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ISOMORPHISMS BETWEEN SPACES OF VECTOR-VALUED
CONTINUOUS FUNCTIONS

by N.J. KALTON*

(Received tst April 1981)

1. Introduction

A theorem due to Milutin [12] (see also [13]) asserts that for any two uncountable
compact metric spaces Q,; and Q,, the spaces of continuous real-valued functions C(Q,)
and C(Q,) are linearly isomorphic. It immediately follows from consideration of tensor
products that if X is any Banach space then C(Q,; X) and C(Q,; X) are isomorphic.

The purpose of this paper is to show that this conclusion is false for general non-
locally convex quasi-Banach spaces. In fact, it fails in a quite strong manner. We shall
show that if X is a quasi-Banach space containing no copy of ¢, which is isomorphic to
a closed subspace of a space with a basis and C(I;X)=~ C(A; X), (where I is the unit
interval and A is the Cantor set) then we can conclude that X is locally convex.

The proof requires building some machinery concerning operators on spaces of
continuous functions. The locally convex analogues of these results are to be found in
the work of Batt and Berg [1] or Brooks and Lewis [2].

Operators on spaces C(Q) into general non-locally convex spaces have been treated in
an important paper of Thomas [19]. Unfortunately this paper has not been published.
Thomas’s main result can be expressed in the language of this paper as follows

Theorem. (Thomas) Let X be a quasi-Banach space and let Q be a compact Hausdorff
space. If T:C(Q)—X is an exhaustive linear operator then there is a regular X-valued
measure u on the Borel sets of Q such that

Té=[¢du  $eCQ).

Here “T is exhaustive” means that if ¢, is a sequence bounded in C(Q) with disjoint
supports then T¢,—0. This may be regarded as a generalisation of the Riesz
Representation Theorem. We shall refer to it as the Riesz-Thomas theorem.

We derive here a similar representation for operators on spaces C(; X) (Theorem
4.3). We give the proof in some detail partly because Thomas’s theorem is not easily
accessible. Schuchat [18] obtained some results in this direction.

Our other main weapon is a version of Liapunoff’s theorem for non-locally convex
vector-valued measures (Theorem 3.1). The absence of local convexity requires some
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tricks in the proof not usually necessary for the corresponding results in locally convex
spaces (cf. [S]). :

Throughout this paper a quasi-Banach space will be a real vector space equipped
with a complete quasi-norm topology. (See [10], p. 159). The quasi-norm will always be
assumed p-subadditive for some p, 0<p<l,ie.

[y +xo|P S x]lP+ [Pl xp,x€ X

If X is a quasi-Banach space and Q is a compact Hausdorff space then C(Q; X) is the
space of continuous X-valued functions quasi-normed by

171} =max]| /)]
If xe X and ¢ € C(Q) then ¢®x e C(Q; X) is given by
P @ x(w) = Pplw)x.

If f € C( X) and ¢eC(Q) then ¢ f € C(®; X) is given by

¢ f(w)=d(w)f ().

We shall have need of the concept of a compactly determined quasi-Banach space. We
say X is compactly determined (or has a compactly determined topology) if it may be
equivalent quasi-normed so that

||x|| =sup(||Kx||: K € #)

where X" is some collection of compact operators into a quasi-Banach space Z. The
easiest examples are spaces embeddable in a space with a basis. However there are
examples of such spaces with trivial duals. We shall assume that the quasi-norm on a
compactly determined space satisfies the above criterion.

2. Submeasures

Let Q be an abstract set and let X be a g-algebra of subsets of Q. We recall that a
(continuous) submeasure p on (Q,X) is a map p: Z— R satisfying

p(A)Sp(Au B)Sp(A)+p(B)  A,BeX (20.1)
p@®)=0 (2.0.2)
If A,l0 then p(4,)]0. (2.0.3)

It is an unsolved problem posed by Maharam [10] whether every submeasure has an
equivalent measure, i.e. given a submeasure p does there exist a positive measure
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A Z—>R so that p(A)=0 if and only if A(4)=0. See Christensen and Herer [4],
Christensen [3] and Popov [15].

A set AeZ is a p-atom if p(A)>0 and whenever BeX with Bc A then p(B)=0 or
p(A\B)=0. The set of atoms is at most countable. We say p is diffuse if there are no p-
atoms. The following lemma will be required later.

Lemma 2.1. Let p:Z—R be a non-zero diffuse submeasure. Then there exists ¢>0 and
{A;n=1,2,...} =X so that p(A;AA})= & whenever i#j].

