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Abstract. Let / be a diffeomorphism of a manifold and A be an /-invariant set
supporting an ergodic Borel probability measure fi with certain properties. A lower
bound on the capacity of A is given in terms of the /t-Lyapunov exponents. This
applies in particular to Axiom A attractors and their Bowen-Ruelle measure.

Let / : M O be a diffeomorphism of a manifold. Suppose t/<=M is an open set
with fU <= U. This tells us that there is an attracting set A in U. A natural question
is: how big is A? Intuitively the size of A is related to the relative strengths of
expansion and contraction of / near this attracting set. We proceed to formulate
a theorem in this direction.

First, we must decide on a notion of 'size'. Riemannian volume seems most
natural, but attractors in 'dissipative' systems often have Riemannian measure zero.
Hausdorff dimension is a classical tool for distinguishing between sets of measure
zero. Our results are in terms of capacity, a notion very similar to Hausdorff
dimension. Precise definitions are given later.

THEOREM. Letf: M PO be a C1+a (a > 0) diffeomorphism of a compact Riemannian
manifold and let fi be an ergodic Borel probability measure on M with Lyapunov
exponents Ax>- • sAp. Suppose also that Au>0>Au+i and that fi has absolutely
continuous conditional measures on unstable leaves. Then the lower capacity of the
support of n,

• -+AU

IA I

COROLLARY. If ft is an attractor of a C2 Axiom A diffeomorphism and ix is the
Bowen-Ruelle measure [1] on ft, then

where Ai s • • '>AP are the fi-exponents and u = dim Eu.

This work is motivated by a conjecture of Yorke's [3], [4] and complements the
work of Douady, Oesterle [2] and Ledrappier [6] who have given upper bounds
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for the Hausdorff dimension of attractors. Mallet-Paret [8], Manning [10], Mane
[9] and Takens [15] have also done work on the dimension of invariant sets.

The author thanks C. Robinson for the references in the proof of lemma 3 and
the referee for his comments.

Remark. After this note was written the author found out that F. Ledrappier had
independently arrived at a very similar result [7].

1. Definitions
Let X be a compact metric space. For e >0, let N(e) be the smallest number of
e-balls that cover X. Define the capacity or upper capacity of X, C(X) to be

logN(e)
hm sup —

and the lower capacity of X, C{X) to be

hminf . . . . .
" 0 log(l/e)

(See for instance [3], [9] and [15].)
It is easy to verify that

d < C(AT)=>lim N(e)ed = oo,

!

lim sup N(e )e d = oo,

liminfA/Xe)ed = 0,

and

imN(e)ed = 0.
e-*0

Recall that if N(e)ed is replaced by

a(e,d)= Inf
covers 9

diam a <

then lim.,-,0 «(e, d) always exists and the unique number do with

o^lim a{e, d) = oo,
e-*0

and
d>do^>lima(e, d) = 0

£-•0

is the Hausdorff dimension of X.
In general,

HD(X)<C(X)<C{X).

Examples of compact sets with strict inequalities can easily be constructed but I
do not know if these numbers coincide for nice invariant sets such as Axiom A
basic sets.
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Capacity can also be defined in terms of separated sets. Let S(e) denote the
maximum number of e-separated points in X. Then S(2e)<N{e)^S(e). Hence

and

Next we turn to the definition of Lyapunov exponents and stable manifolds. Let
1 +°/ : MO be a C1+° diffeomorphism. Let xeM and v e TXM, the tangent space at

x. Define the Lyapunov exponent of / at x in the direction v to be the number

if this limit exists.
Let ix be any /-invariant Borel probability measure. It is a fact that /a-a.e. x is

'regular', which implies in particular that x(x, v) is well-defined for every v e TXM.
For a regular point x, let

X(x) = max {x(x, v): x(x, v) < 0}.
Then

Ws(x) = {y eM:\im sup (1/n) log d(fnx,fy)^x(x)}
n-*-oo

is an immersed submanifold of M called the stable manifold of x The unstable
manifold Wu(x) is defined similarly with f~l playing the role of /. For a detailed
account of this theory, see [12] or [14].

2. Facts from Pesin theory
In this section we fix some notations and recall some relevant facts. We follow
mainly the approach in [11], a summary of which appears in [5].

