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Abstract

The notion of Hochschild cochains induces an assignment from Aff, affine DG schemes,

to monoidal DG categories. We show that this assignment extends, under appropriate

finiteness conditions, to a functor H : Aff → Algbimod(DGCat), where the latter denotes

the category of monoidal DG categories and bimodules. Any functor A : Aff →

Algbimod(DGCat) gives rise, by taking modules, to a theory of sheaves of categories

ShvCatA. In this paper, we study ShvCatH. Loosely speaking, this theory categorifies

the theory of D-modules, in the same way as Gaitsgory’s original ShvCat categorifies the

theory of quasi-coherent sheaves. We develop the functoriality of ShvCatH, its descent

properties and the notion of H-affineness. We then prove the H-affineness of algebraic

stacks: for Y a stack satisfying some mild conditions, the ∞-category ShvCatH(Y) is

equivalent to the ∞-category of modules for H(Y), the monoidal DG category of higher

differential operators. The main consequence, for Y quasi-smooth, is the following: if

C is a DG category acted on by H(Y), then C admits a theory of singular support

in Sing(Y), where Sing(Y) is the space of singularities of Y. As an application to the

geometric Langlands programme, we indicate how derived Satake yields an action of

H(LSǦ) on D(BunG), thereby equipping objects of D(BunG) with singular support in

Sing(LSǦ).

1. Introduction

1.1 Overview

The present paper is a contribution to the field of categorical algebraic geometry. In this field

one studies schemes and stacks via their categorical invariants, as opposed to their usual linear

invariants. Among the usual invariants, typical examples are the coherent cohomology, the de

Rham cohomology, the Picard group. An example of a categorical invariant is the symmetric

monoidal category of quasi-coherent sheaves; other examples, including the invariant ShvCatH

appearing in the title of this paper, will be given below.

The extra level of categorical abstraction might appear unjustified at first sight, but it turns

out to be quite useful in several concrete situations. In this paper we will encounter a few, for

instance in §§ 1.2.6, 1.4.1 and 1.11.
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The interplay between categorical and ordinary algebraic geometry is likely to be very fruitful.
For more on the comparison between the two points of view, we recommend the discussion and
the dictionary appearing in [Lur18, p. 720].

In the rest of this overview, after discussing some illuminating examples, we will roughly state
the goals and the main results of this paper. These results and goals will be further clarified in
the later sections of the introduction.

1.1.1 As mentioned earlier, given a scheme or an algebraic stack Y, its most basic categorical
invariant is the symmetric monoidal differential graded (DG) category QCoh(Y).

It turns out that there are strong analogies between the behaviour of QCoh(Y) for an
algebraic stack Y and the behaviour of H∗(Y,OY ) for an affine scheme1 Y . In other words,
categorical algebraic geometry has many more affine objects than ordinary algebraic geometry.
Let us illustrate this principle with three examples.

1.1.2 Tannaka duality. For Y an algebraic stack satisfying mild conditions, Tannaka duality
[Lur18, ch. 9] allows one to ‘recover’ Y from the symmetric monoidal DG category QCoh(Y). On
the other hand, the DG algebra H∗(Y,OY) does not recover Y, unless Y is an affine DG scheme.

1.1.3 Tensor products. Given a diagram X → Z ← Y of (DG) affine schemes, one has

H∗(X ×Z Y,OX×ZY ) ' H∗(X,OX) ⊗L

H∗(Z,OZ)
H∗(Y,OY ).

Note that it is essential that the fibre product is taken in the derived sense. This formula
obviously fails for very simple non-affine schemes and stacks. On the other hand, the categorical
counterpart is the tensor product formula

QCoh(X×Z Y) ' QCoh(X) ⊗
QCoh(Z)

QCoh(Y), (1.1)

which holds true for most algebraic stacks X, Y, Z that one encounters in practice; see, for
instance, [BFN10].

The right-hand side of the above formula involves the tensor product of DG categories [Lur17],
which plays a crucial role in the theory. Note that QCoh(Z) acts on QCoh(X) and on QCoh(Y)

by pullback along the given maps X
f−→ Z

g
←− Y.

1.1.4 1-affineness. In the categorical context, one considers categorified quasi-coherent
sheaves over a scheme or a stack Y. These categorified sheaves are defined in [Gai15b] under
the name of ‘sheaves of categories’, and in [Lur18, ch. 10] under the name of ‘quasi-coherent
stacks’. They assemble into an ∞-category denoted ShvCat(Y). We will recall and generalize the
notion of ShvCat in § 1.6.

In the above papers it is proven that most algebraic stacks, while far from being affine
schemes, are nevertheless 1-affine: by definition, Y is 1-affine if the ∞-category ShvCat(Y) is
equivalent to the ∞-category of modules DG categories for QCoh(Y). This categorifies the
classical fact that, for Y an affine DG scheme, a quasi-coherent sheaf is the same as a module
over H∗(Y,OY ).

1 We will soon be forced to consider DG schemes. By construction, the cohomology H∗(Y,OY ) of an affine DG
scheme is possibly non-zero in negative degrees: this explains the notation H∗(Y,OY ) in place of the more tempting
H0(Y,OY ).
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1.1.5 The above examples illustrate the point of view that QCoh(Y) is the categorical

counterpart of the algebra of functions on an affine DG scheme.

In [Ber17b] we introduced another monoidal DG category, H(Y), which is the categorical

counterpart of the algebra of differential operators on an affine DG scheme.

In a nutshell, the goal of the present paper is to develop the tensor product formula and the

1-affineness result with H(Y) in place of QCoh(Y).

1.1.6 Tensor products for H. The tensor product formula in the H situation is by necessity

slightly different from (1.1). Indeed, as explained in detail later, there is no natural action of

H(Z) on H(X). Rather, these two monoidal DG categories are connected by a transfer bimodule

category HX→Z. (This is in perfect agreement with the situation of rings of differential operators,

from which the notation is borrowed.) Under some conditions to be discussed later, the tensor

product formula reads

HX←X×ZY ⊗
H(X×ZY)

HX×ZY→Y ' HX→Z ⊗
H(Z)

HZ←Y.

For some pleasing applications of this formula, the reader might look ahead at §§ 1.10 and 1.11.

1.1.7 1-affineness for H (or H-affineness). The 1-affineness mentioned in § 1.1.4

corresponds, in the H setup, to our main Theorem 1.7.4, which establishes a tight link between

modules categories for H(Y) and categorified D-modules on Y. The latter are also called sheaves

of categories over Y with local actions of Hochschild cochains, and denoted by ShvCatH(Y). As

we explain in the following sections, the objects of ShvCatH(Y) are the sheaves of categories for

which a notion of singular support is defined and well behaved.

1.2 Singular support via the H-action

1.2.1 In [Ber17b] we introduced a monoidal DG category H(Y) attached to a quasi-smooth

stack Y. In contrast to QCoh(Y), which can be defined in vast generality, the construction of

H(Y) requires some (mild) conditions on Y. The definition of H(Y) and the necessary conditions

on Y are recalled in § 1.3. For now, let us just say that any quasi-smooth stack Y satisfies those

conditions.

1.2.2 As a brief reminder of the notion of quasi-smoothness: an algebraic stack Y is quasi-

smooth if it is smooth locally a global complete intersection. It follows that, for any geometric

point y ∈ Y, the y-fibre LY,y := LY|y of the contangent complex has cohomologies concentrated

in degrees [−1, 1].

Thus, to a quasi-smooth stack Y we associate the stack Sing(Y) that parametrizes pairs (y, ξ)

with y ∈ Y and ξ ∈ H−1(LY,y). This is the space that controls the singularities of Y (see [AG15]),

and it is equipped with a Gm-action that rescales the fibres of the projection Sing(Y)→ Y.

1.2.3 Suppose that a DG category C carries an action of H(Y). The goal of this paper is to

explain how rich this structure is. As an example, let us informally state here the most important

consequence of our main results.

Theorem 1.2.4. Let Y be a quasi-smooth stack and C a left H(Y)-module. Then C is equipped

with a singular support theory relative to Sing(Y).
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1.2.5 To make sense of this, we need to explain what we mean by ‘singular support theory’.
First and foremost, this means that there is a map (the singular support map) from objects of
C to closed conical subsets of Sing(Y). For each such subset N ⊆ Sing(Y), we set CN to be the
full subcategory of C spanned by those objects with singular support contained in N.

The second feature of a singular support theory is that any inclusion N ⊆ N′ yields a
colocalization (that is, an adjunction whose left adjoint is fully faithful) CN � CN′ .

1.2.6 Thus, the datum of an action of H(Y) on C immediately produces a multitude of
semi-orthogonal decompositions of C, one for each closed conical subset of Sing(Y). Obviously,
these decompositions help compute Hom spaces between objects of C.

More generally, the philosophy2 is that, in the presence of an H(Y)-action on C, any
decomposition of Sing(Y) into atomic blocks induces a decomposition of C into atomic blocks.
By ‘atomic blocks’ we mean closed conical subsets of Sing(Y) that are of a particular significance
or simplicity, such as the zero section, a particular fibre, or more generally the conormal bundle
of a closed subset of Y. See [AG18, Ber18] for applications of this principle.

1.2.7 It is also natural to require that singular support be functorial in C. Namely, given
an H(Y)-linear functor F : C → D and N ⊆ Sing(Y), we would like F to restrict to a functor
CN → DN. Fortunately, this is also guaranteed by our theory. Hence the informal statement of
Theorem 1.2.4 could be improved as follows.

Theorem 1.2.8. For Y a quasi-smooth stack, H(Y)-module categories admit a singular support
theory relative to Sing(Y).

Remark 1.2.9. The proof of this theorem is an easy consequence of the construction of H(Y)
(namely, the relation with Hochschild cochains as in § 1.5) and our H-affineness theorem,
Theorem 1.7.4.

Remark 1.2.10. Our expectation on possible usages of this theorem is the following. It is generally
difficult to directly equip C with a singular support theory relative to Sing(Y); instead, one should
try to exhibit an action of H(Y) on C. In § 1.4 we will illustrate a concrete application of this
point of view on the geometric Langlands programme.

1.2.11 There exists a monoidal functor QCoh(Y) → H(Y); hence, an H(Y)-action on C

means in particular that C admits a QCoh(Y)-action. Thus, our theorem above can be regarded
as an improvement of the following one in the setting of quasi-smooth stacks.

Theorem 1.2.12. Let Y be an algebraic stack (not necessarily quasi-smooth). Then left
QCoh(Y)-modules are equipped with a support theory relative to Y.

1.3 The monoidal category H(Y)
Let us now recall the elements that go into the definition of H(Y), following [AG18] and [Ber17b].
Although the applications of this theory so far concern only Y quasi-smooth, the natural set-up
for H(Y) is more general. Namely, we assume that Y is a quasi-compact algebraic stack which is
perfect, bounded (eventually coconnective) and locally of finite presentation (lfp). See [BFN10]
for the notion of ‘perfect stack’.

2 Strictly speaking, this is not a consequence of the results of this paper. We refer to the analysis of [Ber18].
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1.3.1 The definition of H requires some familiarity with the theory of ind-coherent sheaves

on formal completions. We refer to [GR17, ch. III] or [Ber17b] for a quick review.

Nevertheless, let us recall the most important concepts. First, YdR denotes the de Rham

prestack of Y, whence Y×YdR
Y is the formal completion of the diagonal ∆ : Y→ Y× Y. Second,

we have the standard functor

ΥY : QCoh(Y) −→ IndCoh(Y),

which is the functor of acting on the dualizing sheaf ωY ∈ IndCoh(Y). The boundedness condition

on Y is imposed so that ΥY is fully faithful.

1.3.2 We define H(Y) to be the full subcategory of IndCoh(Y×YdR
Y) cut out by the

requirement that the image of the pullback functor ∆! : IndCoh(Y×YdR
Y) → IndCoh(Y) be

contained in the subcategory ΥY(QCoh(Y))⊆ IndCoh(Y). Now, IndCoh(Y×YdR
Y) has a monoidal

structure given by convolution, that is, pull-push along the correspondence

Y×YdR
Y× Y×YdR

Y
p12×p23
←−−−−− Y×YdR

Y×YdR
Y

p13−−→ Y×YdR
Y.

The lfp assumption on Y is crucial: it ensures that H(Y) is preserved by this multiplication,

thereby inheriting a monoidal structure.

Example 1.3.3. Of course, H(Y) admits two obvious module categories: IndCoh(Y) and QCoh(Y).

For IndCoh(Y), the theory of singular support of Theorem 1.2.4 reduces to the one developed by

[AG15] and before by [BIK08].

Example 1.3.4. By [AG15], objects of QCoh(Y) have singular support contained in the zero

section of Sing(Y): in our language, this is expressed by the fact that the action of H(Y) on

QCoh(Y) factors through the monoidal localization

H(Y)� QCoh(Y×YdR
Y).

The construction and study of this monoidal localization are deferred to another publication.

For now, let us say that we will call C ∈ H(Y)-mod tempered if the H(Y)-action factors through

the above monoidal quotient.

1.4 H for Hecke

In this section, we anticipate a future application of Theorem 1.2.4. The reader not interested

in geometric Langlands might skip ahead to § 1.5.

1.4.1 Let us recall the rough statement of the geometric Langlands conjecture (see [AG15]):

there is a canonical equivalence D(BunG)' IndCohN(LSǦ). This conjecture predicts in particular

that any F ∈ D(BunG) has a (nilpotent) singular support in Sing(LSǦ). The question that

prompted the writing of this paper and the study of H is the following: is it possible to exhibit

this structure on D(BunG) independently of the geometric Langlands conjecture?

Having such a notion is evidently desirable, as it allows us to cut out D(BunG) into several

subcategories by imposing singular support conditions. For instance, the zero section OLSǦ
⊆

Sing(LSǦ) ought to give rise to the DG category D(BunG)OLS
Ǧ

of tempered D-modules.
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1.4.2 Our Theorem 1.2.4 gives a way to answer the above question. We make the following
claim, which we plan to address elsewhere: there is a canonical action of H(LSǦ) on D(BunG).

Modulo technical and foundational details, the construction of such action goes as follows.

– Consider the action of the renormalized spherical category Sphren
G,Ran on D(BunG).3

– Derived geometric Satake over Ran yields a monoidal equivalence between Sphren
G,Ran and the

(not yet defined) convolution monoidal DG category

Sphspec,ren

Ǧ,Ran
:= IndCoh

((
LSǦ(D)×LSǦ(D×) LSǦ(D)

)∧
LSǦ(D)

)
Ran

.