Proof. Let N be the g-ideal of p-null sets and let £/N be the quotient Boolean
algebra. It is easy to verify that Z/N is a complete metric space when equipped with the
metric

d[AL,[B)=p(AAB)  A,BeX.

If the conclusion of the Lemma fails, then (£/N,d) becomes a compact abelian
topological group under the group operation of symmetric difference. As /N is a 2-
group this implies that there is a continuous character y: /N —Z, with »([Q])=1, where
Z,={0,1} is the discrete group of order 2. Hence there is some §>0 so that p(4)<d
implies y([A])=0.

Suppose (B:iel) is a maximal collection of disjoint sets in £ so that 0<p(B;)<Sé.
Then I is countable (this follows from condition (2.0.3)). Let B=u(B;:iel); then y([B])
=0. Let A=Q\B; then x([4])=1 and so p(4)=4. Since p is diffuse we may find a
descending sequence A,eX with A;=A4, p(4,)>0 and p(4,\A4,,,)>0, for n=1,2,...
Clearly p(4,\A,+,)=0, by the maximality of {B;:iel}. However if A, ,=nA,, then
p(A,\A,) |0 and we have a contradiction.

Now suppose 2 is a compact Hausdorff space and let % denote the o-algebra of
Borel subsets of Q. We shall say that a submeasure p:#—R is regular if given Be # and
¢>0 there exists a compact K< B and an open V > B so that p(V\K)=<e. In this setting
it can be shown that if A€% is a p-atom then there exists we A with p{w}=p(A4) (cf.
[6]).

We shall require the following lemma; a very similar result is given by Dobrakov ([6]
p. 29).

Lemma 2.2. Let Q be a compact Hausdorff space and let ¥~ be the collection of open
subsets of Q. Let 6:¥"—R be a map satisfying:

8(0)=0 (2.2.1)
BV, VeV, (2.2.2)
6(V, L Va) S O(Vy) +6(Vy) (2.2.3)

For Vev and ¢>0, there exists a compact K <V with 6(V\K)<Ze. (2.24)

Then there is a regular submeasure p: B3—R such that p(V)=6(V) for Ve¥ .
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Proof. The proof is a more or less standard construction. We sketch the ideas only.
Define for every subset Ac=Q,
p(A)=inf (V). V > A). (2.2.5)
Then p(A)=0(A) if Ae¥ . Then define a set BcQ to be p-measurable if given £> 0 there
exist an open U and a closed K with U>B>K with p(U\K)=6(U\K)<e¢. The class .#
of p-measurable sets is easily seen to be an algebra of sets containing ¥, and p satisfies

conditions (2.0.1) and (2.0.2). The proof is completed by showing that p satisfies (2.0.3)
and that .# is a g-algebra; then certainly /4 > 2.

For (2.0.3), if B,e.# and B,|® select, for given ¢>0, K,cB, compact with
p(B\K,)<¢/2" For some N, K; n...nKy=0;if n=N then

N
p(B)= .; p(BAK) <e.

To show .# is a o-algebra, suppose now (B,) is a descending sequence in .# and let B
=n B,. Choose compact K, and open V, so that K,cB,<V, and &(V,\K,)<g/2"*1.
Then

pVin...nVAK;Nn...nKy)Z¢/2
and so if Wy=V,'n...n V4, K= nKy,
p(WN\K)ép(WN\Klm-'-nKN)'i'p(KIO"'nKN\K)
By the above argument

lim p(K, ... Ky\K)=0

N-w
and so

lim sup p(Wy\K) <¢/2.

N-ow |

Hence for large enough N, K« Bc Wy and (Wy\K)<e.

Suppose now that X is a quasi-Banach space. Denote by C(£; X) the space of
continuous X-valued functions on Q and by B(€; X) the space of bounded X-valued
Borel functions on Q with separable range. On both spaces we let

/1l =sup |l /()]
wef}

The topology of convergence in p-measure on B(Q; X) is defined to be the topology with
a base of neighborhoods of the form V,={f:p(w:||f(w)||>¢)<e} for ¢>0. This is a
pseudo-metrizable topology. We shall require the following lemma.
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Lemma 2.3. Suppose feB(Q;X) and ||f|| <1. Then there is a sequence g, C((; X)
such that ||g,,||no <1 and g,— f in p-measure.