Let M be a p-dimensional compact Riemannian manifold and / : M O be a C
(a > 0) diffeomorphism. Consider an ergodic Borel probability measure fi with
Lyapunov exponents A i a • • • > Ap. Assume that Au > 0 > AK+i. Let

A =min{Au, |Au+i|}

and fix small e > 0. For / = 1, 2, • •• let A( be the Pesin sets, that is,

A; = I x 6 M: Vm € Z there is a splitting of the tangent space

satisfying the following conditions for all n > 0, m e Z:

(1) v € Es
rxz$>\\Dfn

rA^l exp {e\m\} exp {-(A - e)n}\\v\\,

\\Dfj£xv\\ > (/ exp {e \m\})'1 exp {(A - e)n}\\v\\,

(2) v 6 Eu
rx >̂ ||23/r,»|| a (/ exp {e \m I))"1 exp {(A - e)n}\\v\\,

\\Dfrxv\\ < / exp {e\m\} exp {-(A - e)n}|M|,

and (3) UErx, Es
rx)s(/ exp {e
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It is well-known that

Some of our estimates are more transparent in 'Lyapunov charts'. 'Lyapunov
charts' are non-autonomous changes in coordinates via which / becomes uniformly
hyperbolic. We collect a few facts that will be useful later.

Let B" = {z €R" : ||z||<r}. For each fixed / there are positive numbers Ki and Si
such that for every xeA/ there is a neighbourhood B(x) of x in M and a
diffeomorphism

having the following properties:
(1) If {•, •)' denotes the Riemannian metric on M and (•, • )'x denotes the metric

in B(x) induced by i//x from the Euclidean metric on B" x.Bi~", then

11-11'" '
for some universal constant K.

(2) Let W"oc (x) be the component of Wu(x)nB(x) containing x. In the *-chart,
t/fx1 Wioc (x) is the graph of some

with g(0) = 0 and ||£>g||^T^o. The analogous statement for Ws
loc (x) also holds.

(3) If x, y e A, and d(x, y) < Sh then

«A;1W.oc(y)n5rxJBru

is the graph of some g: B5" -*B[~" with \\Dg\\ < IM.

3. Lemmas
Let m denote Riemannian measure on M. If L <= M is an embedded disk then L
inherits from M a Riemannian structure and hence a Riemannian measure. Let
mL denote this Riemannian measure on L. For x e A, and small p > 0, let

Du
p(x) = {yeW!l

oc(x):d(x,y)<p}

and

Ds
p(x) = {yeWioAx):d(x,y)<p}.

LEMMA 1. For each I, 3At > 0 s.t. for every xeA( and p < \/Kh we have

Proof. This follows from the fact that if/^Dpix) is contained in the graph of gx\B
u

Klp,
VOI(BK,P)~P" and that Riemannian metric is uniformly equivalent to x-chart
metrics for all x e A(. •

LEMMA 2. For each I, 3Bt >0s.t.forp>0 and x,yeA( with d(x,y)< Sh if
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then

d{x,y)>B,p.

Proof. Again this is clear in the x-chart from the slopes of WxocM and Ds
e(x) and

the result follows from the equivalence of metric. •

LEMMA 3. For every e > 0 and /J, - a.e. x e M, 3C(x), 8(x) > 0 s.t. for all y e Ds
S{x),

d(fx, fny) > C(x) exp {(Ap -e)n}d(x, y)

for all n > 0. (Ap = the smallest ix-exponent.)

Proof. One way of seeing this is via theorem 4.1 (inequality (4.5) in particular) and
the proof of theorem 5.1 of [14]. •

For small e > 0, let

T(/, C, 8) = {x e A,: CM s Q 8M a 8 and

Det (Dfn\Eu
x)\ a T1 exp {(Ai + • • • + Au -e)n}, Vn >0}.

Choose /, C and 8 so that ro = r(/, C, 8) has positive fi-measure. Let fo^To be
compact and have positive measure. Assume also that, for every x e To,

i=0

LEMMA 4. For n = 1, 2, • • • , 3Tn <=• f0 s.t.

(1) Vxerm 3n<mMU)<n(l + e) with

/ X 6 A;,

(2) limbec Mr,,=Aifo.
Proo/. This proof is borrowed from [5]. Let

r , , = ( x e f o : " l XA,(fkx)<rifiA,(l+h
I (c = 0

and <i)A'A,(A)>^A((l +h)Y •
(c=0 J

Next we consider a chart <j>: B" x S -* M, where B" is a closed «-dimensional disk,
S c f l ! is compact, </> is continuous, <f>\B" x{y} is C1 for each yeS, this derivative
in the first variable is continuous on Bu xS, and <j> takes each fibre B" x{y} into
W-̂ ocU) for some xef0. We require also that V = (Image </>)nf0 has positive
//.-measure.