– The argument of [Roz11] yields a monoidal localization

Sphspec,ren

Ǧ,Ran
� H(LSǦ),

with kernel denoted by K.

– Now consider the spherical category Sphspec,naive
G,Ran , the monoidal localization

Sphspec,naive
G,Ran � QCoh(LSǦ)

with kernel denoted Knaive, and the monoidal functor

Sphspec,naive
G,Ran −→ Sphspec,ren

Ǧ,Ran
.

– By construction, the essential image of the resulting functor Knaive
→ K generates the

target under colimits.

– The vanishing theorem [Gai15a] states that objects of Knaive act by zero on D(BunG),
whence the same is true for objects of Kl in other words, the Sphren

G,Ran-action on D(BunG)
factors through an action of H(LSǦ).

In particular, the construction implies that H(LSǦ) acts on D(BunG) by Hecke functors.

1.5 H for Hochschild
To motivate the definition of H(Y) and to explain the connection with singular support, it
is instructive to look at the case where Y = S is an affine DG scheme. Under our standing
assumptions, S is of finite type, bounded and with perfect cotangent complex. (Hereafter, we
denote by Aff<∞lfp the ∞-category of such affine schemes.) In this case, the monoidal category
H(S) is very explicit: it is the monoidal DG category of right modules over the E2-algebra

HC(S) := EndQCoh(S×S)(∆∗(OS))

of Hochschild cochains on S. Under the equivalence H(S) ' HC(S)op-mod, the monoidal functor
QCoh(S)→ H(S) corresponds to induction along the E2-algebra map Γ(S,OS)→ HC(S)op.

1.5.1 From this description, one observes that Theorem 1.2.4 is obvious in the affine case.
Indeed, as we have just seen, the datum of C ∈H(S)-mod means that C is enriched over HC(S)op.
Now, the Hochschild–Kostant–Rosenberg theorem yields a graded algebra map

SymH0(S,OS)(H
1(TS)[−2]) −→ HH•(S),

and, by definition, singular support for objects of C is computed just using the action of the
left-hand side on H•(C).

3 See [AG15, § 12.2.3] for the pointwise (as opposed to Ran) version.
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1.5.2 In summary, there is a hierarchy of structures that a DG category C might carry:

– an action of the E2-algebra HC(S)op;

– an action of the commutative graded algebra SymH0(S,OS)H
1(S,TS)[−2] on H•(C);

– an action of the commutative algebra H0(S,OS) on H•(C).

The first two data endow objects of C with singular support, which is a closed conical subset of
Sing(S); see [AG15]. The third datum only allows us to define ordinary support in S.

1.6 Sheaves of categories
Next, we would like to generalize the above constructions to non-affine schemes and then to
algebraic stacks. The key hint is that singular support of quasi-coherent and ind-coherent sheaves
can be computed smooth locally. Thus, we hope to be able to glue the local HC-actions as well.

1.6.1 The first step towards this goal is to understand the functoriality of H(S)-mod along
maps of affine schemes. This is not immediate, as HC(S) is not functorial in S. In particular, for
f : S→ T a morphism in Aff<∞lfp , there is no natural monoidal functor between H(T ) and H(S).
However, these two monoidal categories are connected by a canonical bimodule

HS→T := IndCoh0((S × T )∧S).

Example 1.6.2. Observe that HS→pt ' QCoh(S) and HS→S = H(S).

1.6.3 Moreover, for any string S → T → U in Aff<∞lfp , there is a natural functor

HS→T ⊗
H(T )

HT→U −→ HS→U , (1.2)

given by convolution along the obvious correspondence

(S × T )∧S × (T × U)∧T ←− (S × T × U)∧S −→ (S × U)∧S .

We will prove in Theorem 4.3.4 that (1.2) is an equivalence of (H(S),H(U))-bimodules. It follows
that the assignment [S → T ] HS→T upgrades to a functor

H : Aff<∞lfp −→ Algbimod(DGCat),

where Algbimod(DGCat) is the ∞-category whose objects are monoidal DG categories and whose
morphisms are bimodules.

1.6.4 A functor

A : Aff → Algbimod(DGCat)

(or a slight variation, for example the functor H : Aff<∞lfp → Algbimod(DGCat)) will be called a
coefficient system in this paper. Informally, A consists of the following pieces of data:

– for an affine scheme S, a monoidal DG category A(S);

– for a map of affine schemes f : S → T , an (A(S),A(T ))-bimodule AS→T ;

– for any string of affine schemes S → T → U , an (A(S),A(U))-bilinear equivalence

AS→T ⊗
A(T )

AT→U −→ AS→U ;

– a system of coherent compatibilities for higher compositions.
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The reason for the terminology is that each A is the coefficient system for a sheaf of categories
attached to it. More precisely, the datum of A as above allows us to define a functor

ShvCatA : PreStkop −→ Cat∞

as follows:

– for S affine, we set ShvCatA(S) = A(S)-mod;

– for f : S → T a map in Aff, we have a structure pullback functor

f∗,A : ShvCatA(T ) = A(T )-mod

AS→T ⊗
A(T )
−

−−−−−−−→ ShvCatA(S) = A(S)-mod;

– for Y a prestack, we define ShvCatA(Y) as a right Kan extension along the inclusion Aff ↪→
PreStk, that is,

ShvCatA(Y) = lim
S∈(Aff/Y)op

A(S)-mod.

Thus, an object of ShvCatA(Y) is a collection of A(S)-modules CS , one for each S mapping to Y,
together with compatible equivalences AS→T ⊗A(T ) CT ' CS .

Example 1.6.5. The easiest non-trivial example of coefficient system is arguably the one denoted
by Q and defined as

Q(S) := QCoh(S), QS→T := QCoh(S) ∈ (QCoh(S),QCoh(T )) -bimod.

The theory of sheaves of categories associated to Q is the ‘original one’, developed by D. Gaitsgory
in [Gai15b]. There such theory was denoted by ShvCat; in this paper, for the sake of uniformity,
we will instead denote it by ShvCatQ.

Example 1.6.6. Parallel to the above, consider the coefficient system D : Affaft →

Algbimod(DGCat) defined by

D(S) := D(S), DS→T := D(S) ∈ (D(S),D(T )) -bimod.

The theory ShvCatD is the theory of crystals of categories, also discussed in [Gai15b].

Remark 1.6.7. The following list of analogies is sometimes helpful: ShvCatQ categorifies quasi-
coherent sheaves, ShvCatD categorifies locally constant sheaves, ShvCatH categorifies D-modules.

1.7 H-affineness
In line with the first of the above analogies, the foundational paper [Gai15b] constructs an explicit
adjunction

In line with the analogy again, a prestack Y is said to be 1-affine if these adjoints are mutually
inverse equivalences. This is tautologically true in the case where Y is an affine scheme. However,
there are several other examples: most notably many algebraic stacks (specifically, quasi-compact
bounded algebraic stacks of finite type and with affine diagonal) are 1-affine; see [Gai15b,
Theorem 2.2.6].

For the sake of uniformity, we take the liberty to rename ‘1-affineness’ as ‘Q-affineness’.
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1.7.1 One of our main constructions is the adjunction

(1.3)

sketched below (and discussed thoroughly in § 6.2). Contrarily to the Q-case, in the H-case we
do not allow Y to be an arbitrary prestack, but we need Y to be an algebraic stack satisfying the
conditions that make H(Y) well defined; see § 1.3.

1.7.2 The definition of the left adjoint LocHY is easy. For a map S → Y with S ∈ Aff<∞lfp ,
look at the (H(S),H(Y))-bimodule HS→Y := IndCoh0((S × Y)∧S). Given C ∈ H(Y)-mod, we form
the H-sheaf of categories

LocHY (C) :=
{
HS→Y ⊗

H(Y)
C
}
S
.

To define the right adjoint ΓH
Y , we need to make sure that each bimodule HS→Y admits a right

dual. Such right dual exists and it is fortunately the obvious (H(Y),H(S))-bimodule

HY←S := IndCoh0((Y× S)∧S).

From this, it is straightforward to see that

ΓH
Y ({ES}S) ' lim

S∈(Aff<∞
lfp )op

HY←S ⊗
H(S)

ES ,

with its natural left H(Y)-module structure.

1.7.3 We can now state our main theorem.

Theorem 1.7.4. Any Y ∈ Stk<∞lfp is H-affine, that is, the adjoint functors in (1.3) are
equivalences.

In the rest of this introduction, we will explain our two applications of this theorem: the
relation with singular support as in Theorem 1.2.4, and the functoriality of H for algebraic
stacks.

1.8 Change of coefficients
Coefficient systems form an ∞-category. By definition, a morphism A→ B consists of an (A(S),
B(S))-bimodule M(S) for any S ∈ Aff, and of a system of compatible equivalences

AS→T ⊗
A(T )

M(T ) 'M(S) ⊗
B(S)

BS→T . (1.4)

Under mild conditions, a morphism of coefficient systems A→ B gives rise to an adjunction

(1.5)

which may be regarded as a categorified version of the usual ‘extension/restriction of scalars’
adjunction.

Example 1.8.1. For instance, QCoh yields a morphism H→ D; that is, QCoh(S) is naturally an
(H(S),D(S))-bimodule and there are natural equivalences

HS→T ⊗
H(T )

QCoh(T ) ' QCoh(S) ⊗
D(S)

DS→T

for any S → T . In fact, both sides are obviously equivalent to QCoh(S).

1529

https://doi.org/10.1112/S0010437X19007413 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007413


D. Beraldo

Example 1.8.2. Similarly, IndCoh gives rise to a morphism D→ H; indeed, both sides of

DS→T ⊗
D(T )

IndCoh(T ) ' IndCoh(S) ⊗
H(S)

HS→T

are equivalent to IndCoh(T∧S ), as shown in the main body of the paper.

Remark 1.8.3. Continuing the analogies of Remark 1.6.7, one may think of QCoh(Y) as a
categorification of the algebra OY of functions on Y (a left D-module). Likewise, IndCoh(Y)
categorifies the space of distributions on Y (a right D-module). Then the H-affineness theorem
states that H categorifies the algebra of differential operators on Y. These observations help
remember/explain the directions of the morphisms H → D and D → H in the two examples
above: QCoh is naturally a left H-module, while IndCoh is naturally a right H-module.

Remark 1.8.4. Our Theorem 1.9.2 shows that the morphism QCoh : H→ D is ‘optimal’ in that
the natural monoidal functor

D(Y ) −→ FunH(Y )(QCoh(Y ),QCoh(Y ))

is an equivalence for any Y ∈ Sch<∞lfp . On the other hand, the morphism IndCoh : D→ H is not
optimal; in another work (see [Ber18] for more in this direction), we plan to show that

FunH(Y )(IndCoh(Y ), IndCoh(Y )) ' ‘D’(LY ), (1.6)

where ‘D’(LY ) is the monoidal DG category introduced in [Ber17b]. For Y quasi-smooth,
‘D’(LY ) is closely related to D(Sing(Y )). We remark that the above equivalence (1.6) would
provide an answer to the question ‘What acts on IndCoh?’ raised in [AG18, Remark 1.4.3].

Example 1.8.5. Another morphism of coefficient systems of interest in this paper is Q → H,
the one induced by the monoidal functor QCoh(S) → H(S). In this case, the adjunction
(1.5) categorifies the induction/forgetful adjunction between quasi-coherent sheaves and left
D-modules.

1.8.6 Here is how the H-affineness theorem (Theorem 1.7.4) implies Theorem 1.2.4. The

datum of a left H(Y)-action C corresponds the datum of an object C̃ ∈ ShvCatH(Y). Now, on
the one hand ShvCatH satisfies smooth descent ; see Theorem 6.1.2. On the other hand, singular
support is computed smooth locally. Hence, we are back to Theorem 1.2.4 for affine schemes,
which has already been discussed.

1.9 Functoriality of H for algebraic stacks
The H-affineness theorem has another consequence: it allows to extend the assignment Y H(Y)
to a functor out of a certain ∞-category of correspondences of stacks.

1.9.1 Indeed, as we prove in this paper, ShvCatH enjoys a rich functoriality: besides the

structure pullbacks f∗,H : ShvCatH(Z) → ShvCatH(Y) associated to f : Y → Z, there are also
pushforward functors f∗,H (right adjoint to pullbacks) satisfying base-change along cartesian
squares.

Now, Theorem 1.7.4 guarantees that the assignment Y H(Y) enjoys a parallel functoriality,
as stated in the following theorem.
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Theorem 1.9.2. There is a natural functor

Corr(Stk<∞lfp )bdd;all −→ Algbimod(DGCat)

that sends
X H(X), [X←W→ Y] HX←W→Y := IndCoh0((X× Y)∧W).

Here Corr(Stk<∞lfp )bdd;all is the ∞-category whose objects are objects of Stk<∞lfp and whose
1-morphisms are given by correspondences [X←W→ Y] with bounded left leg.

1.9.3 In the rest of this introduction, we exploit such functoriality in the case of classifying
spaces of algebraic groups (§ 1.10) and in the case of local systems over a smooth complete curve
(§ 1.11).

1.10 H for Harish-Chandra
For Y smooth, H(Y) is equivalent to IndCoh(Y×YdR

Y), with its natural convolution monoidal
structure. For instance, if G is an affine algebraic group, we have

H(BG) ' IndCoh(G\GdR/G).

This is the monoidal category of Harish-Chandra bimodules for the group G; see [Ber17a, § 2.3]
for the connection with the theory of weak/strong actions on categories. Likewise,

Hpt→BG ' IndCoh(GdR/G)

is the DG category g-mod of modules for the Lie algebra g = Lie(G). More generally, for a group
morphism H → G, we have

HBG←BH = IndCoh((BG×BH)∧BH) ' IndCoh(G\GdR/H) ' g-modH,w.

This is the correct derived enhancement of the ordinary category of Harish-Chandra (g, H)-
modules.

1.10.1 Theorem 1.9.2 yields the following equivalences:

HBH→BG ⊗
H(BG)

HBG→pt
'−−→ HBH→pt ' QCoh(BH),

Hpt→BG ⊗
H(BG)

HBG←pt
'−−→ D(G),

Hpt←BG ⊗
H(BG)

HBG→pt
'−−→ D(BG).

1.10.2 Another way to prove these is via the theory of DG categories with G-action; see
[Ber17a, § 2]. For instance, it was proven there that, for any category C equipped with a right
strong action of G, there are natural equivalences

CG,w ⊗
H(BG)

Rep(G) ' CG, CG,w ⊗
H(BG)

g-mod ' C.