Proof. Given ¢>0, we may find a countable-valued function f;eB(;X) with
I/i]lo <1 and ||f = fil| o <& Let

fl = ;l xn®13n

where B,e# are disjoint with U B,=Q and x,€X satisfy [|x,||<1. There exists N<oo
such that

p( U Bi><s/2.

N+1

Select compact sets K;< B, for 1 £i< N so that p(B\K;)<¢/2N.
Now let Ec X be the linear span of {x,,..., xy}. By the Tietze extension theorem there
is a continuous map g: Q—E so that
glw)=x; weKk; 1<iZN.

Let

h(w) = g(w)/max(1,

g(w)]) wel.

Then he C(Q, X), ||#||, <1 and

A
A
Z

h(w)=x; wekK; I1<i<

Hence
|lf(@)—h(w)|<e weK,u...uKy

and p(Q\(K, uU...u Ky) <e.

3. Vector measures

Again first let Q be any set and X be a o-algebra of sets on Q. Let X be a quasi-
Banach and let 4:£— X be a vector measure (a countably additive set-function). Then it
is well known ([16], [20]) that co u(X) is a bounded set and so if ¢:Q—R is a bounded
Z-measurable function we may define j¢du by the standard procedure of
approximating by simple functions.

A submeasure p: >R controls p if p(A)=0 implies u(A)=0. p is said to be a control
submeasure for p if whenever A € X satisfies y(B)=0 for every Be X with Bc A then p(A)
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=0. Every such vector measure has a control submeasure defined by
p(A)=sup [u(B)P, (30.1)

where p is associated with the quasi-norm as in the introduction.

A set AeX is a u-atom if y(A)#0 and whenever BeX with B< A then ecither y(B)=0
or W(A\B)=0. It is easy to show that A is a uy-atom if and only if it is a p-atom for any
control submeasure p for u. p is said to be diffuse if it has no u-atoms; this is equivalent
to the statement that some diffuse submeasure controls p.

The measure yu is said to be compact if y(X) is a relatively compact set. The following
theorem is a Liapunoff-type result. The chief point here is that u need not have a
control measure, otherwise a proof like that given in [5] could be reproduced. It may be
worth conjecturing that every compact vector measure has a control measure.!

Theorem 3.1. Suppose w:X—-X is a compact diffuse vector measure. Then u(X) is a
convex set.

Proof. It will suffice to show that %p(Q)eIZS. For then it will follow that if AeX
then 3u(4)e(u(B): Bc 4, BeX) and hence if A4, Be X then 4u(A)e(u(B): Bc A, BeX) and
hence if A, BeX then

Hu(A) + p(B)) =4  B)+3u(A AB)
belongs to u(X) (simply find C, = AAB with u(C,)-31u(AAB), and then

H(A N B) L C)—>3(u(A)+ u(B)).

Define a control submeasure p for u by (3.0.1). Then p is diffuse. For each AeX
define v(A) to be the infimum of all §>0 such that there is a finite collection of sets
B,,..., B,eX with B;c 4 (1<i<n) and min p(CAB;)<d wherever C c A.

Fix £€>0. Then by induction we may define a sequence (E,);%, of disjoint sets in X so
that

|M(Esn-)—w(E;)|£27"P  n=1,2,... (3.1.1)
p(EZ,,_luEZ,,)g%v<Q\ U Ei> n=12,... (3.1.2)
i<2n-—-1
Indeed suppose {E;1=<i<2n—2} have been determined where n=1; if n=1 this
collection is empty. Then there is an infinite collection (B,), of subsets of
(@\UX7T2E) so that
2n—-2
p(B,-ABk);%v<Q\ U Ei> j#k
i=1

'Added in proof: this conjecture is true, see N. J. Kalton and J. W. Roberts, Uniformly exhaustive
submeasures and nearly additive set functions, Trans. Amer. Math. Soc., to appear.

https://doi.org/10.1017/50013091500028054 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500028054

VECTOR-VALUED CONTINUOUS FUNCTIONS 35
Since u(X) 1s relatively compact, there exist j#k so that
”#(Bj) - #(Bk)” <277,

Let E;,_; =B)\B, and E,,=B,\B;. Then (3.1.1) and (3.1.2) are satisfied.
Let F=()2, E;,~, and G=| 3, E,,. Then

| || (F)— u(G)|| <.
However p(E,,-, u E,,)—0 and so by (3.1.2) Q\{ J?27% E)—0 and hence v(Q\(F U G))

=0. Now we can apply Lemma 2.1 to deduce that p(Q\(F u G))=0 and hence u(F v G)
= pu(Q). Thus

[[3(Q) — p(F)|| =3[ (F) — u(G)| <.

