA = ry'uzxrxA holds for any A CX and
this implies that rx belongs to M,. By Proposition 3.2 we have that rx is an
isomorphism and (X, ux) belongs to &. The converse follows from Theorem
3.1.

Sharpe, Beattie and Marsden (1966) gave a uniform definition of point
separation axioms and Wyler gave a characterization of separated spaces.

ProrosiTion 3.4 (Wyler) A subcategory A of TOP is extremal epi-
reflective in TOP if and only if there exists a point separation axiom p such that
Ob oA consists of all p-separated spaces.

A point separation axiom p will be called trivial if any topological space

is p-separated.

CoroLLARY 3.5 Suppose that a point separation axiom p is non-trivial.
Then the full subcategory A, of TOP consisting of all p-separated spaces is an
intersection of TOP, and a full subcategory 4, of TOP consisting of all
l-separated spaces for some f-separation I.
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Proor. From the non-triviality of p and Proposition 3.4, we have that
s, CTOP,. Hence we can apply Theorem 3.3 and obtain the result.

4. Examples

Let (X, ux) be a topological space and define relations o x, %, 7xand 7%
as follows:

Ao B if and only if any open subsets U, V C X with U D uxA, V D uxB
have a non-empty intersection,

Aa%B if and only if there is no continuous mapping f:(X, ux)— [0, 1]
with f(A)=0 and f(B)=1,

A7 xB if and only if any open subsets U, V C X with U D A, VD B have
a non-empty intersection,

AT%B if and only if there is no continuous mapping f:(X, ux)—[0,1]
with f(A)C[0,3) and f(B)C(,1].

Then o', o are g,-separations and 7', 7° are g,-separations. A topologi-
cal space (X, ux) is o'-, o’-, or v'-separated if and only if it is a T,-, Ts- or
Ts-space, respectively. 7°- and (o”)"-separated spaces are considered by
Terada (1975), too. He uses them for characterizing z-embedded spaces.
(7")’- and (77)’- separatedness coincide with the axiom T,, while it can be
shown that there is a 7'-separated space which is not 7*-separated.

For the unit interval {0,1] with the usual topology u, let (I, 8,)=
G:([0,1], ;) and ¥ be the bireflective hull of (I, 6,) in SEP for i = 1,2.

THEOREM 4.1 Let M, and M. be the full subcategories of Ro,-TOP
consisting of all o*- and % separated spaces respectively. Then

G.(M)= % NG.(R-TOP), i=12.

Proor. We shall show that #, is the bireflective hull in SEP of G,(4,).
Suppose that (X, ux) is o*-separated (= Ty-space). Let A be a set consisting of
all pairs (A, B) of closed subsets A, BC X with A N B = . For (A, B)EA,
there is a continuous mapping fus: (X, ux)— ([0,1],u) in TOP with
fian(A)=0 and fus(B)=1 and this induces a morphism
fiamy: G(X; ux) = (Iiamy 8(ap) in SEP, where (I(a s), 8ap)= Gi([0, 1], ur).
(fam)anmer defines a morphism f:Gi(X, ux)— a e (Liary» 8a.n)) such
that pa.s)f = fa.s). Then we can show that f belongs to M, in SEP and hence
G (X, ux) belongs to #,.

Next, we give examples for f-separations. Let (X, ux) be a topological
space and define operators I, i =0,1,2,3 as follows:

13A = {x € X|ux{x} N uxA # 3},
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IXA = {x € X | there is a point y € uxA such that any open subsets U, V
with U D x, V 3 y have a non-empty intersection},

I3A ={x € X |any open subsets U,V with UDx, VDA have a
non-empty intersection},

IXA ={x € X | there is no continuous mapping f:(X, ux)— ([0, 1], u)
with f(x)=0 and f(A)=1}.