Now, let C = H,wD(G), C = D(G) and C = Vect, respectively.

1.10.3 For generalizations of these computations to the topological setting, the reader may
consult [Ber19b].
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1.11 The gluing theorems in geometric Langlands
More interesting than H(BG) is the monoidal DG category H(LSG), to which we now turn our
attention. Observe that, by construction, we have

HY←X→pt ' IndCoh0(Y∧X).

With this notation, the spectral gluing theorem of [AG18] may be rephrased as follows: there is
an explicit H(LSǦ)-linear localization adjunction

(1.7)

Here we have switched to the Langlands dual Ǧ as we are going to discuss Langlands duality,
and it is customary to have Langlands dual groups on the spectral side.

1.11.1 Let M̌ be the Levi quotient of a parabolic P̌ . By Theorem 1.9.2, we can rewrite

HLSǦ←LSP̌→pt ' HLSǦ←LSP̌→LSM̌
⊗

H(LSM̌ )
HLSM̌→pt ' HLSǦ←LSP̌→LSM̌

⊗
H(LSM̌ )

QCoh(LSM̌ ).

By the H-affineness theorem, we reinterpret the bimodule HLSǦ←LSP̌→LSM̌
, or better the functor

EisP̌ : H(LSM̌ )-mod −→ H(LSǦ)-mod

attached to it, as an Eisenstein series functor in the setting of H-sheaves of categories.

1.11.2 These considerations shed light on the left-hand side of (1.7). Coupled with
the construction of § 1.4.2, they allow us to formulate a conjecture on the automorphic
side of geometric Langlands. This conjecture explains how D(BunG) can be reconstructed
algorithmically out of tempered D-modules for all the Levis of G, including G itself.

Conjecture 1.11.3 (Automorphic gluing). There is an explicit H(LSǦ)-linear localization
adjunction

(1.8)

1.11.4 We make some comments on this conjecture and on some future research directions.

(i) We will construct the adjunction (1.8) in a follow-up paper; this will be relatively easy. The
difficult part is to show that the right adjoint is fully faithful.

(ii) Actually, the conjecture can be pushed even further, as it is possible to guess what the
essential image γ is. This follows from an explicit description of the essential image of γspec;
see [Ber18].

(iii) Clearly, Conjecture 1.11.3 is related to the extended Whittaker conjecture; see [Gai15a,
Ber19a]. The left-hand side of (1.8) is expected to be smaller than the extended Whittaker
category.

1.12 Conventions
We refer to [GR17], [Gai15b] or [Ber17b] for a review of our conventions concerning category
theory and algebraic geometry. In particular:

– we always work over an algebraically closed field k of characteristic 0;

– we denote by DGCat the (large) symmetric monoidal ∞-category of small cocomplete DG
categories over k and continuous functors; see [Lur17] or [GR17].
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1.13 Structure of the paper
Section 2 is devoted to recalling some higher algebra: a few facts about rigid monoidal DG
categories and their module categories, as well as several (∞, 2)-categorical constructions
(correspondences, lax (∞, 2)-functors, algebras and bimodules).

The first part of § 3 is a reminder of the theory of IndCoh0, as developed in [Ber17b]. In the
second part of the same section, we discuss the (∞, 2)-categorical functoriality of H.

Section 4 introduces the notion of coefficient system, providing several examples of interest
in present, as well as future, applications. In particular, we define the (a priori lax) coefficient
system H and prove it is strict.

In § 5 we discuss the (left, right, ambidextrous) Beck–Chevalley conditions for coefficient
systems. These conditions (which are satisfied in the examples of interest) guarantee that the
resulting theory of sheaves of categories is very rich functorially; for example, it has pushforwards
and base-change.

Finally, in § 6, we define ShvCatH, the theory of sheaves of categories with local actions of
Hochschild cochains, and prove the H-affineness of algebraic stacks.

2. Some categorical algebra

In this section we recall some (∞, 1)- and (∞, 2)-categorical algebra needed later in the main
sections of the paper. All the results we need concern the theory of algebras and bimodules.
More specifically, we first need criteria for dualizability of bimodule categories; furthermore, we
need some abstract constructions that relate ‘algebras and bimodules’ with (∞, 2)-categories of
correspondences.

We advise the reader to skip this material and refer to it only if necessary.

2.1 Dualizability of bimodule categories
Recall that DGCat admits colimits (as well as limits) and its tensor product preserves colimits in
each variable [Lur17]. Hence, by [Lur17] again, we have a good theory of dualizability of algebras
and bimodules in DGCat, whose main points we record below. We will need a criterion that
relates the dualizability of a bimodule to the dualizability of its underlying DG category.

2.1.1 First, let us fix some terminology. Algebra objects in a symmetric monoidal ∞-
category are always unital in this paper. In particular, monoidal DG categories are unital. Given
A an algebra, denote by Arev the algebra obtained by reversing the order of the multiplication.
For a left A-module M and a right A-module N , we denote by pr : N ⊗M → N ⊗A M the
tautological functor.

Our conventions regarding bimodules are as follows: an (A,B)-bimodule M is acted on on
the left by A and on the right by B. Hence, endowing C ∈ DGCat with the structure of an
(A,B)-bimodule amounts to endowing it with the structure of a left A⊗Brev-module.

2.1.2 Let M be an (A,B)-bimodule. We say that M is left dualizable (as an (A,B)-
bimodule) if there exists a (B,A)-bimodule ML (called the left dual of M) realizing an adjunction

Similarly, M is right dualizable if there exists MR ∈ (B,A)- bimod (the right dual of M) realizing
an adjunction
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We say that an (A,B)-bimodule M is ambidextrous if both ML and MR exist and are equivalent
as (B,A)-bimodules.

Remark 2.1.3. Being (left or right) dualizable as a (Vect,Vect)-bimodule is equivalent to being
dualizable as a DG category. By definition, being ‘left (or right) dualizable as a right A-module’
means being ‘left (or right) dualizable as a (Vect, A)-module’. Similarly for left A-modules.

2.1.4 Let M be an (A,B)-bimodule which is dualizable as a DG category. Then we
can contemplate three (B,A)-bimodules: ML,MR (if they exist) as well as M∗, the dual of
oblvA,B(M) equipped with the dual actions.

In particular, a monoidal DG category A is called proper if it is dualizable as a plain DG
category. In this case, we denote by SA := A∗ its dual, equipped with the tautological (A,A)-
bimodule structure.

2.1.5 Recall the notion of rigid monoidal DG category; see [Gai15b, Appendix D]. Any
rigid A is automatically proper. Furthermore, its dual SA := A∗ comes equipped with the
canonical object 1fake

A := (uR)∨(k), where uR is the (continuous) right adjoint to the unit functor
u : Vect→ A. The left A-linear functor

σA : A −→ SA, a a ? 1fake
A

is an equivalence; in particular, any rigid monoidal category is self-dual. We say that A
is very rigid if the canonical equivalence σA : A → SA admits a lift to an equivalence of
(A,A)-bimodules.4

Proposition 2.1.6. Let A,B be rigid monoidal DG categories and M an (A,B)-bimodule which
is dualizable as a DG category. Then M is right dualizable as an (A,B)-bimodule and MR '
M∗ ⊗A SA. Likewise, M is left dualizable and ML ' SB ⊗B M∗.

Proof. The formula for MR is proven as in the ‘if’ direction of [Gai15b, Proposition D.5.4],
which in turn is a consequence of [Gai15b, Corollary D.4.5]. In the notation there, the twist
(−)ψA

corresponds to our −⊗A SA. The formula for ML follows similarly. 2

Corollary 2.1.7. Let A,B be very rigid and M an (A,B)-bimodule which is dualizable as a
DG category. Then we have canonical (B,A)-linear equivalences MR 'M∗ 'ML.

2.2 Some (∞, 2)-categorical algebra
In this section we recall some abstract (∞, 2)-categorical nonsense and provide some examples of
(∞, 2)-categories and of lax (∞, 2)-functors between them. All the statements below look obvious
enough and no proof will be given.

2.2.1 We assume familiarity with the notion of (∞, 2)-category and with the notion of
(lax) (∞, 2)-functor between (∞, 2)-categories; see, for example, [GR17, Appendix A]. For an
(∞, 2)-category C, we denote by C1−op the (∞, 2)-category obtained from C by flipping the
1-arrows. Similarly, we denote by C2−op the (∞, 2)-category obtained by flipping the directions
of the 2-arrows.

4 Compare this notion with the more general notion of ‘symmetric Frobenius algebra object’, discussed in [Lur17,
Remark 4.6.5.7].
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2.2.2 Correspondences. Let C be an ∞-category equipped with fibre products. We refer to

[GR17, ch. V.1] for the construction of the ∞-category of correspondences associated to C. In

particular, for vert and horiz two subsets of the space morphisms of C satisfying some natural

requirements, one considers the ∞-category Corr(C)vert;horiz, defined in the usual way: objects of

Corr(C)vert;horiz coincide with the objects of C, while 1-morphisms in Corr(C)vert;horiz are given by

correspondences

[c← h→ d]

with left leg in vert and right leg in horiz.

To enhance Corr(C)vert;horiz to an (∞, 2)-category, we must further choose a subset adm ⊂
vert∩ horiz of admissible arrows, closed under composition. Then, following [GR17, ch. V.1], we

define the (∞, 2)-category

Corr(C)adm
vert;horiz.

This is one of the most important (∞, 2)-categories of the present paper.

To fix notation, recall that a 2-arrow

[c← h→ d] =⇒ [c← h′→ d]

in Corr(C)adm
vert;horiz is by definition an admissible arrow h→ h′ compatible with the maps to c×d.

As explained in [GR17, ch. V.3], Corr(C)adm
vert;horiz is symmetric monoidal with tensor product

induced by the cartesian symmetric monoidal product on C.

2.2.3 Algebras and bimodules. The other important (∞, 2)-category of this paper is

ALGbimod(DGCat), the (∞, 2)-category of monoidal DG categories, bimodules, and natural

transformations. We refer to [Hau17] for a rigorous construction. More generally, that paper

gives a construction of ALGbimod(S) for any (nice enough) symmetric monoidal (∞, 2)-category S.

We denote by Algbimod(S) the (∞, 1)-category underlying ALGbimod(S): that is, the former is

obtained from the latter by discarding non-invertible 2-morphisms.

2.2.4 There is an obvious functor

ιAlg→Bimod : Alg(DGCat)op −→ Algbimod(DGCat) (2.1)

that is the identity on objects and that sends a monoidal functor A → B to the (B,A)-

bimodule B.

The tautological functor

Algbimod(DGCat)op -mod−−−→ Cat∞

upgrades to a (strict) (∞, 2)-functor

ALGbimod(DGCat)1−op -mod−−−→ Cat∞,

where now Cat∞ is considered as an (∞, 2)-category.
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2.2.5 Let C denote an (∞, 1)-category admitting fibre products and equipped with the
cartesian symmetric monoidal structure. Let F : Cop −→ DGCat be a lax-monoidal functor. (The
example we have in mind is C = PreStk and F = QCoh.)

These data give rise to a lax (∞, 2)-functor

F̃ :
(
Corr(C)all

all;all

)2−op −→ ALGbimod(DGCat),

described informally as follows:

– an object c ∈ C gets sent to F (c), with its natural monoidal structure;

– a correspondence [c← h→ d] gets sent to the (F (c), F (d))-bimodule F (h);

– a map between correspondences, given by an arrow h′ → h over c × d, gets sent to the
associated (F (c), F (d))-linear arrow F (h)→ F (h′);

– for two correspondences [c← h→ d] and [d← k→ e], the lax composition is encoded by
the natural (F (c), F (e))-linear arrow

F (h) ⊗
F (d)

F (k) −→ F (h×d k).

2.2.6 Here is another example of the interaction between lax-monoidal functors and lax
(∞, 2)-functors. Let F : C → D be a lax-monoidal functor between ‘well-behaved’ monoidal
(∞, 1)-categories. Then F induces a lax (∞, 2)-functor

F̃ : ALGbimod(C) −→ ALGbimod(D).

To define it, it suffices to recall that, since F is lax monoidal, it preserves algebra and bimodule
objects. The fact that F̃ is a lax (∞, 2)-functor comes from the natural map (not necessarily an
isomorphism)

F (c′)⊗F (c) F (c′′) −→ F (c′ ⊗c c′′).

2.2.7 Recall the ∞-category Mod(DGCat) whose objects are pairs (A,M) with A a
monoidal DG category and M an A-module. Morphisms (A,M)→ (B,N) consist of pairs (φ, f)
where φ : A→ B is a monoidal functor and f : M → N an A-linear functor.

There is a lax (∞, 2)-functor

LOOPMod : Mod(DGCat)op −→ ALGbimod(DGCat), (2.2)

described informally as follows:

– an object (A,M) ∈ Mod(DGCat) goes to the monoidal DG category EndA(M) :=
FunA(M,M);

– a morphism (A,M)
(φ,f)
−−−→ (B,N) gets sent to the (EndB(N),EndA(M))-bimodule

FunA(M,N);

– a composition (A,M)
(φ,f)
−−−→ (B,N)

(ψ,g)
−−−→ (C,P ) goes over to the (EndC(P ),EndA(M))-

bimodule
FunB(N,P ) ⊗

EndB(N)
FunA(M,N);

– the lax structure comes from the tautological morphism (not invertible, in general)

FunB(N,P ) ⊗
EndB(N)

FunA(M,N) −→ FunA(M,P ) (2.3)

induced by composition.
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2.2.8 For later use, we record here the following tautological observation. Let I be an

(∞, 1)-category and A : I → ALGbimod(DGCat) be a lax (∞, 2)-functor. Assume given the
following data:

– for each i ∈ I, a monoidal subcategory A′(i) ↪→ A(i);

– for each i→ j, a full subcategory A′i→j ↪→ Ai→j preserved by the (A′(i),A′(j))-action.

Assume also that, for each string i→ j → k, the functor

A′i→j ⊗ A′j→k ↪→ Ai→j ⊗ Aj→k
pr−−→ Ai→j ⊗A(j) Aj→k

ηi→j→k−−−−−→ Ai→k
lands in A′i→k ⊆ Ai→k. Then the assignment

i A′(i), (i→ j) A′i→j
naturally upgrades to a lax (∞, 2)-functor A′ : I→ ALGbimod(DGCat).