Now suppose again that Q is a compact Hausdorff space and 4 is its collection of
Borel subsets. We say that a vector measure u: 8 — X is regular if its associated control
submeasure is regular. We shall require the following simple lemma whose proof we
omit:

Lemma 3.2. If w#—X is a regular vector measure and [ ¢ du=0 for every ¢p € C(Q)
then u=0.

We shall also need to observe that an atom of a regular measure may be taken to be a
single point.

4. The Riesz-Thomas theorem for C(Q2; X)

Let Q be an abstract set and Z be a g-algebra of subsets of Q; let X and Y be quasi-
Banach spaces. Then an additive map A:Z—-.2(X,Y) will be called a totally g-additive
operator measure if

For xe X, Ap> A(4)x is a Y-valued vector measure. 4.0.1)

Whenever {x,} is a bounded sequence in X and {4,} is a disjoint
sequence in X then X A(A4,)x, converges. 4.0.2)

It follows simply from (4.0.2) that ||A(A4,)||~0 for any disjoint sequence {A4,}. Here the
quasi-norm on Z(X, Y) is defined exactly as for normed spaces. By (4.0.1) we obtain:

Lemma 4.1. If A:2->%(X,Y) is a totally c-additive operator measure then p is o-
additive for the topology of £(X,Y).

Now let p be a control submeasure for A:Z— %(X,Y) defined by

p(A)=sup(||A(B)||: Bc 4, BeX). (4.1.1)
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Define also p"Z—>R U {0} by

p

/(A)=sup ; AB)x||  Aex 4.1.2)

where the supremum is taken over all disjoint B,,...,B,eZ with B,c 4 (1Zi<n), all
x;€ X with ||x]|<1 (1<i<n) and all neN.

Lemma 4.2 p’ is a submeasure on X equivalent to p (i.e. p'(A)=0 if and only if p(A)
=0). In particular p'(Q)) < c0.

Proof. Conditions (2.0.1) and (2.0.2) are immediate. Suppose A4, ] 0. Then we claim
that for each n there exists m=n, a finite disjoint collection B,,..., B, of subsets of
A\A, in T and x,,...,x,€ X with ||x]|<1(1<i<k) so that

¥, MG "> 4min(L, p'(4,). .

Indeed given n we may choose disjoint C,,...,C, subsets of 4, in X and x,,..,x,€X
with ||x;|| £1 (1£i<n) so that

p
>zmin(1, p'(4,))

¥ ACH,

Now for each m=n

p
Skp(A4,)

k
Y ACinA)x;
i=1

Hence for large enough m, (4.2.1) holds with B,=C\(C; " A4,,).
Now (4.2.1) may be used to determine an increasing sequence m(k), a disjoint sequence
{B,}, x,€ X with ||x,/|<1 so that for some increasing sequence g(k)

q(k) 4 L
A(Byx;| =3min(l, P (Amp)

qk—1)+1

Hence by (4.0.2) p'(4,,4,))—0 and so p'(4,)-0.

Next we show p'(Q) < oo, so that p’ is indeed a submeasure. This will complete the
proof as p’ = p but p(A)=0 implies p'(4)=0.

If p(Q)= oo we construct a decreasing sequence A4, so that p'(4,)=co for all n, but

P(ANA+1)Z 3 Sup (p(4,\B): p'(B) = 0).

Let A=nA, We note p(4)=o0; indeed p'(4,\A)—0 and hence as p'(4,)<p'(4)
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+p'(A\A), p'(A)=o00. Next if Bc A then either p'(B)=00 or p'(A\B)= 0. If p'(B)= 00,
then

PANB)=2p(A\Ap4 )0 as n—oo.
Hence p(A\B)=0. Similarly if p'(4\B)= o0, p(B)=0. Thus A4 is a p-atom; but then p(A)

=p'(A)< oo as can be immediately seen.
Now if f:Q— X is a countably simple bounded X-measurable function say

f= Zl 1A,,®xn

where ||x,||<1 and A4,€X are disjoint, we can define

[7dA= Y A4,
and

1§ 1 dAl| = o @)™ f]o-

By continuity we can then extend the definition of | f dA to all of B(Q; X), and if BEZ,

|psan|=15. tuantiz o1

Now suppose Q is a compact Hausdorff space and T: C(Q; X)—Y is a linear operator.
We say T is exhaustive if Tf,—0 whenever f, is a uniformly bounded sequence with

supp f; N supp f;=& for i#j (supp f={w:||f(w)||>0}).
If A:#-%(X,Y) is a totally o-additive operator measure then
Tf=[fdA  feC(X)
defines an exhaustive operator. This follows easily from (4.2.1).