Then each [' is a f-separation. A bireflective subcategory of TOP
consisting of all ['-separated spaces will be denoted by Ri-TOP. It is noted
that I°-separatedness coincides with the axiom (R,). Let A’: TOP— CLS be a
functor associated with I'. Then there are examples in Sharpe, Beattie and
Marsden (1966) and Thomas (1968) which show that CA' : TOP — TOP does
not coincide with the reflector R’ : TOP— R,-TOP for each i = 1,2, while
A’: TOP — TOP coincides with the reflector R”.

ProrosiTioN 4.2. R;-TOP N TOP, is an epireflective subcategory whose
reflector is given by the composition T°R' for each i=0,1,2,3, where
T°: TOP— TOP, is the reflector, and

Ro-TOP N TOP, = TOP, (T\-spaces),

R;-TOP N TOP, = TOP, (T»>-spaces),
R,-TOPNTOP, = REG (regular spaces),
R;-TOPNTOP, = CR (completely regular spaces).

RemMARK. Davis (1961) defines ‘axioms of regularity’ R,, R, and R,. His
axiom R; coincides with ['-separatedness for i = 0,2, while R, is rather a
point separation axiom and hence differs from /'-separatedness.

A t-separation [ which gives null-dimensionality is defined as follows:

IxA ={x € X | any open and closed subspace U containing x has a
non-empty intersection with A}.

Let NEAR be the category of all near spaces defined by Herrlich (1974a)
and let g=(R,-TOP, NEAR, ENS, T:, Ty, F, G, 1), where
T~ :NEAR — ENS be the forgetful functor, G the embedding functor and F
the coreflector. For an Ro-topological space (X ux) let £x=
{# CP(X)| N{uxA|A € B} # & for any finite subset B C.of}. Then (X, {%)
belongs to NEAR and we have a functor %:R,-TOP—NEAR by taking
3(X, ux)= (X, €x). An identity mapping 1x:X — X induces a morphism
nx :G(X, ux)— 2(X, ux). Thus we have a g-separation (%,7n). An R
topological space is (2, n )-separated if and only if it is compact. A near space
belonging to the subcategory denoted by % .., in Theorem 1.3 is a contigual
space defined in Herrlich (1974a).
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Finally we give another example which concerns collectionwise normal-
ity. For this purpose we shall define quasi-near spaces. Let X be a set. If a
subset &x of P(P(X)) satisfies the following conditions, (X, éx) is called a
quasi-near space.

(N1) For A ={A,.|u EM}, B={B.|lpu EM}CP(X), if & and
A, CB, for each u € M, then &%.

(N2) If Aé&x%€ and Béx%, A, B CX, € CP(X), then A U B&%.

(N3) If o CB CP(X) and &xsd, then &x%B.

(N4) {x}éx{x} for any x € X.

(NS) ¢ng

Let (X, &) and (Y, &) be quasi-near spaces. A mapping f: X = Y is
called a continuous mapping with respect to £éx and &, provided that if &xf
then &vfof for any of CP(X). All quasi-near spaces and all continuous
mappings between them form a category Q-NEAR. This category has similar
properties to those of SEP.

For a quasi-near space (X, éx), define ux by uxA = {x € X|{x}¢xA} for
A CX. Then we have a closure space (X,ux) and a functor F':Q-
NEAR—CLS with F'(X éx)=(X,ux). Define a functor F:Q-
NEAR - TOP by F = CF'. For a topological space (X, ux), define £x and & x
as follows: for of CP(X), é&xoA if and only if o is a discrete family; for
A ={A.|u EM}CP(X), £ixd if and only if there exists a discrete family
A ={A,|p € M} such that A, is open and A, D A, for each p € M. Then
we have quasi-near spaces (X, &) and (X, £%), functors G,Z:TOP— Q-
NEAR with G(X, ux)= (X, &x) and (X, ux) = (X, £x) and a natural transfor-
mation 7 : G = 3 such that nx is induced from the identity mapping 1x. Thus
in the category TOP we can define a separation (%, n) such that (2, n)-
separatedness coincides with collectionwise normality. It can also be shown
that a T)-space is collectionwise normal if and only if it is embedded in a
product of Banach spaces in Q-NEAR.
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