3. IndCoh0 on formal moduli problems

In the section we study the sheaf theory IndCoh0 from which H originates. As mentioned in
the introduction to [Ber17b], IndCoh0 enjoys (∞, 1)-categorical functoriality as well as (∞, 2)-
categorical functoriality. The former was developed in [Ber17b], and is recalled here in
Theorem 3.1.6. The latter is one of the main subjects of the present paper: it consists of an
extension of the assignment Y H(Y) to a lax (∞, 2)-functor from a certain (∞, 2)-category of
correspondences to ALGbimod(DGCat).

3.1 (∞, 1)-categorical functoriality
In this section we review the definition of the assignment IndCoh0 and its basic functoriality.
We follow [Ber17b] closely.

3.1.1 Let Stk denote the∞-category of perfect quasi-compact algebraic stacks of finite type
and with affine diagonal; see, for example, [BFN10]. Inside Stk, we single out the subcategory
Stk<∞lfp consisting of those stacks that are bounded and with perfect cotangent complex (both
properties can be checked on an atlas).

3.1.2 For C an ∞-category, denote by Arr(C) := C∆1
the ∞-category whose objects are

arrows in C and whose 1-morphisms are commutative squares. We will be interested in the
∞-category Arr(Stk<∞lfp ) and in the functor

IndCoh0 : Arr(Stk<∞lfp )op −→ DGCat (3.1)

defined by
[Y→ Z] IndCoh0(Z∧Y ).

Recall from [AG18] or [Ber17b] that IndCoh0(Z∧Y ) is defined by the pullback square

(3.2)

In particular, when writing IndCoh0(Z∧Y ) we are committing a potentially dangerous abuse of
notation: it would be better to write IndCoh0(Y→ Z∧Y ), as the latter category depends on the
formal moduli problem Y→ Z∧Y and in particular on the derived structure of Y.
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3.1.3 For two objects [Y1 → Z1] and [Y2 → Z2] in Arr(Stk<∞lfp ), a morphism ξ from the
former to the latter is given by a commutative square

(3.3)

The structure pullback functor

ξ!,0 : IndCoh0((Z2)∧Y2
) −→ IndCoh0((Z1)∧Y1

)

is the obvious one induced by the pullback functor ξ! : IndCoh((Z2)∧Y2
)→ IndCoh((Z1)∧Y1

), where

we are abusing notation again by confusing ξ with the map (Z1)∧Y1
→ (Z2)∧Y2

. We will do this
throughout the paper, and hope it will not be too unpleasant for the reader.

3.1.4 Let us now recall the extension of (3.1) to a functor out of a category of
correspondences. Notice that Arr(PreStk) admits fibre products, computed objectwise; its
subcategory Arr(Stk<∞lfp ) is closed under products, but not under fibre products. Thus, to have a
well-defined category of correspondences, we must choose appropriate classes of horizontal and
vertical arrows.

We say that a commutative diagram (3.1.3), thought of as a morphism in Arr(Stk<∞lfp ), is
schematic (or bounded, or proper) if so is the top horizontal map. It is clear that

Corr
(
Arr(Stk<∞lfp )

)
schem&bdd;all

(3.4)

is well defined.
For the theorem below, we will need to further upgrade (3.4) to an (∞, 2)-category by allowing

as admissible arrows (see § 2.2.2 for the terminology) those ξ that are schematic, bounded and
proper. We denote by

Corr
(
Arr(Sch<∞lfp )

)schem&bdd&proper

schem&bdd;all

the resulting (∞, 2)-category.

3.1.5 If ξ is bounded and schematic in the above sense, then the pushforward ξIndCoh
∗ :

IndCoh((Z1)∧Y1
) → IndCoh((Z2)∧Y2

) is continuous and preserves the IndCoh0-subcategories,
thereby descending to a functor ξ∗,0. For the proof, see [Ber17b].

Theorem 3.1.6. The above pushforward functors upgrade the functor IndCoh!
0 of (3.1) to an

(∞, 2)-functor

IndCoh0 : Corr
(
Arr(Sch<∞lfp )

)schem&bdd&proper

schem&bdd;all
−→ DGCat,

where DGCat is viewed as an (∞, 2)-category in the obvious way.

Remark 3.1.7. The existence of the above (∞, 2)-functor is deduced (essentially formally) by the
(∞, 2)-functor

IndCoh : Corr(PreStklaft)
ind-inf-sch & ind-proper
ind-inf-schem; all −→ DGCat (3.5)

constructed in [GR17, ch. III.3]. For later use, we will also need another fact from the same
book: the above (∞, 2)-category of correspondences possesses a symmetric monoidal structure,
and (3.5) is naturally symmetric monoidal; see [GR17, ch. V.3]. It follows that the (∞, 2)-functor
on Theorem 3.1.6 is symmetric monoidal, too.
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3.1.8 Example. For f : Y→ Z, the admissible arrow Y→ Z∧Y yields an adjuction

(3.6)

Let us also recall that IndCoh0(Z∧Y ) is self-dual and that these two adjoints (′f)∗,0 and (′f)!,0 are
dual to each other.

3.2 (∞, 2)-categorical functoriality
In this section we enhance the assignment

X IndCoh0((X× X)∧X) =: H(X),

[X←W→ Y] IndCoh0((X× Y)∧W) =: Hgeom
X←W→Y

to a lax (∞, 2)-functor

Hgeom : Corr
(
Stk<∞lfp

)schem&bdd&proper

bdd;all
−→ ALGbimod(DGCat),

which we will prove is strict towards the end of the paper (Theorem 6.5.3). Here we have used the
notation Hgeom for emphasis, as later we will encounter a categorical construction producing a
lax (∞, 2)-functor Hcat. We will eventually show that these two lax (∞, 2)-functors are identified
and then denoted simply by H.

Remark 3.2.1. The condition of boundedness of the horizontal arrows is necessary to have a
well-defined ∞-category of correspondences.

3.2.2 We begin by observing that, for any X ∈ Stk, the DG category

I∧,geom(X) := IndCoh(X×XdR
X)

possesses a convolution monoidal structure and that, for any correspondence [Y← W→ Z] in
Stk, the DG category

I∧,geom
Y←W→Z := IndCoh((X× Y)∧W) ' IndCoh(Y×YdR

WdR ×ZdR
Z)

admits the structure of an (I∧,geom(Y), I∧,geom(Z))-bimodule.

3.2.3 Let us now enhance the assignment

X IndCoh((X× X)∧X) =: I∧,geom(X),

[X←W→ Y] IndCoh((X× Y)∧W) =: I∧,geom
X←W→Y

to a lax (∞, 2)-functor

I∧,geom : Corr(Stk)schem&proper
all;all −→ ALGbimod(DGCat). (3.7)

To construct this, we first appeal to the lax symmetric monoidal structure on (3.5): § 2.2.6 yields
a lax (∞, 2)-functor

IndCoh : ALGbimod
(
Corr(PreStklaft)

ind-inf-sch & ind-proper
ind-inf-schem; all

)
−→ ALGbimod(DGCat).
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All that remains is to precompose with the lax (∞, 2)-functor

Corr(Stk)schem&proper
all;all −→ ALGbimod(Corr(PreStklaft))

ind-inf-sch & ind-proper
ind-inf-schem; all (3.8)

that sends

Y Y×YdR
Y;

[Y←W→ Z] Y∧W ×
WdR

Z∧W ' Y×YdR
WdR ×ZdR

Z;

Observe that the requirement that f be schematic and proper implies that fdR, and hence f̃dR,

is inf-schematic and ind-proper.

Remark 3.2.4. The lax (∞, 2)-functor (3.8) is a geometric version of the formally similar lax

(∞, 2)-functor (2.2).

3.2.5 Let us now turn to the construction of Hgeom. For Y ∈ Stk<∞lfp , the canonical inclusion

ι : IndCoh0(Y×YdR
Y) ↪→ IndCoh(Y×YdR

Y)

is monoidal. Moreover, the left action of IndCoh0(Y×YdR
Y) on IndCoh((Y×Z)∧W) preserves the

subcategory IndCoh0((Y× Z)∧W). This is an easy diagram chase left to the reader.

Thus, we are in a position to apply the paradigm of § 2.2.8 to obtain a lax (∞, 2)-functor

Hgeom : Corr
(
Stk<∞lfp

)schem&bdd&proper

bdd;all
−→ ALGbimod(DGCat), (3.9)

as desired. We repeat here that one of the aims of this paper is to show that such lax (∞, 2)-

functor is actually strict: this is accomplished in Theorem 6.5.3. In the next section, we give an

overview of the strategy of the proof of such theorem. This could serve as a guide through the

constructions of the remainder of the present paper.

3.3 Outline of the proof of Theorem 6.5.3

It suffices to prove that the lax (∞, 2)-functor Hgeom : Corr
(
Stk<∞lfp

)
bdd;all

→ ALGbimod(DGCat)

is strict. We will proceed in stages.

3.3.1 First, we look at the restriction of Hgeom along the functor

Aff<∞lfp → Corr
(
Stk<∞lfp

)
bdd;all

which is the natural inclusion on objects, and [S → T ] [S
=
←− S → T ] on 1-morphisms.

Using results from the theory of ind-coherent sheaves, we show in Theorem 4.3.4 that such lax

(∞, 2)-functor is strict. By definition, this is simply the functor H : Aff<∞lfp → Algbimod(DGCat)

discussed in § 1.6.3.
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3.3.2 Next, we show that the restriction of Hgeom to Corr(Aff<∞lfp )bdd;all is strict
(Corollary 5.2.13). We do so in an indirect way, by establishing some important duality
properties of H. Namely, we show that, for each map U → T in Aff<∞lfp , the bimodule HU→T

admits a right dual (which happens to be a left dual as well), denoted by HT←U . Having such
right duals allows us to form the bimodules

HS←U→T := HS←U ⊗
H(U)

HU→T , HS→V←T := HS→V ⊗
H(V )

HV←T .

We also show that HS→V←T ' HS←S×V T→T naturally, provided that at least one arrow between
S → V and T → V is bounded. This is enough to extend H to a strict functor

HCorr : Corr(Aff<∞lfp )bdd;all −→ Algbimod(DGCat).

By inspection, such functor coincides with the restriction of Hgeom to Corr(Aff<∞lfp )bdd;all, whence
the latter is also strict.

Remark 3.3.3. The fact that left and right duals coincide implies that we could also have
defined HCorr on Corr(Aff<∞lfp )all;bdd. These two versions of HCorr, exchanged by duality, agree

on Corr(Aff<∞lfp )bdd;bdd.

3.3.4 To study Hgeom on stacks, we introduce the sheaf theory ShvCatH, which is the right
Kan extension of the functor

(Aff<∞lfp )op
→ Cat∞, S  H(S)-mod.

Note that Theorem 4.3.4 is essential to make this well defined.
In principle, ShvCatH comes equipped only with pullback functors. However, thanks to the

existence of the right duals HT←S , there are also ∗-pushforward functors (right adjoints to
pullbacks), which turn out to satisfy base-change against pullbacks. Symmetrically, the existence
of the left duals provides !-pushforward functors (left adjoints to pullbacks), also satisfying base-
change against pullbacks.5

3.3.5 In Theorem 6.5.1, we prove the H-affineness theorem, which states that, for any

Y ∈ Stk<∞lfp , the ∞-category ShvCatH(Y) is equivalent to Hgeom(Y)-mod. This theorem, together
with the above base-change properties, automatically upgrades the assignment Y  Hgeom(Y)
to a strict (∞, 2)-functor out of Corr(Stk<∞lfp )bdd;all. Fortunately, such functor is easily seen to
match with Hgeom, thereby proving that the latter is strict, too.

3.3.6 An important technical result, which we use frequently, is the smooth descent

property for ShvCatH, proven in § 6.1: any object C ∈ ShvCatH(Y) is determined by its restrictions
along smooth maps S → Y, with S affine. This is a very convenient simplification. For instance,
let IndCoh/Y ∈ ShvCatH(Y) be the sheaf corresponding to IndCoh(Y) ∈ Hgeom(Y)-mod via
H-affineness. In § 6.6 we will show that the restriction of IndCoh/Y along a smooth map S → Y

is the H(S)-module IndCoh(S), whereas the restriction along a non-smooth map does not admit
such a simple description.

5 We will eventually show that pullbacks in ShvCatH are ambidextrous (i.e. ∗-pushforwards coincide with !-
pushforwards), but this requires the H-affineness theorem first.
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4. Coefficient systems for sheaves of categories

In this section we introduce one of the central notions of this paper, the notion of coefficient
system, together with its companion notion of lax coefficient system.

We present a list of examples, and, in particular, we define the coefficient system H related
to Hochschild cochains. Let us anticipate that H arises naturally as a lax coefficient system and
some work is needed in order to prove that it is actually strict. (Here and later, the adjective
‘strict’ is used to emphasize that a certain coefficient system is a genuine one, not a lax one.)

4.1 Definition and examples

Consider the (∞, 2)-category ALGbimod(DGCat), whose objects are monoidal DG categories,
whose 1-morphisms are bimodule categories, and whose 2-morphisms are functors of
bimodules. Recall that the (∞, 1)-category underlying ALGbimod(DGCat) will be denoted by
Algbimod(DGCat).

A coefficient system is a functor

A : Aff −→ Algbimod(DGCat).

A lax coefficient system is a lax (∞, 2)-functor

A : Aff −→ ALGbimod(DGCat).

4.1.1 Thus, a lax coefficient system A consists of:

– a monoidal category A(S), for each affine scheme S;

– an (A(S),A(T ))-bimodule AS→T for any map of affine schemes S → T ;

– an (A(S),A(U))-linear functor

ηS→T→U : AS→T ⊗
A(T )

AT→U −→ AS→U

for any string S → T → U of affine schemes;

– natural compatibilities for higher compositions.

Clearly, such A is a strict (i.e. non-lax) coefficient system if and only if all functors ηS→T→U are
equivalences.

4.1.2 One obtains variants of the above definitions by replacing the source ∞-category Aff
with a subcategory Afftype, where ‘type’ is a property of affine schemes. For instance, we will
often consider Affaft (the full subcategory of affine schemes almost of finite type) or Aff<∞lfp (affine
schemes that are bounded and locally of finite presentation).

We now give a list of examples of (lax) coefficient systems, in decreasing order of simplicity.

4.1.3 Example 1. Any monoidal DG category A yields a ‘constant’ coefficient system A

whose value on S → T is A, considered as a bimodule over itself.

4.1.4 Example 2. Slightly less trivial: coefficient systems induced by a functor
Aff → Alg(DGCat)op via the functor ιAlg→Bimod defined in (2.1). These coefficient systems are
automatically strict.