Theorem 4.3. Suppose T:C(Q; X)—Y is an exhaustive linear operator. Then there is a
unique regular totally o-additive operator measure A: B— ¥(X, Y) so that

Tf=[fdA  feCE;X).

Proof. Define for each open V<Q
8(V)=sup(||Tf||": f € U, supp f<= V) where U is the unit ball of C(Q: X) (4.3.1)

We claim 0 satisfies the conditions of Lemma 2.2. Condition (2.2.1) and (2.2.2) are
immediate.
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For (2.2.3) suppose V;, ¥, are open and that F=supp f <V, UV, where feU. Then
there are continuous real functions ¢, ¥ with ¢=0, Yy =0 supppcV;, suppy <V, and
Y(w)+dw)=1 for weF. Then ||T(¢f)|P<6(V)) and ||TW,)|P<6(V2), so that
177l <6(v,)+6(v2).

If (2.2.4) fails to be true for some ¢>0 then by induction we can find a sequence f,e U
with (supp f,)2, disjoint and contained in V so that ||Tf,||2e. This contradicts the fact
that T is exhaustive.

Thus there is a regular submeasure p: #—R so that p(V)=0(V) for Ve¥ . If {f,} isa
uniformly bounded sequence in C(; X) such that f,—0 in p-measure then for every
£>0, 6(A,)—»0 and 6(B,)>0 where 4,={w:||f(w)||>¢} and B,={w:|f(w)||>4%e}. Let
YneC(Q) satisfy 1, <¢,<15 . Then

ITAIP <N TWu LI+ Tl - v f]17 < MP6(B,) + 7| T
where M =sup||f,||. Hence

lim sup || Tf || < || T||Pe”.

ie. Tf,,-—)O.
Now if {f,} is a Cauchy sequence in p-measure which is uniformly bounded, then
lim,,., ,, Tf, exists. By Lemma 2.3 we can define for f € B(); X)

T,f=lim Tg,

n—* o

where g,€ C(Q; X) is a uniformly bounded sequence with g,— f in p-measure. By an
interlacing argument this limit is unique for every choice of such a sequence.
Now T;: B(€; X)— Y satisfies T, f = Tffor f € C(; X) and

InA=ITIA e BE@ X).

Suppose f, € B(Q; X), ||f.]|lo <1 and f,—0 in p-measure. Then we may choose g,e C(2; X)
so that ||g,/|x<1, g—/f,—0 in p-measure and Tg,—0; hence T,f,—0. Thus T, is
continuous in p-measure on bounded sets.
Now for A€, define A(A)e ¥(X,Y) by
A(A)(x) =Ty (x®1 ).

Clearly for each xe X A}> A(4)(x) is a Y-valued measure. If {x,} is a bounded sequence
in X and {A,} is a disjoint sequence in & then

$ A= £ %01,

Thus A is a totally g-additive operator measure.
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Note that if V is open

sup [[A(B)P <6(V)
BecV

and so A is controlled by p and is thus regular.
Clearly

Tf={fdA  feC(&X)
in the sense that the integral is defined following Lemma 4.2.

We shall say that an exhaustive operator T:C(; X)—- Y is diffuse if its representing
measure A is diffuse. We then have:

Corollary 4.4 Suppose T:C(Q;X)—Y is an exhaustive operator. Then there is a
sequence {L,} in #(X,Y), and a sequence {w,} in Q so that

Tf = 21 L{f(w)+Sf,  feC(QX). (44.1)

where S is a diffuse exhaustive operator. Here ||L,,||§“T|| and Y L,x, converges for every
bounded sequence x, in X. If U is the unit ball of C(€; X) then S(U) and (T —S)U) are

contained in T(U).

Proof. Let (w,) be the atoms of A and let L,=A{w,}. Let B=Q\{w, n=1,2,...}.
Then

T =T/ L) + T 10)= 3, Lif@i)+Sf
where
Sf=Ti(f 1p).
As S is controlled by the submeasure
p1(A)=p(4 n B) AedB

which is diffuse, S is also diffuse.
Finally we note the following:

Theorem 4.5. Suppose Y is a quasi-Banach space containing no copy of cy. Then every
bounded linear operator T:C(; X)—Y is exhaustive.