LEMMA 5. 3£>>0 with the property that, for large enough n eZ+, 3xneT0 s.t. if

Proof. Let fi. = 4>*(fi | V). Decompose /I into a transverse measure /IT on S and leaf
measures /Iy on B" x{y}. Since fi has absolutely continuous conditional measures
on ^"-leaves,

fi.«fiTx A,
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where A is Lebesgue measure on B". It follows from this and /x(Fn n V)-*fiV that

is bounded away from zero. Hence the desired result. •

LEMMA 6. 3Ns.t. Vn >JV, 3n <mn < « ( l + e), £>>0, Ln = W"oc(xn), some xn ef0

an<f Bn<=Ln n Fn 5.?.
(1) \/xeBn,f

m-xeAr,
(2) mI^H^(l/ne)D.

Proof. Choose £> and £„ as in lemma 5. Partition L n n F n by return time, i.e. for

Then for some /,

mLnRm ^ (l/ns)mLn(Ln n Tn)

2( l /«e)D.

Let this / = mn and /?„, = Bn. O

4. Proof of the theorem
Recall that

S(a) = maximum number of a-separated points in supp (/JL).

We fix some arbitrarily small s > 0; choose Fo = F(/, C, S) and then Fo and {Fn}n = i)2,..
as in lemma 4. Let D > 0, Ln and Bn be as in lemmas 5 and 6. Choose So ̂ 8 small
enough that Vx e Sn,

£>50(*)n U Wioc(y) = M .

This is possible because f0 is compact and uniformly hyperbolic and W"oc (Fo) and
WToc (fo) are continuous families of disks.

For large n, we construct a set Sn as follows. Start with an arbitrary point
z\€fm"Bn. Let p = exp{Apmn} and pick

zt:€fm-Bn -{Du
p{zx)u• • • U D ; ( Z W ) ) for i = 2, 3, • • •

until the process cannot be continued. Let Sn consist of these z,'s. We know that

exp{(A! + - • -+\u-e)mn}D
card Sn > —

lAi exp {\pmnu\ne

because

by lemma 1, and

mrnI.n/m"JBn>/"1exp{(A1 + - • • +\u-e)mn}(D/ne),

since Bn c Tn c r0.

Claim. For large «,

x, y)>min{exp{Apmn},B;C50exp{(Ap-e)mn}}.
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Let x,ye Sn. Since

we have

^loc (y) n D c exp((Ap-s)m,)8o(x) = {x} Or 0 .

Thus if y is very near x, then either y e W^ (x) in which case

d(x, y)>exp{Apmn}

by construction of Sn or the intersection above is empty and lemma 2 applies to give

d{x, y) >B,CS0 exp {(Ap - e)mn}.

To sum up, if

E = min{l,B,C80}
and

en= E exp{(Ap-e)n(l+e)}

then

IA\ exp {Apmnw}ne

where £ , D, I and A; are independent of n. Thus
l Q g 5 ( g " ) -- H m (At + • • • + AM - g -Ap«) + ( l /w»

l i m i n f
-(l/mn)log£'-(Ap-e)

• +AU — e — APM

Now

log £„
>1 as«-»oo

lOg <?„ + !

and for en+i<e <en,
logS(e) Iog5(ej log(l
log(l/e) l o g d / e j log(l/en+1)'

Letting e -* 0 we complete the proof. •

5. Final remarks
(1) The assumption that fi has absolutely continuous conditional measures on

Wu-leaves implies that the /^-exponents are (theoretically) observable, that is, there
is a set A <= M with mA > 0 such that for all x in A, forward iterates of / along
the trajectory of x give the fi-exponents. This follows from the fact that

m( U Ws(x))>0
\ x ^-regular '

which in turn follows from the absolute continuity of the Ws-foliation [12], [13].
(2) Even in the case of attractors, Lyapunov exponents do not reflect the

dimension of the attractor if the underlying measure is too singular. An extreme
example in the direction is the well-known figure 8 (see for instance [5]).
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(3) For a general lower bound such as we have here one cannot hope to include
the other negative exponents. For example, consider A = T2 in a 3-manifold with
/|A = a linear Anosov diffeomorphism with exponents A and -A. Suppose that
normal to A we have a contraction with exponent y where |y| < A. Clearly

c(A) = i+rry,
i A\

and y plays no role in the dimension of A. We do not know whether genetically
sharper estimates involving the other negative exponents can be given.

This research was partially supported by NSF Grant MCS-8002781.
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