For instance, we have the coefficient system Q which sends

S  QCoh(S), [S → T ] QCoh(S) ∈ (QCoh(S),QCoh(T ))-bimod.

Similarly, we have D, obtained as above using D-modules rather than quasi-coherent sheaves.
This coefficient system is defined only out of Affaft ⊂ Aff.
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4.1.5 Example 3. Let us precompose the lax (∞, 2)-functor

LOOPMod : Mod(DGCat)op −→ ALGbimod(DGCat)

of § 2.2.7 with the functor

Affaft −→ Mod(DGCat)op, S  (D(S) � IndCoh(S))

that encodes the action of D-modules on ind-coherent sheaves. Since IndCoh(S) is self-dual as
a D(S)-module (Corollary 4.2.2), we obtain a lax coefficient system

I∧ : Affaft −→ Algbimod(DGCat)

described informally by

S  IndCoh(S ×SdR
S),

[S → T ] IndCoh(S ×TdR
T ) ∈ (IndCoh(S ×SdR

S), IndCoh(T ×TdR
T ))-bimod,

[S → T → U ] IndCoh(S ×TdR
T ) ⊗

IndCoh(T×TdR
T )

IndCoh(T ×UdR
U) −→ IndCoh(S ×UdR

U).

In other words, I∧ is obtained by restricting the very general I∧,geom defined in § 3.2.3 to Affaft.
We will prove that I∧ is strict in Proposition 4.2.5.

4.1.6 Example 4. As a variation on the above example, let H be the lax coefficient system

H : Aff<∞lfp −→ ALGbimod(DGCat)

defined by

S  H(S) := IndCoh0(S ×SdR
S),

[S → T ] HS→T := IndCoh0(S ×TdR
T ) ∈ (H(S),H(T ))-bimod,

[S → T → U ] HS→T ⊗
H(T )

HT→U −→ HS→U .

Similarly to I∧, this is the restriction of (3.9) to affine schemes. We will show that H is strict
too.

The importance of H comes from the monoidal equivalence

H(S) ' HC(S)op-mod.

To be precise, we have the following. First, the equivalence H(S) ' HC(IndCoh(S))op-mod is
obvious. Second, [AG15, Proposition F.1.5] provides a natural isomorphism HC(IndCoh(S)) '
HC(QCoh(S)) =: HC(S) of E2-algebras.

4.1.7 Example 5. One last example arising in a geometric fashion. Let Y : Aff →
Corr(PreStk)all

all;all be an arbitrary lax (∞, 2)-functor, described informally by the assignments

S  YS , [S → T ] YS ← YS→T → YT .

The lax structure amounts to the data of maps

YS→T ×
YT

YT→U −→ YS→U (4.1)
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over YS × YU , for any string S → T → U . Recalling now the paradigm of § 2.2.5, we obtain a
lax (∞, 2)-functor

Corr(PreStk)all
all;all −→ ALGbimod(DGCat)

defined by sending

YS  QCoh(YS), [YS ← YS→T → YT ] QCoh(YS→T ).

The combination of this with Y yields a lax coefficient system, which is strict if the maps (4.1)
are isomorphisms and the prestacks YS→T are nice enough.6

4.1.8 Sub-example: singular support. The theory of singular support provides an important
example of the above construction: the assignment

[S → T ] Sing(S)/Gm← S ×T Sing(T )/Gm→ Sing(T )/Gm,

where Sing(U) := Spec(SymH0(U,OU )H
1(U,TU )) is equipped with the obvious weight-2 dilation

action.
We obtain a coefficient system S′ : Affq-smooth −→ Algbimod(DGCat) defined on quasi-smooth

affine schemes. By construction, if C is a module category over S′(U), then objects of C are
equipped with a notion of support in Sing(U); see [AG15] for more details.

4.2 The coefficient system I∧
Let us prove that I∧ and H are strict coefficient systems. We will need to use the following fact.

Lemma 4.2.1. For any diagram Y → W ← Z in Schaft, the exterior tensor product yields the
equivalence

IndCoh(Y ) ⊗
D(W )

IndCoh(Z)
'−→ IndCoh(Y ×WdR

Z). (4.2)

Proof. Note that Y ×WdR
Z ' (Y ×Z)∧Y×WZ . Hence, by [AG18, Proposition 3.1.2], the right-hand

side is equivalent to
QCoh(Y ×WdR

Z) ⊗
QCoh(Y×Z)

IndCoh(Y × Z),

while the left-hand side is obviously equivalent to(
QCoh(Y ) ⊗

D(W )
QCoh(Z)

)
⊗

QCoh(Y×Z)
IndCoh(Y × Z).

Now the statement reduces to the analogous statement with IndCoh replaced by QCoh, which
is well known. 2

Corollary 4.2.2. For Y ∈ Schaft, the DG category IndCoh(Y ) is self-dual as a D(Y )-module.

Proof. One uses the equivalence of the above lemma to write the evaluation and coevaluation as
standard pull-push formulas. 2

Corollary 4.2.3. For any map Y → Z in Schaft, we obtain a natural equivalence

IndCoh(Y ×ZdR
Z) ' FunD(Z)(IndCoh(Y ), IndCoh(Z)).

In the special case Y = Z, the ‘composition’ monoidal structure on the right-hand side
corresponds to the ‘convolution’ monoidal structure on the left-hand side.

6 That is, nice enough so that QCoh interchanges fibre products among these prestacks with tensor products of
categories. For instance, 1-affine algebraic stacks are nice enough.
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4.2.4 The lax-coefficient system I∧ is the restriction of the lax (∞, 2)-functor IndCoh∧,geom

to Affaft. Consider now the intermediate lax (∞, 2)-functor Schaft → ALGbimod(DGCat), also

denoted by I∧ by an abuse of notation. Our present aim is to prove the following result.

Proposition 4.2.5. The lax (∞, 2)-functor

I∧ : Schaft −→ ALGbimod(DGCat)

is strict.

The proof of the above proposition will be given after some preparation.

4.2.6 For Y ∈ Schaft, Corollary 4.2.3 shows that IndCoh(Y ) admits the structure of an

(IndCoh(Y ×YdR
Y ),D(Y ))-bimodule, as well as the structure of a (D(Y ), IndCoh(Y ×YdR

Y ))-

bimodule. Now, one verifies directly that the latter bimodule is left dual to the former, that is,

there is an adjunction

(4.3)

Lemma 4.2.7. These two adjoint functors form a pair of mutually inverse equivalences. In

particular, we also have an adjunction in the other direction:

(4.4)

Proof. The left adjoint in (4.3) is fully faithful by (4.2) and the right adjoint is colimit-preserving.

By the Barr–Beck theorem, it suffices to show that the right adjoint in (4.3) is conservative, a

statement which is the content of the next lemma. 2

Lemma 4.2.8. For Y ∈ Schaft, the functor

IndCoh(Y ) ⊗
D(Y )

− : D(Y )-mod −→ DGCat

is conservative.

Proof. Let f : M→ N be a D(Y )-linear functor with the property that

id⊗ f : IndCoh(Y ) ⊗
D(Y )

M −→ IndCoh(Y ) ⊗
D(Y )

N

is an equivalence. We need to show that f itself is an equivalence.

Denote by Ŷ• the Čech nerve of q : Y → YdR. Recall that the natural arrow

D(Y ) := IndCoh(YdR) −→ IndCoh(|Ŷ•|) ' lim
[n]∈∆

IndCoh(Ŷn)
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is an equivalence and that each of the structure functors composing the above cosimplicial
category admits a left adjoint (indeed, each structure map Ŷm→ Ŷn is a nil-isomorphism between
inf-schemes). Consequently, the tautological functor

C −→ lim
[n]∈∆

(
IndCoh(Ŷn) ⊗

D(Y )
C
)

is an equivalence for any C ∈ D(S)-mod. Under these identifications, our functor f : M→ N is
the limit of the equivalences

id⊗ f : IndCoh(Ŷn) ⊗
D(Y )

M −→ IndCoh(Ŷn) ⊗
D(Y )

N,

whence it is itself an equivalence. 2

4.2.9 We are now ready for the proof of the proposition left open above.

Proof of Proposition 4.2.5. Thanks to (4.2), it suffices to prove that, for any Y ∈ Schaft, the
obvious functor qIndCoh

∗ ◦∆! : IndCoh(Y )⊗ IndCoh(Y )→ D(Y ) induces an equivalence

IndCoh(Y ) ⊗
IndCoh(Y×YdR

Y )
IndCoh(Y )

'−−→ D(Y ). (4.5)

The latter is precisely the counit of the adjunction (4.3), which we have shown to be an
equivalence. 2

4.3 The coefficient system H
Our present aim is to prove Theorem 4.3.4, which states that the lax coefficient system

H : Aff<∞lfp −→ ALGbimod(DGCat)

is strict. Actually, the theorem proves something slightly stronger, namely, the parallel statement
for schemes that are not necessarily affine.

4.3.1 We need a preliminary result, which is of interest in its own right.

Proposition 4.3.2. Let f : X → Y be a map in Sch<∞lfp . Then the (D(X),H(Y ))-linear functor

IndCoh(X) ⊗
H(X)

HX→Y −→ IndCoh(Y ∧X ), (4.6)

obtained as the composition

IndCoh(X) ⊗
H(X)

HX→Y −→ IndCoh(X) ⊗
I∧(X)

I∧X→Y
'−→ IndCoh(Y ∧X ),

is an equivalence of categories.

Proof. The source category is compactly generated by objects of the form [CX , (
′f)IndCoh
∗ (ωX)]

for CX ∈ Coh(X). Hence, it is clear that the functor in question (let us denote it by φ) admits
a continuous and conservative right adjoint: indeed, φ sends

[CX , (
′f)IndCoh
∗ (ωX)] (′f)IndCoh

∗ (CX),
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whence it preserves compactness and generates the target under colimits. It remains to show
that φ is fully faithful on objects of the form [CX , (

′f)IndCoh
∗ (ωX)]. The nil-isomorphism β :

(X ×X)∧X → (X × Y )∧X induces the adjunction

Observe that both functors are IndCoh((X × X)∧X)-linear and preserve the IndCoh0-
subcategories. To conclude the proof, just note that (′f)IndCoh

∗ (ωX) is the image of the unit of
H(X) under βIndCoh

∗ , and use the above adjunction. 2

Corollary 4.3.3. For f : X → Y as above and C a right I∧(X)-module, the natural functor

C ⊗
H(X)

HX→Y −→ C ⊗
I∧(X)

I∧X→Y

is an equivalence.

Proof. It suffices to prove the assertion for C = I∧(X), viewed as a right module over itself.
Thanks to the right I∧(X)-linear equivalence

I∧(X) ' IndCoh(X) ⊗
D(X)

IndCoh(X),

the assertion reduces to the proposition above. 2

Theorem 4.3.4. The lax (∞, 2)-functor

H : Sch<∞lfp −→ ALGbimod(DGCat),

obtained by restricting Hgeom to schemes, is strict.

Proof. Let U → X → Y be a string in Sch<∞lfp . We need to prove that the convolution functor

HU→X ⊗
H(X)

HX→Y −→ I∧U→Y (4.7)

is an equivalence onto the subcategory HU→Y ⊆ I∧U→Y . One easily checks that the essential image
of the functor is indeed HU→Y , whence it remains to prove fully faithfulness. By construction,
(4.7) factors as the composition

HU→X ⊗
H(X)

HX→Y −→ I∧U→X ⊗
H(X)

HX→Y −→ I∧U→Y .

Now the first arrow is obviously fully faithful, while the second one is an equivalence by the
above corollary. 2

4.4 Morphisms between coefficient systems
Coefficient systems assemble into an ∞-category:

CoeffSys := Fun(Aff,Algbimod(DGCat)).

Hence, it makes sense to consider morphisms of coefficient systems. This notion has already been
discussed in § 1.8, where some examples have been given. Here we just recall the only morphism
of interest in this paper, the arrow Q→ H.
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4.4.1 Let A and B be two coefficient systems. Consider the following pieces of data:

– for each S ∈ Aff, a monoidal functor A(S)→ B(S);

– for each S → T , an (A(S),A(T ))-linear functor

ηS→T : AS→T −→ BS→T (4.8)

that induces an (A(S),B(T ))-equivalence AS→T ⊗A(T ) B(T )→ BS→T ;

– natural higher compatibilities with respect to strings of affine schemes.

These data give rise to a morphism A→ B.

4.4.2 It is easy to see that the morphism Q→ H (defined on Aff<∞lfp ) falls under this rubric.
Indeed, we just need to verify that the tautological (QCoh(S),H(T ))-linear functor

QCoh(S) ⊗
QCoh(T )

H(T ) −→ HS→T (4.9)

is an equivalence, for any S→ T in Aff<∞lfp . This has been proven in [Ber17b] in greater generality.

5. Coefficient systems: dualizability and base-change

As mentioned in the introduction, a coefficient system A : Afftype −→ Algbimod(DGCat) yields a
functor

ShvCatA := -mod ◦ Aop : (Afftype)
op −→ Algbimod(DGCat)op -mod−−−→ Cat∞

and then, by right Kan extension, a functor

ShvCatA : (Stktype)
op −→ Cat∞,

where Stktype denotes the ∞-category of algebraic stacks with affine diagonal and with an atlas
in Afftype.

This is only half of what we need to accomplish though: it is not enough to just have
pullbacks functors in ShvCatA, we want pushforwards too. To put it more formally, we wish to
extend ShvCatA to a functor out of

Corr(Stktype)vert;horiz,

for an appropriate choice of vertical and horizontal arrows. In this section we examine this
possibility for affine schemes. Actually, we will look for something stronger: we check under what
conditions the coefficient system A itself admits an extension to a functor

Corr(Afftype)vert;horiz −→ Algbimod(DGCat), (5.1)

or even better to an (∞, 2)-functor

Corr(Afftype)
adm
vert;horiz −→ ALGbimod(DGCat). (5.2)

5.1 The Beck–Chevalley conditions
As we now explain, the (left or right) Beck–Chevalley conditions are conditions on a coefficient
system A that automatically guarantee the existence of an (∞, 2)-functor ACorr extending A.
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5.1.1 We say that A satisfies the right Beck–Chevalley condition if the two requirements
of §§ 5.1.2 and 5.1.5 are met.

5.1.2 The first requirement. We ask that, for any arrow S→ T in Afftype, the (A(S),A(T ))-
bimodule AS→T be right dualizable; see § 2.1.2 for our conventions. Let us denote by AT←S such
right dual.