Proof. If {f,} is a sequence in C(Q; X) with disjoint supports and ||f,||=1, then {,}
is a basic sequence equivalent to the usual basis of ¢,. As shown in [8], if T: C(€; X)»Y
is a bounded linear operator then Tf,—0.

Note also that every compact operator on C(€; X) is exhaustive.
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5. Diffuse operators

Theorem 5.1. Suppose T:C(&; X)—Y is a compact diffuse operator. Then T(U) is a
convex set, where U is the unit ball of C(Q; X).

Proof. Suppose f}, f,€ U, suppose T is represented by the diffuse regular totally o-
additive measure A: #—.#(X, Y). Then define measures 1,: B—Y, 1, B—Y by

A(B)=[fidA  Bed
B
2B)={f,dA  Be®

Then the measure A: Z—>Y®Y given by AB)=(4,(B), 2,(B)) is a regular diffuse measure.
By Theorem 3.1, given e> 0, there exists Be # so that

|I/11(B)—%/11(Q)||”<8”/2
”/12(3)——%12(Q)||"< ePf2
Thus if g= f, . 15+ f . 1qp
|Ifg du—HA,( Q)+ 1,(Q)|| <.
Now ge B(Q; X) and ||g||,, < 1. Hence [gdu belongs to the closure of T(U). Thus
HAL(Q+ 2,Q)=HTfL + Tf,)
is also in the closure of T(U).

Corollary 5.2. Suppose X*={0}. Then every compact operator T:C(; X)—>Y is of the
form

7= 3 LU@) feC@X) (5.21)

where (w,) is a sequence of points in Q, and L,e £(X,Y) are compact operators.

Proof. We use Corollary 4.4. Write T in the form (4.4.1) and observe first that as L,
=A{w,}, each L, is compact.

Now S:C(€; X)—Y is compact and diffuse. By Theorem 5.1, S(co U) is bounded. If
S+0, we conclude coU #C(Q; X), ie., there exists ue C(Q; X)* with u#0. Now by
Theorem 4.3,

u(f)=£fd0 SeC@X)
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where o: #—-.2(X, R)is a vector measure. However £ (X, R)= X* = {0}, so u=0, contrary to
assumption.

Theorem 5.3. Suppose Y has a compactly determined topology and T:C(; X)—~Y is a
diffuse exhaustive operator. Then

Il fecou.
Proof. We may suppose that there is a quasi-Banach space Z so that if ye Y

[I7|=supl|Ky]

where K runs through all compact operators K: Y —Z with ||K|| <1
If K:Y—Z is compact with ||K[|<1 then KT:C(Q;X)—Z is diffuse and compact.
Hence if feco U

IKTr || <K T = (7]

by Theorem 5.1, and the result follows.

6. A converse to Milutin’s theorem

In general it is an unsolved problem whether, for any compact Hausdorff space and
any quasi-Banach space X, C(Q)®X is dense in C(; X) (see [9], [17], [21], [22]).
However Schuchat has shown that this conclusion is true under certain hypotheses on
either Q or X. We shall use the fact that it is true if Q is zero-dimensional, e.g. Q=A,
the Cantor set ([17]).

Proposition 6.1. Suppose Q is a compact metric space and that X is a separable quasi-
Banach space. Then C(§; X) is isomorphic to a subspace of C(A; X) and thus is separable.

This is a simple deduction from the fact that there is a continuous surjection of A
onto Q.

Before proceeding to our main result we shall need some preparatory lemmas. Let /
denote the unit interval. We say that a quasi-Banach space X is a factor of a space Y if
X is isomorphic to a complemented subspace of Y.

Lemma 6.2. Suppose Q is a compact metric space and there is a non-constant
continuous map n:1—Q. Then for any quasi-Banach space X, C(I;X) is a factor of
C(Q; X).

Proof. There is a homeomorphic embedding of I into Q (cf. [23] p. 19). Since I is an
absolute retract there are thus continuous maps n:[-Q, & Q-1 so that £on is the
identity on I. Thus if we define S:C(I; X)—~C(Q; X) and T:C(Q; X)—C(I; X) by Sf(w)
= f(&(w)) and Tf ()= f(n(t)) then TS is the identity on C(I; X) and the result is proved.
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Lemma 6.3. Let E be a closed subset of I and let Rg: C(I; X)— C(E; X) be defined by

Ref(s)=f(s)  seE.