5.1.3 Assume now that A satisfies the above requirement, so that the bimodules A?←?

are defined. Before formulating the second requirement, we need to fix some notation. For a
commutative (but not necessarily cartesian) diagram

U

S

T

V
f //

F //

G

��

g

��

(5.3)

in Afftype, define

AS←U→T := AS←U ⊗
A(U)

AU→T ; AS→V←T := AS→V ⊗
A(V )

AV←T .

Denote by u-type the largest class of arrows in Afftype that makes Corr(Afftype)all;u-type well
defined.7 Namely, an arrow S→ T in Afftype belongs to u-type if, for any T ′→ T in Afftype, the
scheme S ×T T ′ belongs to Afftype.

5.1.4 Consider a commutative diagram like (5.3). The resulting commutative diagram

A(U)

A(S)

A(T )

A(V )oo AS→V

oo AU→T

OO

AU→S

OO

AT→V

in Algbimod(DGCat) gives rise, by changing the vertical arrows with their right duals, to a lax
commutative diagram

A(U)

A(S)

A(T )

A(V ).

↖

oo AS→V

oo AU→T

AS←U

��
AV←T

��

In other words, any commutative diagram (5.3) yields a canonical (A(S),A(T ))-linear functor

AS→V←T −→ AS←U→T . (5.4)

5.1.5 The second requirement. In particular, for S → V ∈ u-type and T → V arbitrary, we
have

AS→V←T −→ AS←S×V T→T (5.5)

and we require that such functor be an equivalence.

7 The letter ‘u’ in the notation u-type stands for the word ‘universal’.
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5.1.6 Let us now explain what the right Beck–Chevalley condition is good for.

Tautologically, if A satisfies the right Beck–Chevalley condition, the assignment

S  A(S), [S ← U → T ] AS←U→T (5.6)

extends to a functor

Corr(Afftype)all;u-type −→ Algbimod(DGCat).

Further, thanks to [GR17, ch. V.1, Theorem 3.2.2], the latter automatically extends further to

an (∞, 2)-functor

AR-BC : Corr(Afftype)
u-type,2−op
all;u-type −→ ALGbimod(DGCat).

Thus, for A satisfying the right Beck–Chevalley condition, the corresponding sheaf theory

ShvCatA
∣∣
Affop

type
admits ∗-pushforwards (defined to be right adjoint to pullbacks). Moreover, these

pushforwards satisfy base-change against pullbacks along the appropriate fibre squares.

5.1.7 The definition of left Beck–Chevalley condition for A is totally symmetric: each AS→T
must admit a left dual ALT←S and, for any cartesian diagram (5.3) with T → V in u-type, the

structure functor

ALS←U ⊗
A(U)

AU→T −→ AS→V ⊗
A(V )

ALV←T

must be an equivalence. Thus, if A satisfies the left Beck–Chevalley condition, the sheaf theory

ShvCatA|Affop
type

admits !-pushforwards (defined to be left adjoint to pullbacks), again, satisfying

base-change against pullbacks along the appropriate fibre squares.

5.1.8 A coefficient system A is said to be ambidextrous if it satisfies the right Beck–
Chevalley condition and, for any S → T ∈ Afftype, the (A(T ),A(S))-bimodule AS→T is
ambidextrous (see § 2.1.2 for the definition). Any ambidextrous A automatically satisfies the
left Beck–Chevalley condition as well. Thus, for A ambidextrous, we obtain two extensions of A,

AR-BC : Corr(Afftype)
u-type,2−op
u-type;all −→ ALGbimod(DGCat),

AL-BC : Corr(Afftype)
u-type
all;u-type −→ ALGbimod(DGCat),

that are exchanged by duality.

5.1.9 Let us spell out these pieces of structure in more detail. First, up to switching vertical
and horizontal arrows in AR-BC (see Remark 3.3.3), the two (∞, 2)-functors AR-BC,AL-BC have
a common underlying (∞, 1)-functor

ACorr : Corr(Afftype)all;u-type −→ Algbimod(DGCat)

[S ← U → T ] AS←U→T := AS←U ⊗
A(U)

AU→T .

Secondly, the two enhancements of ACorr to AL-BC and AR-BC amount to the following data:

for U ′ → U of u-type over S × T , there are two mutually dual structure functors AS←U ′→T �
AS←U→T , compatible in U in the natural way. Such enhancements will be used in §§ 6.3.1 and

6.3.2 to construct the two kinds of pushforwards in the setting of ShvCatH on stacks.
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5.1.10 Easy examples. It is obvious that Q and D are ambidextrous. For instance, for the
former,

QCorr : Corr(Aff)all;all −→ ALGbimod(DGCat)

is defined on 1-arrows by QS←U→T ' QCoh(U), the latter equipped with its obvious (QCoh(S),
QCoh(T ))-bimodule structure. The two mutually dual structure functors QS←U ′→T � QS←U→T

are simply the pullback and pushforward functors along U ′→ U .
We leave it as an exercise to show that the coefficient system S′ responsible for singular

support is ambidextrous: it extends to a functor out of Corr(Affq-smooth)smooth
all;smooth.

5.1.11 Let us now turn to I∧. We have the following result, which will later help us
understand base-change for H.

Proposition 5.1.12. The functor I∧ : Schaft → Algbimod(DGCat) satisfies the right Beck–
Chevalley condition, so that it extends to an (∞, 2)-functor

(I∧)R-BC : Corr(Schaft)
all,2−op
all;all −→ ALGbimod(DGCat). (5.7)

Proof. We start by setting up some notation. For X → Y in Schaft, consider the maps

ζ : (X ×X)∧X ' X ×XdR
X −→ (X ×X)∧X×YX

' X ×YdR
X,

η : (Y × Y )∧X ' Y ×YdR
XdR ×YdR

Y −→ (Y × Y )∧Y ' Y ×YdR
Y, (5.8)

where ζ is induced by ∆X/Y : X → X×Y X. With the help of Lemma 4.2.1, one can easily check
that the functors

ζ ! : I∧X→Y ⊗
I∧(Y )

I∧Y←X −→ I∧(X), η! : I∧(Y ) −→ I∧Y←X ⊗
I∧(X)

I∧X→Y

exhibit I∧Y←X := IndCoh(Y ×YdR
X) as the right dual of the (I∧(X), I∧(Y ))-bimodule I∧X→Y .

Now let

U

T

S

V
f //

F //

G��
g
��

(5.9)

be a commutative square in Schaft. By Lemma 4.2.1, one easily gets equivalences

I∧S←U→T ' IndCoh(S ×SdR
UdR ×TdR

T ), I∧S→V←T ' IndCoh(S ×VdR
T ),

compatible with the natural (I∧(S), I∧(T ))-bimodule structures on both sides. Further, the
structure arrow induced by the right Beck–Chevalley condition

I∧S→V←T −→ I∧S←U→T

is the !-pullback functor along the natural map UdR→ (S ×V T )dR, whence it is an equivalence
whenever the square is nil-cartesian (i.e. cartesian at the level of reduced schemes). 2

Remark 5.1.13. The same argument with the functors ζIndCoh
∗ and ηIndCoh

∗ shows that I∧ satisfies
the left Beck–Chevalley condition, too. It follows that I∧ is ambidextrous.
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5.2 Base-change for H
The aim of this section is to show that H is ambidextrous (Theorem 5.2.10). After this is proven,
we will summarize the important consequences of this result.

5.2.1 Observe that, for any S ∈ Aff<∞lfp , the monoidal category H(S) is rigid and compactly

generated. Recall now the definition of 1fake
H(S) ∈ H(S)∗ and the notion of very rigid monoidal

category; see § 2.1.5.

Proposition 5.2.2. For any S ∈ Aff<∞lfp , the monoidal DG category H(S) is very rigid.

Proof. It suffices to show that 1fake
H(S) ∈ H(S)∗ admits a lift through the forgetful functor

FunH(S)⊗H(S)rev

(
H(S),H(S)∗

)
−→ H(S)∗.

Recall from [Ber17b] that the functor

D(S)
oblvL−−−→ QCoh(S)

ΥS−−→ IndCoh(S)
′∆IndCoh
∗−−−−−→ H(S)

factors as the composition

D(S) −→ FunH(S)⊗H(S)rev

(
H(S),H(S)

)
−→ H(S),

where the DG category in the middle is by definition the Drinfeld centre of H(S). A variation of
the argument there shows that

D(S)
oblvL−−−→ QCoh(S)

ΞS−→ IndCoh(S)
′∆IndCoh
∗−−−−−→ H(S)∗

factors as the composition

D(S) −→ FunH(S)⊗H(S)rev

(
H(S),H(S)∗

)
−→ H(S)∗.

Finally, one computes 1fake
H(S) ∈ H(S)∗ explicitly: it is readily checked that

1fake
H(S) ' ∆IndCoh

∗ (ΞS(OS)),

a fact that concludes the proof. 2

5.2.3 Coupling this with Corollary 2.1.7, we obtain that each bimodule HS→T is
ambidextrous: moreover, its left and right duals are canonically identified with (HS→T )∗.

Let us now determine the right dual to HS→T explicitly. By the above, we already know
what the DG category underlying HT←S := (HS→T )R must be: it is the dual of the DG category
IndCoh0((S × T )∧S). The latter is self-dual as a plain DG category, so we are just searching for
the correct (H(T ),H(S))-bimodule structure on IndCoh0((S × T )∧S).

We claim that HT←S is equivalent to IndCoh0((T ×S)∧S), equipped with the obvious (H(T ),
H(S))-bimodule structure. We will establish this fact directly, by constructing the evaluation
and coevaluation that make IndCoh0((T × S)∧S) right dual to HS→T .

Lemma 5.2.4. For S → T a map in Aff<∞lfp , the natural functor

HS→T ⊗
H(T )

IndCoh0((T × S)∧S) −→ I∧S→T ⊗
I∧(T )

I∧T←S ' IndCoh(S ×TdR
S)

ζ!

−→ I∧(S)

lands into the full subcategory H(S) ⊆ I∧(S).
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Proof. We will use the commutative diagram

with cartesian square. The DG category

HS→T ⊗
H(T )

IndCoh0((T × S)∧S)

is generated by a single canonical compact object, which is sent by our functor to ζ ! ◦
ξIndCoh
∗ (ωS×TS) ∈ I∧(S). Hence, it suffices to show that the object

(∆̃S/T )! ◦ ξIndCoh
∗ (ωS×TS) ' πIndCoh

∗ ◦ π!(ωS)

belongs to the image of ΥS : QCoh(S) ↪→ IndCoh(S). This is clear: πIndCoh
∗ π! is equivalent as a

functor to the universal envelope of the Lie algebroid TS/S×T → TS , and by assumption TS/S×T
belongs to ΥS(Perf(S)). We conclude as in [AG18, Proposition 3.2.3]. 2

5.2.5 Hence, we have constructed an (H(S),H(S))-linear functor

HS→T ⊗
H(T )

IndCoh0((T × S)∧S) −→ H(S), (5.10)

which will be our evaluation. To construct the coevaluation, we need another lemma.

Lemma 5.2.6. For a diagram S ← U → T in Aff<∞lfp , the functor

IndCoh0((S × U)∧U ) ⊗
H(U)

HU→T → I∧S←U ⊗
I∧(U)

I∧U→T
'−→ IndCoh(S ×SdR

UdR ×TdR
T ) ' IndCoh((S × T )∧U )

is an equivalence onto the subcategory IndCoh0((S × T )∧U ) ⊆ IndCoh((S × T )∧U ).

Proof. Denote by φ : U → S × T and by ′φ : U → (S × T )∧U the obvious maps. The source DG
category is compactly generated by a single canonical object. Base-change along the pullback
square

U × U S ×UdR
U × U ×TdR

T

U S ×SdR
U ×TdR

T

//

//

∆

��
∆

��

shows that such object is sent to ′φIndCoh
∗ (ωU ) ∈ IndCoh((S×T )∧U ), which is a compact generator

of IndCoh0((S × T )∧U ). All that remains is to show that the functor

IndCoh0((S × U)∧U ) ⊗
H(U)

HU→T −→ I∧S←U ⊗
I∧(U)

I∧U→T

is fully faithful. This is evident: the functor in question arises as the composition

IndCoh0((S × U)∧U ) ⊗
H(U)

HU→T ↪→ I∧S←U ⊗
H(U)

HU→T
'−→ I∧S←U ⊗

I∧(U)
I∧U→T ,

where the second arrow is an equivalence thanks to Corollary 4.3.3. 2
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5.2.7 We now use η! : IndCoh((T × T )∧T ) −→ IndCoh((T × T )∧S) as in (5.8), together with
the equivalence

θ : IndCoh0((T × S)∧S) ⊗
H(S)

HS→T → IndCoh0((T × T )∧S)

of the above lemma, to construct the functor

H(T )
η!

−→ IndCoh0((T × T )∧S)
θ−1

−−→ IndCoh0((T × S)∧S) ⊗
H(S)

HS→T . (5.11)

As the next proposition shows, this is the coevaluation we were looking for.

Proposition 5.2.8. Let f : S → T be a map in Aff<∞lfp . Then the functors (5.10) and (5.11)
exhibit IndCoh0((T × S)∧S), with its natural (H(T ),H(S))-bimodule structure, as the right dual
of HS→T .

Proof. This follows formally from the analogous statement for I∧S→T . 2

5.2.9 Henceforth, we will freely use the (H(T ),H(S))-linear equivalence HT←S ' IndCoh0

((T × S)∧S). We are finally ready to settle the ambidexterity of the coefficient system H.

Theorem 5.2.10. The coefficient system H : Aff<∞lfp −→ Algbimod(DGCat) is ambidextrous.

Half of the proof of this theorem has been done in Lemma 5.2.6. All that remains is to add
the following statement.

Lemma 5.2.11. Let S→ V ← T be a diagram in Aff<∞lfp , with either S→ V or T → V bounded.8

Then the functor

HS→V ⊗
H(V )

HV←T −→ I∧S→V ⊗
I∧(V )

I∧V←T
'−→ IndCoh(S ×VdR

T )

is an equivalence onto the subcategory

IndCoh0((S × T )∧S×V T
) ⊆ IndCoh(S ×VdR

T ).

Proof. Let ξ : S ×V T → (S × T )∧S×V T
' S ×VdR

T be the canonical map. As before, HS→V ⊗
H(V )

HV←T is compactly generated by its canonical object. Now, the functor in question sends such
object to ξIndCoh

∗ (ωS×V T ), which is a compact generator of IndCoh0((S × T )∧S×V T
). Hence, all

that remains is to verify that the functor

HS→V ⊗
H(V )

HV←T −→ I∧S→V ⊗
I∧(V )

I∧V←T

is fully faithful. Assume that S → V is bounded; the argument for the other case is symmetric.
We have the following sequence of left QCoh(S)-linear fully faithful functors:

HS→V ⊗
H(V )

HV←T ' QCoh(S) ⊗
QCoh(V )

HV←T

↪→ QCoh(S) ⊗
QCoh(V )

I∧V←T

' QCoh(S) ⊗
QCoh(V )

IndCoh(V ) ⊗
D(V )

IndCoh(T ).

To conclude, recall [Gai13, Proposition 4.4.2] that the tautological functor QCoh(S) ⊗QCoh(V )

IndCoh(V )→ IndCoh(S) is fully faithful whenever S → V is bounded. 2

8 This ensures that S ×V T is bounded, so that IndCoh0((S × T )∧S×V T ) is well-defined.
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5.2.12 Following the template of § 5.1.9, let us summarize the consequences of the
ambidexterity of H. First, we obtain that H extends to a functor

HCorr : Corr(Aff<∞lfp )all;bdd −→ Algbimod(DGCat),

which has been shown to send

[S ← U → T ] HS←U→T := HS←U ⊗
H(U)

HU→T ' IndCoh0((S × T )∧U ).

In other words, HCorr coincides with the restriction of Hgeom on Corr(Aff<∞lfp )all;bdd. Therefore, we
have the following result.

Corollary 5.2.13. The lax (∞, 2)-functor Hgeom is strict when restricted to Corr(Aff<∞lfp )all;bdd.

5.2.14 Secondly, HCorr admits two extensions to (∞, 2)-functors,

HR-BC : Corr(Aff<∞lfp )bdd,2−op
all;bdd −→ ALGbimod(DGCat)

and
HL-BC : Corr(Aff<∞lfp )bdd

all;bdd −→ ALGbimod(DGCat),

described as follows. To a 2-morphism

[S ← U ′→ T ]→ [S ← U → T ],

induced by U ′→ U bounded, HR-BC assigns the !-pullback

IndCoh0((S × T )∧U ) −→ IndCoh0((S × T )∧U ′),

while the HL-BC assigns the dual (∗, 0)-pushforward

IndCoh0((S × T )∧U ′) −→ IndCoh0((S × T )∧U ),

which is well defined thanks to boundedness; see Theorem 3.1.6.

6. Sheaves of categories relative to H

The coefficient system H allows us to define the ∞-category ShvCatH(X), for any prestack X ∈
Fun((Aff<∞lfp )op,Grpd∞). As we are only interested in studying ShvCatH on algebraic stacks, we
only consider the functor

ShvCatH : (Stk<∞lfp )op −→ Cat∞,

where Stk<∞lfp consists of those bounded algebraic stacks that have affine diagonal and perfect
cotangent complex.

In this section we explain several constructions regarding ShvCatH, which we then use to prove
our main theorems. We first show that ShvCatH satisfies smooth descent. Secondly, we discuss
pushforwards and base-change as follows: by Theorem 5.2.10, H is ambidextrous; accordingly,
ShvCatH will admit extensions to categories of correspondences in two mutually dual ways.
Next, we discuss the notion of H-affineness of objects of Stk<∞lfp : we show that ShvCatH(Y) is the

∞-category of modules over the monoidal DG category Hgeom(Y). Finally, we deduce that the
lax (∞, 2)-functor Hgeom is actually strict.
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6.1 Descent

Define

ShvCatH : (Stk<∞lfp )op −→ Cat∞

to be the right Kan extension of

ShvCatH = -mod ◦H : (Aff<∞lfp )op −→ Cat∞

along the inclusion Aff<∞lfp ↪→ Stk<∞lfp . The purpose of this section is to show that the functor

ShvCatH satisfies smooth descent.

6.1.1 Objects of

ShvCatH(Y) ' lim
S∈(Aff<∞

lfp )/Y

H(S)-mod

will be often represented simply by C ' {CS}S∈(Aff<∞
lfp )/Y

, leaving the coherent system of

compatibilities HS→T ⊗H(T ) CT ' CS implicit. For any f : X → Y in Stk<∞lfp , denote by f∗,H

the structure functor. Explicitly (and tautologically), f∗,H sends

{CS}S∈(Aff<∞
lfp )/Z

 {CS}S∈(Aff<∞
lfp )/Y

.

In what follows, elements of S ∈ (Aff<∞lfp )/Y will be denoted by φS→Y : S → Y. It is obvious that

(φS→Y)∗,H(C) = CS .

Theorem 6.1.2. The functor ShvCatH : (Stk<∞lfp )op
→ Cat∞ satisfies smooth descent. In

particular, for any Y, the restriction functor

ShvCatH(Y) −→ lim
S∈(Aff<∞

lfp )/Y,smooth

H(S)-mod

is an equivalence. Here, (Aff<∞lfp )/Y,smooth is the subcategory of (Aff<∞lfp )/Y whose objects are

smooth maps S → Y and whose morphisms are triangles S → T → Y with all maps smooth.

6.1.3 We will need a few preliminary results that will be stated and proven after having

fixed some notation.

Let φ : U → S be a smooth cover in Aff<∞lfp and let U• be its associated Čech simplicial

scheme. For any arrow [m]→ [n] in ∆op, denote by φ[m]→[n] : Um → Un and φn : Un → S the

induced (smooth) maps.
Now let Y ∈ Stk<∞lfp be a stack under S. The above maps induce functors

(Φ[m]→[n])∗,0 : IndCoh0(Y∧Un
) −→ IndCoh0(Y∧S),

(Φn)∗,0 : IndCoh0(Y∧Un
) −→ IndCoh0(Y∧S).

We obtain a functor

ε : colim
[n]∈∆op

IndCoh0(Y∧Un
) −→ IndCoh0(Y∧S). (6.1)

Lemma 6.1.4. The functor (6.1) is an equivalence.
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Proof. Denote by

IndCoh0(Y∧S)[U,∗]

the colimit category appearing in the left-hand side of (6.1). We will proceed in several steps.

Step 1. We need to introduce an auxiliary category. Denote by (Φn)? and (Φ[m]→[n])
? the possibly

discontinuous right adjoints to (Φn)∗,0 and (Φ[m]→[n])∗,0. Consider the cosimplicial DG category

(
IndCoh0(Y∧U•), (Φ[m]→[n])

?
)

(6.2)

and define IndCoh0(Y∧S)[U,?] to be its totalization. Of course,

IndCoh0(Y∧S)[U,?] ' IndCoh0(Y∧S)[U,∗]

via the usual limit–colimit procedure. However, the former interpretation allows us to write εR

as the functor

εR : IndCoh0(Y∧S) −→ IndCoh0(Y∧S)[U,?]

given by the limit of the (Φn)?.

Step 2. We will prove the lemma by showing that εR is an equivalence. By a standard argument,

it suffices to check two facts:

– the (discontinuous) forgetful functor

(Φ0)? : IndCoh0(Y∧S)[U,?] −→ IndCoh0(Y∧U )

is monadic;

– the cosimplicial category (6.2) satisfies the monadic Beck–Chevalley condition.

Step 3. In this step, we will prove the first item above. To this end, we define

QCoh(S)[U,∗] := colim
[n],φ∗

QCoh(Un), QCoh(S)[U,?] := lim
[n],φ?

QCoh(Un),

where (φ[m]→[n])
? is the discontinuous right adjoint to (φ[m]→[n])∗. It is easy to see that there is

a commutative square

where the vertical arrows are the structure (conservative) functors induced by the morphism

Q→ H. Hence, it suffices to show that the bottom horizontal arrow is monadic, and the latter

has been established in [Gai15b, § 8.1].

Step 4. All that remains is to verify the second item of Step 2 above. This is a particular case of

the lemma below. 2
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Lemma 6.1.5. Consider a diagram

in Aff<∞lfp , where the square is cartesian with all maps smooth. We do not require that V → Z
be smooth. Then the natural lax commutative diagram

(6.3)

is commutative.9

Proof. We proceed in steps here as well.

Step 1. For f : X → V a map in Schaft, denote the induced functor by Φf : Z∧X → Z∧V . Recall
the equivalence

IndCoh(Z∧V ) ⊗
D(V )

D(X)
'−−→ IndCoh(Z∧X) (6.4)

given by exterior tensor product (Lemma 4.2.1). One immediately checks that, under such
equivalence, (Φf )IndCoh

∗ goes over to the functor

IndCoh(Z∧V ) ⊗
D(V )

D(X)
id⊗f∗,dR−−−−−→ IndCoh(Z∧V ) ⊗

D(V )
D(V ) ' IndCoh(Z∧V ).

Thus, whenever f is smooth, (Φf )IndCoh
∗ admits a left adjoint which we denote by (Φf )∗,IndCoh;

this is obtained from the D-module ∗-pullback f∗,dR ' f !,dR[−2 dimf ] by tensoring up. Hence,
for f smooth, we have an equivalence

(Φf )∗,IndCoh ' (Φf )![−2 dimf ]. (6.5)

Step 2. Applying the above to h and h′, we see that the functors (Φh)∗,IndCoh and (Φh′)
∗,IndCoh

preserve the IndCoh0-subcategories. We thus have a diagram

(6.6)

which is immediately seen to be commutative thanks to (6.5) and base-change for IndCoh0.

Step 3. We leave it to the reader to check that the horizontal arrows in the commutative diagram
(6.6) are left adjoint to the horizontal arrows of (6.3). Hence, we obtain the desired assertion by
passing to the diagram right adjoint to (6.6). 2

9 As usual, for f : X → V one of the above maps, we have denoted the induced functors by (Φf )∗,0 and (Φf )?.
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6.1.6 Let us finally prove Theorem 6.1.2.

Proof of Theorem 6.1.2. It suffices to prove that the functor ShvCatH : (Aff<∞lfp )op
→ Cat∞

satisfies smooth descent. For S ∈ Aff<∞lfp , let f : U → S be a smooth cover and U• the

corresponding Čech resolution. Denote by fn : Un → S the structure maps. We are to show
that the natural functor

α : H(S)-mod −→ lim
[n]∈∆

H(Un)-mod, C {HUn→S ⊗H(S) C}n∈∆

is an equivalence.
Note that α admits a left adjoint, αL, which sends

{Cn}n∈∆  colim
[n]∈∆op

(
HS←Un ⊗

H(Un)
Cn

)
,

where we have used the left dualizability of the HUn→S . We will show that α and αL are both
fully faithful.

For α, it suffices to verify that the natural functor αL ◦ α(H(S))→ H(S) is an equivalence.
Such functor is readily rewritten as

ε : colim
[n]∈∆op

(
HS←Un ⊗

H(Un)
HUn→S

)
−→ H(S).

By Lemma 5.2.6, our claim is exactly the content of Lemma 6.1.4 applied to Y = S × S.
Next, we prove αL is fully faithful: it suffices to check that the natural functor

HU→S ⊗H(S) colim
[n]∈∆op

(
HS←Un ⊗

H(Un)
Cn

)
−→ C0

is an equivalence. Using base-change for H, this reduces to proving that

colim
[n]∈∆op

HU←U×SUn→U −→ H(U)

is an equivalence. This is again an instance of Lemma 6.1.4. 2

6.2 Localization and global sections

Let Y ∈ Stk<∞lfp . In this section we equip ShvCatH(Y) with a canonical object that we denote by
H/Y. We then use such object to define a fundamental adjunction and the notion of H-affineness.

6.2.1 For S ∈ Aff<∞lfp mapping to Y, consider the left H(S)-module

HS→Y := Hgeom
S→Y = IndCoh0((S × Y)∧Y ).

Let U → Y be an affine atlas with induced Čech complex U•. By [Ber17b], there is a natural left
H(S)-linear equivalence

IndCoh0((S × Y)∧S) ⊗
QCoh(Y)

QCoh(Un) ' IndCoh0((S × Un)∧S×YUn
) ' HS←S×YU→U (6.7)

from which we obtain a left H(S)-linear equivalence

HS→Y ' lim
U∈(Aff<∞

lfp )/Y,smooth

HS←S×YU→U , (6.8)

where the limit on the right-hand side is formed using the (!, 0)-pullbacks. We now show that
the same category HS→Y can be expressed as a colimit.
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Lemma 6.2.2. Let S, Y, U• be as above. Then the natural functor

colim
[n]∈∆op

IndCoh0((S × Un)∧S×YUn
) −→ IndCoh0((S × Y)∧S)

given by the (∗, 0)-pushforward functors is an equivalence.

Proof. Under the equivalence (6.7), the left-hand side becomes

colim
[n]∈∆op

(
IndCoh0((S×Y)∧S) ⊗

QCoh(Y)
QCoh(Un)

)
' IndCoh0((S×Y)∧S) ⊗

QCoh(Y)

(
colim

[n]∈∆op
QCoh(Un)

)
,

where the colimit on the right-hand side is taken with respect to the ∗-pushforward functors. It

suffices to recall again that the obvious functor

colim
[n]∈∆op

QCoh(Un) −→ QCoh(Y)

is a QCoh(Y)-linear equivalence; see [Gai15b, Proposition 6.2.7]. 2

Lemma 6.2.3. The collection {HS→Y}S∈(Aff<∞
lfp )/Y

assembles to an object of ShvCatH(Y) that we

shall denote by H/Y.

Proof. We need to prove that, for S′→ S a map in Aff<∞lfp , the canonical arrow

HS′→S ⊗
H(S)

HS→Y −→ HS′→Y

is an equivalence. We use the canonical left H(S)-linear equivalence

HS→Y := IndCoh0((S × Y)∧Y ) ' lim
U∈(Aff<∞

lfp )/Y,smooth

HS←S×YU→U ,

discussed above. Since the left leg of each correspondence above is smooth, base-change for H
can be applied to yield

HS′→S ⊗
H(S)

HS→Y ' HS′→S ⊗
H(S)

lim
U∈(Aff<∞

lfp )/Y,smooth

HS←S×YU→U ' lim
U∈(Aff<∞

lfp )/Y,smooth

HS′←S′×YU→U .

The latter is HS′→Y, as desired. 2

6.2.4 Set H(Y) := Hgeom(Y). Recall that the left H(S)-module category HS→Y := Hgeom
S→Y is

actually an (H(S),H(Y))-bimodule, where both actions are given by convolution. Since HS→Y

is dualizable as a DG category and the monoidal DG categories H(S) and H(Y) are both very

rigid, Corollary 2.1.7 implies that HS→Y is ambidextrous.