Then there exists an operator Jg C(E; X)—»C(I X) with |[Jg|| <2~ and RpJg is the
identity on C (E; X).

Proof. Define Jpf for feC(E;X) by linear interpolation on I\E (which is a
countable union of open intervals).

For any quasi-Banach space X and compact metric space €, let .#(Q; X) be the space
of regular X-valued Borel measures on Q equipped with the topology induced by the
maps

#l—';}(ﬁdu

for ¢ € C(Q).
For any open subset ¥V of Q we define

o) =sup(||f & dul|? +{|f v dufl”)
over all ¢, Y e C(Q}) whose supports are disjoint and contained in V, and such that 0< ¢,

Y=L
Also let

Bu(w=sup llu(w)II"< =max Hu{w}ll”>-

Lemma 6.3. o, is lower-semi-continuous and f is of Baire class one.

Proof. The first statement is clear. For the second let F, be an increasing sequence
of closed subsets of Q with U F,=V. Foreach n, let ¢, ;,...,¢, 4 be a ﬁnite collection
of functions in C(Q) satisfying 0<¢, ;<1, supp ¢, ;< V, dlam(supp ¢, )<n"!'and

max ¢, (w)=1 wekF,.
12jZk(n)
Let
P
Brw= max (@, ;du
15 sk ||

Then each B is continuous and we shall see that B{(u)— B, (1) for every ue .#(Q; X).
For each we ¥, there exists NeN with weF, for n=N. For n= N, let j(n) be such that

¢n.j(n)(w) = 1
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Then
1§ @ son 2l = {0} 1"
so that
Bv(w) = li:rl glfﬂ‘&”(u)-
On the other hand if
A e

for m(1) <m(2) <m(3)..., there exist @) ) SO that

IIf Draiey, jem [P Z 7

By passing to a subsequence we may suppose
SUPP Pmny, jm) < {0 d(w', w)<e,}

where we ¥, and g,-0.
Now it follows from the regularity of u that

|U Py, jomy A1 — ¢m(..)_,-(,.)(w)u{w}||-*0-

Hence we V and ||u{w}||?2r.

Theorem 6.4. Suppose:
X is a separable quasi-Banach space with a compactly determined
topology (e.g. suppose X has a basis), which does not contain a copy of c,. (6.4.1)

Q is an uncountable compact metric space containing no homeomorphic
image of I (e.g. Q is the Cantor set A). (64.2)

Then the following conditions are equivalent:

C(I; X) is isomorphic to C(€; X) (64.3)
C(I; X) is a factor of C(€;X) (6.4.4)
X is locally convex. (64.5)

Remark. For example if 0<p<1, C(A,l,) is not isomorphic to C(I;1,).

Proof. That (6.4.5) implies (6.4.3) follows from Milutin’s theorem according to which
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C(I)= C(Q) and the fact that C(€; X) is simply the e-tensor of C(Q) and X. Clearly (6.4.3)
mmplies (6.4.4).
Suppose (6.4.4) holds. Thus there are bounded linear operators T: C(&; X)—C(I; X)
and S: C(I; X)—- C(€; X) so that
TSf=f feC{;X).
For each tel, the map

T: C(% X)— X

given by T,f = Tf(t) satisfies | T;|| <||T|| and is exhaustive.
Thus we can write 7, in the form (4.4.1) or

Tf= Zﬂ Lo, t)(f(w) +D.f (6.4.6)

Here L{w;t)e Z(X) for (w,t), and the set F,={w: L{w;?)#0} is countable for each t. The
operator D, is diffuse, D, e £(X) and D,(U)c T(U). By Theorem 5.3

IDfet- =+ WTIS] +-- +{LAD (6.4.7)

for f1,..., f,€ C(&; X).
Fix an f € C(€; X) and consider the operators M,: C(Q)— X defined by

M(¢)=Ti(of).

M, is exhaustive and by using Thomas’s theorem,
Mx¢=j ¢dﬂt
where p, is a regular X-valued measure. Clearly

Mp= Zﬂ Lo, ) f(@)d(w)+ D f)

and ¢|—>D,(q,’>. f) is controlled by a diffuse submeasure and Ns thus diffuse. Hence the
atoms of y, are those we F, such that L{w, t)( f(w))#0.