By Lemma 6.2.2 and the ambidexterity of H, its (right, as well as left) dual is easily seen to

be the obvious (H(Y),H(S))-bimodule

HY←S := Hgeom
Y←S := IndCoh0((Y× S)∧S).
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6.2.5 We can now introduce the fundamental adjunction

(6.9)

The left adjoint sends C ∈ H(Y)-mod to the H-sheaf of categories represented by{
HS→Y ⊗

H(Y)
C
}
S∈(Aff<∞

lfp )/Y
.

This makes sense in view of Lemma 6.2.3. The right adjoint sends C = {CS}S ∈ ShvCatH(Y) to
the H(Y)-module

ΓH
Y (C) = lim

S∈((Aff<∞
lfp )/Y,smooth)op

HY←S ⊗
H(S)

CS , (6.10)

where we have used Theorem 6.1.2.
We say that Y is H-affine if the adjoint functors (6.9) are mutually inverse equivalences.

Remark 6.2.6. Note that ΓH
Y (C) can be computed as

HomShvCatH(Y)(H/Y,C),

where ShvCatH(Y) is regarded as an (∞, 2)-category and Hom denotes the (∞, 1)-category of
1-arrows in an (∞, 2)-category.

6.3 Pushforwards and the Beck–Chevalley conditions
For any arrow f : Y→ Z in Stk<∞lfp , the functor f∗,H commutes with colimits, whence it admits
a right adjoint, denoted by f∗,H. Moreover, since H satisfies the left Beck–Chevalley condition,
f∗,H commutes with limits as well, whence it also admits a left adjoint, denoted by f!,H.

In this section we give formulas for these pushforward functors and discuss base-change for
ShvCatH.

6.3.1 Let f : Y → Z be an arrow in Stk<∞lfp . For C ∈ ShvCatH(Y), we will compute the
H-sheaf of categories f∗,H(C). By Theorem 6.1.2, it suffices to specify the value of f∗,H(C) on
affine schemes U ∈ Aff<∞lfp mapping smoothly to Z. For each such φU→Y : U → Y, consider the
H(U)-module

EU := lim
V ∈((Aff<∞

lfp )/U×ZY,smooth)op
HU←V ⊗

H(V )
CV .

The limit is well defined thanks to the left Beck–Chevalley condition, that is, exploiting the
(∞, 2)-functor HL-BC of § 5.2.14. Next, using the right Beck–Chevalley condition, one readily
checks that the natural functor

HU ′→U ⊗
H(U)

EU −→ EU ′

is an equivalence for any smooth map U ′→ U in Aff. This guarantees that {EU}U∈(Aff<∞
lfp )/Z,smooth

is a well-defined object of ShvCatH(Z). We leave it to the reader to verify that such object in the
required pushforward f∗,H(C).

6.3.2 Similarly, the !-pushforward of C is written as

f!,H(C) ' {DU}U∈(Aff<∞
lfp )/Z,smooth

,

where DU is defined, using the (∞, 2)-functor HR-BC, as

DU := colim
V ∈(Aff<∞

lfp )/U×ZY,smooth

HU←V ⊗
H(V )

CV .
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6.3.3 It is then tautological to verify that the ShvCatH has the right Beck–Chevalley
condition with respect to bounded arrows, that is, the assignment

[X
h
←−W

v−→ Y] v∗,H ◦ h∗,H

upgrades to an (∞, 2)-functor

ShvCatH∗,∗ : Corr(Stktype)
bdd,2−op
bdd;all −→ Cat∞, (6.11)

with Cat∞ being regarded here as an (∞, 2)-category. Symmetrically, the assignment

[X
h
←−W

v−→ Y] v!,H ◦ h∗,H

upgrades to an (∞, 2)-functor

ShvCatH!,∗ : Corr(Stktype)
bdd
all;bdd −→ Cat∞. (6.12)

Remark 6.3.4. Combining the two functors together, we deduce that we have base-change
isomorphisms

g∗,H ◦ f∗,H ' F∗,H ◦G∗,H, g∗,H ◦ f!,H ' F!,H ◦G∗,H

as soon as at least one between f and g is bounded.

Remark 6.3.5. We will show later that !- and ∗-pushforwards of H-sheaves of categories are
naturally identified; see Corollary 6.5.5.

6.4 Extension/restriction of coefficients
In this section we relate H-sheaves of categories with the more familiar quasi-coherent sheaves of
categories developed in [Gai15b]. The latter are the ones obtained from the coefficient system Q.

6.4.1 The relation between ShvCatH and ShvCatQ is induced by the map Q → H of
coefficient systems on Aff<∞lfp . Specifically, Q→ H induces a natural transformation

oblvQ→H : ShvCatH =⇒ ShvCatQ

between functors out of (Stk<∞lfp )op. In other words, this means that oblvQ→H is compatible with
the pullback functors.

Lemma 6.4.2. For Y ∈ Stk<∞lfp , the functor oblvQ→H
Y : ShvCatH(Y)→ ShvCatQ(Y) is conservative

and admits a left adjoint, which we will call indQ→H
Y .

Proof. Conservativeness is obvious. The existence of the left adjoint is clear thanks to the fact
that oblvQ→H

Y commutes with limits. 2

6.4.3 The functor

indQ→H
Y : ShvCatQ(Y) −→ ShvCatH(Y)

is really easy to describe explicitly. Namely,

indQ→H
Y (C) ' colim

S∈(Aff<∞
lfp )/Y,smooth

(φS→Y)!,H
(
H(S)⊗QCoh(S) CS

)
.
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Lemma 6.4.4. The induction functor indQ→H
Y : ShvCatQ(Y)→ ShvCatH(Y) sends Q/Y to H/Y.

Proof. The above formula and § 6.3.2 yield

indQ→H
Y (Q/Y) ' colim

S∈(Aff<∞
lfp )/Y

(φS→Y)!,H(H(S))

' colim
S∈(Aff<∞

lfp )/Y,smooth

{
colim

V ∈(Aff<∞
lfp )/U×YS,smooth

HU←V ⊗
H(V )

HV→S

}
U

.

We now apply Lemma 6.1.4 twice. Firstly,

colim
V ∈(Aff<∞

lfp )/U×YS,smooth

HU←V ⊗
H(V )

HV→S = colim
V ∈(Aff<∞

lfp )/U×YS,smooth

IndCoh0((U × S)∧V )

is equivalent to IndCoh0((U × S)∧U×YS
). Secondly,

colim
S∈(Aff<∞

lfp )/Y,smooth

IndCoh0((U × S)∧U×YS
) ' IndCoh0((U × Y)∧U ) =: HU→Y.

This concludes the computation. 2

6.5 H-affineness
In this section we prove our main theorem, the H-affineness of algebraic stacks, and deduce that
Hgeom is a strict (∞, 2)-functor.

Theorem 6.5.1. Any Y ∈ Stk<∞lfp is H-affine, that is, the adjunction

(6.13)

is an equivalence of ∞-categories.

Proof. Our strategy is to reduce to the known Q-affineness of such stacks (see [Gai15b,
Theorem 2.2.6]) using the adjunction

Step 1. For a monoidal functor f : A→ B, we denote by ind[f ] : A-mod� B-mod : oblv[f ] the
standard adjunction. Let δY : QCoh(Y)→ H(Y) be the usual monoidal functor.

By Lemma 6.4.4, the diagram

QCoh(Y)-mod

ShvCat(Y)

H(Y)-mod

ShvCatH(Y)//
indQ→H

Y

//ind[δY]

LocY

��

LocHY

��

(6.14)

is commutative. It follows that the square

QCoh(Y)-mod

ShvCat(Y)

H(Y)-mod

ShvCatH(Y)
oblvQ→H

Yoo

oblv[δY]oo
OO

ΓQ
Y

OO

ΓH
Y

(6.15)

is commutative too.
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Step 2. By changing the vertical arrows with their left adjoints, we obtain a lax commutative
diagram

QCoh(Y)-mod

ShvCat(Y)

H(Y)-mod

ShvCatH(Y)

↘

oblvQ→H
Yoo

oblv[δY]oo

LocY

��

LocHY

��

(6.16)

However, this diagram is genuinely commutative thanks to the canonical (QCoh(S),H(Y))-linear
equivalence

QCoh(S) ⊗
QCoh(Y)

H(Y)
'−−→ HS→Y.

Step 3. We are now ready to prove the theorem by checking that the two compositions LocHY ◦ΓH
Y

and ΓH
Y ◦LocHY are isomorphic to the corresponding identity functors. This is easily done by using

the commutative diagrams (6.15) and (6.16), the conservativity of the functors

oblvQ→H
Y : ShvCatH(Y) −→ ShvCatQ(Y), oblv[δY] : H(Y)-mod −→ QCoh(Y)-mod,

and the Q-affineness of Y. 2

6.5.2 Combining the (∞, 2)-functor

ShvCatH∗,∗ : Corr(Stk<∞lfp )bdd,2−op
bdd;all −→ Cat∞

of (6.11) with Theorem 6.5.1, we obtain another strict (∞, 2)-functor,

Hcat : Corr(Stk<∞lfp )bdd,2−op
bdd;all −→ ALGbimod(DGCat), (6.17)

defined by

X Hcat(X) := H(X),

[X
v
←−W

h−→ Y] (Hcat)X←W→Y := ΓH
Y ◦ (h∗,H ◦ v∗,H) ◦ LocHY (H(Y)).

Theorem 6.5.3. The lax (∞, 2)-functor

Hgeom : Corr
(
Stk<∞lfp

)schem&bdd&proper

bdd;all
−→ ALGbimod(DGCat)

of § 3.2 is naturally equivalent to the restriction of Hcat to Corr
(
Stk<∞lfp

)schem&bdd&proper

bdd;all
. Hence,

Hgeom is strict.

Henceforth, we will denote both (∞, 2)-functors simply by H.

Proof. By Remark 6.2.6, the DG category underlying Hcat
X←W→Y is computed as follows:

Hcat
X←W→Y ' HomShvCatH(Y)

(
H/Y, h∗,H ◦ v∗,H(H/X)

)
' HomShvCatH(W)

(
h∗,H(H/X), v∗,H(H/Y)

)
' lim

U∈((Aff<∞
lfp )/W,smooth)op

HomH(U)

(
HU→X,HU→Y

)
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' lim
U∈((Aff<∞

lfp )/W,smooth)op
HX←U ⊗

H(U)
HU→Y

' lim
U∈((Aff<∞

lfp )/W,smooth)op
lim

S∈((Aff<∞
lfp )/X,smooth)op

lim
T∈((Aff<∞

lfp )/Y,smooth)op

×HS←S×XU→U ⊗
H(U)

HU←U×YT→T .

By base-change for H, we have

HS←S×XU→U ⊗
H(U)

HU←U×YT→T ' HS←S×XU×YT→T ' IndCoh0

(
(S × T )∧S×XU×YT

)
.

By taking the limit, we obtain

Hcat
X←W→Y ' IndCoh0((X× Y)∧W) =: Hgeom

X←W→Y,

as desired. 2

Corollary 6.5.4. For f : Y→ Z in Stk<∞lfp . Then the functors f∗,H and f∗,H correspond under
H-affineness to the functors of HZ←Y ⊗H(Y) − and HY→Z ⊗H(Z) −, respectively.

Proof. Let C ∈ H(Y)-mod. We need to exhibit a natural equivalence

ΓH
Z ◦ f∗,H ◦ LocHY (C) ' HZ←Y ⊗

H(Y)
C.

This easily reduces to the case C = H(Y), where it holds true by construction. The assertion for
f∗,H is proven similarly. 2

Corollary 6.5.5. Pullbacks of H-sheaves of categories are ambidextrous: for any f : Y→ Z in
Stk<∞lfp , there is a canonical equivalence f!,H ' f∗,H.

Proof. Recall the formulas for f!,H and f∗,H from §§ 6.3.1 and 6.3.2. By H-affineness, it suffices to
exhibit a natural equivalence f!,H(H/Y) ' f∗,H(H/Y). The latter is constructed as in Lemma 6.1.4.

2

6.6 The H-action on IndCoh
This final section contains an example of our techniques. We view IndCoh(Y) as a left module for
H(Y) and compute H-pullbacks along smooth maps, as well as H-pushforwards along arbitrary
maps.

Lemma 6.6.1. For a smooth map X→ Y in Stk<∞lfp , the natural H(X)-linear functor

HX→Y ⊗
H(Y)

IndCoh(Y) −→ IndCoh(X)

is an equivalence.

Proof. This is just a consequence of the (QCoh(X),H(Y))-bilinear equivalence

HX→Y ' QCoh(X) ⊗
QCoh(Y)

H(Y),

together with [Gai13, Proposition 4.5.3]. 2
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Remark 6.6.2. The example of Y = pt shows that we should not expect this result to be true for
non-smooth maps.

Proposition 6.6.3. For a map f : Y→ Z in Stk<∞lfp , the natural H(Z)-linear functor

HZ←Y ⊗
H(Y)

IndCoh(Y) −→ IndCoh(Z∧Y )

is an equivalence.

Proof. Let
IndCoh/Y := LocHY (IndCoh(Y)) ∈ ShvCatH(Y).

Lemma 6.6.1 gives the equivalence (φV→Y)∗,H(IndCoh/Y) ' IndCoh(V ) for any affine scheme V
mapping smoothly to Y. We then have

ΓH
Zf∗,H(IndCoh/Y) ' lim

V ∈((Aff<∞
lfp )/Y,smooth)op

HZ←V ⊗
H(V )

IndCoh(V )

' lim
V ∈((Aff<∞

lfp )/Y,smooth)op
lim

U∈((Aff<∞
lfp )/Z,smooth)op

HU←U×ZV→V ⊗
H(V )

IndCoh(V )

' lim
V ∈((Aff<∞

lfp )/Y,smooth)op
lim

U∈((Aff<∞
lfp )/Z,smooth)op

IndCoh(U∧U×ZV
)

' lim
V ∈((Aff<∞

lfp )/Y,smooth)op
IndCoh(Z∧V )

' IndCoh(Z∧Y ).

Here we have used the self-duality of IndCoh(S), the rigidity of H(S), Proposition 4.3.2 (i.e. the
special case of the assertion for affine schemes), Lemma 6.6.1 and smooth descent for IndCoh.
The conclusion now follows from Corollary 6.5.4. 2
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