Let {V;} be a base for the open sets of Q. Noting that the map ¢}> y, is necessarily
continuous from I into (Q; X), we have that the maps «,, f, are Baire class one, where

ak(t) = aVk(#l) k= 13 29 s

But)=Bv, ()  k=12,...

Hence there is a dense G;-subset of I, G=G(f), say, so that each «,, f, is continuous at
every point se G. (See Kuratowski [11] p. 394).
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Suppose seG and that w i1s an atom of u,. We shall show that there is a
neighborhood V of s such that w is also an atom of g, for te V. Suppose

ludw}]|=5>0.

Fix k so that we ¥, and if ¢ € C(Q) with |¢| <1 then

Then a,, B, are continuous at s. Clearly
Bus)=26"
while it is easy to calculate that
a(s) <& 6P
Pick a neighborhood I, of s in I, which is a closed interval so that
B)>15067  tel,
a()<iBer  tel,.
For each tel, there is exactly one w=w(t) so that w(t)e ¥} and
ludeote} P > 5.
We claim tp w(f) is a continuous map. It suffices to consider the case t,—tq,
oft,)—>woF w(ty). Let ¢ be a continuous function with supp ¢ =V, and suppose 0<¢ < 1.
Let ¢=1 on a neighborhood of w(t,) and let ¢ =0 on a neighborhood of w,. For large

enough n,¢=0 on a neighborhood of w(t,). We may choose a continuous function
with 0 <y <1 so that supp ¢ = V\supp ¢ and

(1§ ¥ du,

pg%(\;p

Thus
[I§ ¢ du,,

PRt =15

Let n—o0; thus
[I§ & duso||” <307

and letting supp ¢ contract to {w(t,)} we obtain

I {oo(to)}||P <4 67

contrary to assumption. Hence w(t) is constant on [, i.e. w is an atom of y, for tel,.
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If we repeat this for a dense countable subset (f,) of C(€; X) we can find one single
dense Gs-set H in I so that the sets {teH: L(w,t)#0} are open relative to H for every
weQ. Since H has a countable base of open sets it follows that | J(F,:ze H) is again
countable. Denote this set by {w,,w,,®s,...}. Then we may rewrite (6.4.6), for te H, as

T = 3. Lan0XS@)+D.f. (643)
Now for any f € C(Q; X) the maps

th S Lo fi)

n=k+1

are Borel maps on I. This is most easily seen by noting that

S L, )f(w,)= [ fan,

n=k+1

where A,={w;,...} and A, is the totally o-additive operator measure corresponding
to T,.
- Hence by the separability of C(Q; X), the maps

S Lo, 0f(,)

n=k+1

Pt)= sup
Is1s1

are also Borel on I. From Lemma 4.2 it follows that y{(t)—=0 pointwise on H and hence
there is an uncountable compact subset E of H such that

lim sup y,(t)=0.

k- oo teE
(e.g. apply Egoroff’s theorem for some diffuse measure on H).

Now suppose {¢,} is a sequence in C(E) with 0<¢,<1 and supp ¢, " supp ¢,, =9 for
m#n. Let x,,...,xy€ X be such that ||x]|<1. Define (f, ,:1<n<o0, 1 £k<N) in C(&; X)
by

Sk =STb,®xy).

If P is any finite subset of the positive integers

<[IS7l

”nEE:P f"‘k

and hence, as X contains no copy of ¢, for any fixed weQ

tim ||f, (@)|=0  k=1,2,...,N.
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IfteE
ao P r P
_zl Lout)f, do)| < _Zl L(wj, ) fo @) +7.t)
j= =
for any r. As |L(w;, 1)]| < ||T|| for all j, we conclude
0 P
lim sup || ) L{wj, 1) fo.(@))|| =0.
n—w tekE [|[j=1
Now by (6.4.7)
N
[ BRI
and so we have
. N
limsup |ReT 3, foel| <NISTe[||T]
ie.
lim sup |¢,®(x, +- - +xy)|| SN|SJl| | T
or

[lxv - +xuf| < NYISI T

As this is true for any x,,...,xy in the unit ball of X we conclude that X is locally
convex.

7. Problems
Here we list three problems that appear to be of interest.
Problem 7.1. (Klee [9]) Is C(Q)® X dense in C(€%;X) in general?
Problem 7.2. Is C(A;L,)=C(I;L,) for 0<p<1?

Problem 7.3. Is C(I;1,)=C(I%,1,)?
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